GDR Neutrino Meeting

Present and future challenges in neutrino oscillations

Thomas Schwetz SISSA, Trieste

T.S. is supported by an Intra-European Marie Curie fellowship of the European Commission within the 6th framework program

T. Schwetz, GDR neutrino meeting, Paris, 20-21 october 2005 - p.1

status of three-flavour neutrino oscillations

Outline

Introduction

status of three-flavour neutrino oscillations

• The LSND experiment and the status of sterile neutrinos

Outline

Introduction

status of three-flavour neutrino oscillations

- The LSND experiment and the status of sterile neutrinos
- Determination of neutrino oscillation parameters by future experiments

leading solar and atmospheric parameters determination of θ_{13} , the CP-phase, and the mass hierarchy

Outline

Introduction

status of three-flavour neutrino oscillations

- The LSND experiment and the status of sterile neutrinos
- Determination of neutrino oscillation parameters by future experiments

leading solar and atmospheric parameters determination of θ_{13} , the CP-phase, and the mass hierarchy

Summary

Before starting...

I will not speak about determination of the absolute neutrino mass

- tritium beta decay experiments
- neutrino-less double-beta decay experiments
- cosmological observations

Before starting...

I will not speak about determination of the absolute neutrino mass

- tritium beta decay experiments
- neutrino-less double-beta decay experiments
- cosmological observations

but I stress that

such experiments are an important part of the neutrino program, and provide complementary information to oscillation experiments

Evidences for neutrino oscillations:

Evidences for neutrino oscillations:

 atmospheric (SK, MACRO, Soudan) and accelerator (K2K) neutrinos

Evidences for neutrino oscillations:

- atmospheric (SK, MACRO, Soudan) and accelerator (K2K) neutrinos
- solar (SNO, SK, GNO, SAGE, Homestake) and LBL reactor (KamLAND) neutrinos

Evidences for neutrino oscillations:

- atmospheric (SK, MACRO, Soudan) and accelerator (K2K) neutrinos
- solar (SNO, SK, GNO, SAGE, Homestake) and LBL reactor (KamLAND) neutrinos

Constraints on oscillation parameters:

~1 km reactor experiments CHOOZ, Palo Verde

Evidences for neutrino oscillations:

- atmospheric (SK, MACRO, Soudan) and accelerator (K2K) neutrinos
- solar (SNO, SK, GNO, SAGE, Homestake) and LBL reactor (KamLAND) neutrinos

Constraints on oscillation parameters:

~1 km reactor experiments CHOOZ, Palo Verde

natural explanation in three-flavour framework

$$\Delta m_{31}^2 \qquad \qquad \Delta m_{21}^2$$

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & e^{-i\delta}s_{13} \\ 0 & 1 & 0 \\ -e^{i\delta}s_{13} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

atmospheric + K2K

solar + KamLAND

Maltoni, Schwetz, Tortola, Valle, hep-ph/0405172; Fogli, Lisi, Marrone, Palazzo, hep-ph/0506083; Gonzalez-Garcia, Pena-Garay, PRD **68** (2003) 093003; Bahcall, Gonzalez-Garcia, Pena-Garay, JHEP **0408** (2004) 016; de Holanda, Smirnov, Astropart. Phys. **21** (2004) 287; Bandyopadhyay, Choubey, Goswami, Petcov, Roy, hep-ph/0406328; Strumia, Vissani, hep-ph/0503246.

T. Schwetz, GDR neutrino meeting, Paris, 20-21 october 2005 - p.5

Maltoni, Schwetz, Tortola, Valle, hep-ph/0405172; Fogli, Lisi, Marrone, Palazzo, hep-ph/0506083; Gonzalez-Garcia, Pena-Garay, PRD **68** (2003) 093003; Bahcall, Gonzalez-Garcia, Pena-Garay, JHEP **0408** (2004) 016; de Holanda, Smirnov, Astropart. Phys. **21** (2004) 287; Bandyopadhyay, Choubey, Goswami, Petcov, Roy, hep-ph/0406328; Strumia, Vissani, hep-ph/0503246.

T. Schwetz, GDR neutrino meeting, Paris, 20-21 october 2005 - p.5

Two possibilities for the neutrino mass spectrum:

mass-squared differences:

parameter	$\mathbf{bf} {\pm} 1\sigma$	1σ acc.	3σ range
$\Delta m^2_{21} [10^{-5} { m eV}^2]$	7.9 ± 0.3	4%	7.1 - 8.9
$ \Delta m^2_{31} [10^{-3} { m eV}^2]$	$2.2^{+0.37}_{-0.27}$	14%	1.4 - 3.3

mixing angles:

parameter	$\mathbf{bf} \pm 1\sigma$	1σ acc.	3σ range
$\sin^2 heta_{12}$	$0.31\substack{+0.02\\-0.03}$	9%	0.24 - 0.40
$\sin^2 heta_{23}$	$0.50\substack{+0.06\\-0.05}$	11%	0.34 - 0.68
$\sin^2 heta_{13}$	—	_	≤ 0.046

updated from M. Maltoni, T. Schwetz, M.A. Tortola and J.W.F. Valle, hep-ph/0405172

evidence for $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ oscillations A. Aguilar *et al.*, PRD 64 (2001) 112007 $87.9 \pm 22.4 \pm 6.0$ excess events $P = (0.264 \pm 0.067 \pm 0.045)\%$ $\sim 3.3\sigma$ away from zero

evidence for $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ oscillations A. Aguilar et al., PRD 64 (2001) 112007 $87.9 \pm 22.4 \pm 6.0$ excess events $P = (0.264 \pm 0.067 \pm 0.045)\%$ $\sim 3.3\sigma$ away from zero $\Delta m^2 \sim {
m eV^2}$ not consistent with solar and atmospheric mass splittings for 3 neutrinos!

evidence for $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ oscillations A. Aguilar et al., PRD 64 (2001) 112007 $87.9 \pm 22.4 \pm 6.0$ excess events $P = (0.264 \pm 0.067 \pm 0.045)\%$ $\sim 3.3\sigma$ away from zero $\Delta m^2 \sim {
m eV^2}$ not consistent with solar and atmospheric mass splittings for 3 neutrinos!

 \rightarrow MiniBooNE results: 2005/2006?

Adding a sterile neutrino

Four-neutrino oscillation data

- solar+KamLAND data
- atmospheric+K2K data
- LSND

Four-neutrino oscillation data

- solar+KamLAND data
- atmospheric+K2K data
- LSND
- no-evidence short-baseline data (NEV) (KARMEN, Bugey, CDHS) provide strong constraints on neutrino mixing in the $\sim 1~{\rm eV^2}$ range

Coupling of the data sets

Coupling of the data sets

Maltoni, Schwetz, Tortola, Valle, hep-ph/0207157, hep-ph/0405172

Maltoni, Schwetz, Tortola, Valle, hep-ph/0207157, hep-ph/0405172

(2+2) 50 solar + KamLAND 40 30 $\Delta\chi^2$ χ^2_{PC} 20 atm XEX XSA 10 0 0.2 0.4 0.8 0.6 0 1 η_s

	SOL	ATM	LSND	NEV	$\chi^2_{ m PG}$	parameter GOF (PG)
(3+1)	0.0	0.4	5.7	10.9	17.0	1.9×10^{-3} 3.1σ
(2+2)	5.3	20.8	0.6	7.3	33.9	$7.8 imes 10^{-7}$ 4.9σ

5-neutrino oscillations

(3+2) Mass schemes, Sorel, Conrad, Shaevitz, hep-ph/0305255

5-neutrino oscillations

(3+2) Mass schemes, Sorel, Conrad, Shaevitz, hep-ph/0305255

T. Schwetz, GDR neutrino meeting, Paris, 20-21 october 2005 - p.14

5-neutrino oscillations

(3+2) Mass schemes, Sorel, Conrad, Shaevitz, hep-ph/0305255

T. Schwetz, GDR neutrino meeting, Paris, 20-21 october 2005 - p.14

More exotic proposals

- **3-neutrinos and CPT violation** Murayama, Yanagida 01; Barenboim, Borissov, Lykken 02; Gonzalez-Garcia, Maltoni, Schwetz 03
- 4-neutrinos and CPT violation Barger, Marfatia, Whisnant 03
- Exotic muon-decay Babu, Pakvasa 02
- CPT violating quantum decoherence

Barenboim, Mavromatos 04

mass varying neutrinos

Kaplan, Nelson, Weiner 04; Zurek 04; Barger, Marfatia, Whisnant 05

shortcuts of sterile neutrinos in extra dimensions

Paes, Pakvasa, Weiler 05

• decaying sterile neutrinos Palomares-Riuz, Pascoli, Schwetz 05

More exotic proposals

• 3-neutrinos and CPT violation Murayama, Yanagida 01;

Barenboim, Borissov, Lykken 02; Gonzalez-Garcia, Maltoni, Schwetz 03

- 4-neutrinos and CPT violation Barger, Marfatia, Whisnant 03
- Exotic muon-decay Babu, Pakvasa 02
- CPT violating quantum decoherence

Barenboim, Mavromatos 04

mass varying neutrinos

Kaplan, Nelson, Weiner 04; Zurek 04; Barger, Marfatia, Whisnant 05

shortcuts of sterile neutrinos in extra dimensions

Paes, Pakvasa, Weiler 05

• decaying sterile neutrinos Palomares-Riuz, Pascoli, Schwetz 05
- 3-neutrinos and CPT violation
 Barenboim, B KamLAND+atmospheric antineutrino data Barenboim, B KamLAND+atmospheric antineutrino data
- 4-neutrinos and CPT violation Barger, Marfatia, Whisnant 03
- Exotic muon-decay Babu, Pakvasa 02
- CPT violating quantum decoherence

Barenboim, Mavromatos 04

mass varying neutrinos

Kaplan, Nelson, Weiner 04; Zurek 04; Barger, Marfatia, Whisnant 05

shortcuts of sterile neutrinos in extra dimensions

Paes, Pakvasa, Weiler 05

- 3-neutrinos and CPT violation
 Barenboim, B KamLAND+atmospheric antineutrino data agida 01;
- 4-neutrinos and CPT violation Barger, Marfatia, Whisnant 03
- Exotic muon-decay Babu, Pakvasa 02
- CPT violating quantum decoherence

Barenboim, Mavromatos 04

mass varying neutrinos

Kaplan, Nelson, Weiner 04; Zurek 04; Barger, Marfatia, Whisnant 05

shortcuts of sterile neutrinos in extra dimensions

Paes, Pakvasa, Weiler 05

- 3-neutrinos and CPT violation
 Barenboim, B KamLAND+atmospheric antineutrino data agida 01;
- 4-neutrinos and CPT violation Barger, Marfatia, Whisnant 03
- Exotic muon-decay Babu, Pakvasa 02
- CPT violating quantum decoherence

Barenboim, Mavromatos 04

mass varying neutrinos

Kaplan, Nelson, Weiner 04; Zurek 04; Barger, Marfatia, Whisnant 05

shortcuts of sterile neutrinos in extra dimensions

Paes, Pakvasa, Weiler 05

- 3-neutrinos and CPT violation
 Barenboim, B KamLAND+atmospheric antineutrino data Barenboim, B KamLAND+atmospheric antineutrino data
- 4-neutrinos and CPT violation Barger, Marfatia, Whisnant 03
- Exotic muon-deo KARMEN, TWIST
- CPT violating quantum decoherence

Barenboim, Mavromatos 04

mass varying neutrinos

Kaplan, Nelson, Weiner 04; Zurek 04; Barger, Marfatia, Whisnant 05

shortcuts of sterile neutrinos in extra dimensions

Paes, Pakvasa, Weiler 05

- 3-neutrinos and CPT violation
 Barenboim, B KamLAND+atmospheric antineutrino data Barenboim, B KamLAND+atmospheric antineutrino data
- 4-neutrinos and CPT violation Barger, Marfatia, Whisnant 03
- Exotic muon-dec KARMEN, TWIST
- CPT violating quantum decoherence

Barenboim, Mavromatos 04

mass varying neutrinos

Kaplan, Nelson, Weiner 04; Zurek 04; Barger, Marfatia, Whisnant 05

shortcuts of sterile neutrinos in extra dimensions

Paes, Pakvasa, Weiler 05

- 3-neutrinos and CPT violation
 Barenboim, B KamLAND+atmospheric antineutrino data Barenboim, B KamLAND+atmospheric antineutrino data
- 4-neutrinos and CPT violation Barger, Marfatia, Whisnant 03
- Exotic muon-dec KARMEN, TWIST
- CPT violating quantum does herence
 Barenboim, Mavre KamLAND spectral data
- mass varying neutrinos

Kaplan, Nelson, Weiner 04; Zurek 04; Barger, Marfatia, Whisnant 05

shortcuts of sterile neutrinos in extra dimensions

Paes, Pakvasa, Weiler 05

- 3-neutrinos and CPT violation
 Barenboim, B KamLAND+atmospheric antineutrino data agida 01;
- 4-neutrinos and CPT violation Barger, Marfatia, Whisnant 03
- Exotic muon-dec KARMEN, TWIST
- CPT violating quantum does herence
 Barenboim, Mavre KamLAND spectral data
- mass varying neutrinos

Kaplan, Nelson, Weiner 04; Zurek 04; Barger, Marfatia, Whisnant 05

shortcuts of sterile neutrinos in extra dimensions

Paes, Pakvasa, Weiler 05

- 3-neutrinos and CPT violation
 Barenboim, B KamLAND+atmospheric antineutrino data agida 01;
- 4-neutrinos and CPT violation Barger, Marfatia, Whisnant 03
- Exotic muon-deo KARMEN, TWIST
- CPT violating quantum does Barenboim, Mavre KamLAND spectral data
- Mass varying neutrinos
 Kaplan, Nelson, Wei CDHS+atmospheric data?
 Kaplan, Nelson, Wei Neutrinos, Barger, Marfatia, Whisnant 05
- shortcuts of sterile neutrinos in extra dimensions

Paes, Pakvasa, Weiler 05

- 3-neutrinos and CPT violation
 Barenboim, B KamLAND+atmospheric antineutrino data Barenboim, B KamLAND+atmospheric Garcia, Maltoni, Schwetz 03
- 4-neutrinos and CPT violation Barger, Marfatia, Whisnant 03
- Exotic muon-deo KARMEN, TWIST
- CPT violating quantum does Barenboim, Mavre KamLAND spectral data
- Mass varying neutrinos
 Kaplan, Nelson, Wei CDHS+atmospheric data?
 Kaplan, Nelson, Wei CDHS+atmospheric, Barger, Marfatia, Whisnant 05
- shortcuts of sterile neutrinos in extra dimensions

Paes, Pakvasa, Weiler 05

- 3-neutrinos and CPT violation
 Barenboim, B KamLAND+atmospheric antineutrino data Barenboim, B KamLAND+atmospheric Garcia, Maltoni, Schwetz 03
- 4-neutrinos and CPT violation Barger, Marfatia, Whisnant 03
- Exotic muon-deo KARMEN, TWIST
- CPT violating quantum does Barenboim, Mavre KamLAND spectral data
- Mass varying neutrinos
 Kaplan, Nelson, Wei CDHS+atmospheric data?
 Kaplan, Nelson, Wei CDHS+atmospheric, Barger, Marfatia, Whisnant 05
- shortcuts of sterile neutrinos in extra dimensions

Paes, Pakvasa, Weiler 05

LSND and a decaying sterile neutrino

oscillation interpretation

LSND and a decaying sterile neutrino

Palomares-Riuz, Pascoli, Schwetz, hep-ph/0505216

postulate decay of heavy neutrino ν_h into ν_l and a scalar Φ

$$\mathcal{L} = -g \,\bar{\nu}_{lL} \nu_{hR} \,\Phi + \text{h.c.}$$

need $g m_h \sim eV$ and $|U_{\mu 4}|^2 \sim 10^{-2}$ (e.g., $g \sim 10^{-6} - 10^{-3}$, $m_h \sim keV - MeV$)

LSND and a decaying sterile neutrino

Palomares-Riuz, Pascoli, Schwetz, hep-ph/0505216

 $PG_{(3+1)} = 0.002\%, PG_{(3+2)} = 2.1\%$ $PG_{decay} = 4.6\%$

for the rest of the talk I assume that

- MiniBooNE does not see a signal, and
- LSND finds some explanation not related to neutrinos

for the rest of the talk I assume that

- MiniBooNE does not see a signal, and
- LSND finds some explanation not related to neutrinos

\rightarrow Standard three-neutrino oscillation framework

Open questions:

• Increase the precision on solar and atmospheric parameters (e.g. Is θ_{23} exactly 45°?)

- Increase the precision on solar and atmospheric parameters (e.g. Is θ_{23} exactly 45°?)
- How small is θ_{13} ?

- Increase the precision on solar and atmospheric parameters (e.g. Is θ_{23} exactly 45°?)
- How small is θ_{13} ?
- What is the value of the CP phase δ ?

- Increase the precision on solar and atmospheric parameters (e.g. Is θ_{23} exactly 45°?)
- How small is θ_{13} ?
- What is the value of the CP phase δ ?
- Type of the neutrino mass ordering (sign of Δm^2_{31})

Improving on the 'solar' parameters θ_{12} and Δm^2_{21}

Low energy solar neutrino experiments

J.N. Bahcall, Pena-Garay, hep-ph/0305159

- Solar neutrino data 2003
- 3 years simulated KamLAND data
- 5% measurement (1 σ) of the ⁷Be flux
- 3% and 1% measurement (1σ) of the *pp* flux

see also S. Choubey, S.T. Petcov, hep-ph/0410283

Long-baseline reactor neutrino experiment

S. Choubey, S.T. Petcov, hep-ph/0404103

99% CL	range	spread	range	spread
Data set	$\Delta m^2_{21}/10^{-5} { m eV}^2$	Δm_{21}^2	$\sin^2 heta_{12}$	$\sin^2 \theta_{12}$
only solar	3.2 - 14.9	65%	0.22 - 0.37	25%
solar+1 kTy KL	6.5 - 8.0	10%	0.23 - 0.37	23%
solar+2.6 kTy KL	6.7 - 7.7	7%	0.23 - 0.36	22%

$$\operatorname{spread}(x) = \frac{x^{\operatorname{upper}} - x^{\operatorname{lower}}}{x^{\operatorname{upper}} + x^{\operatorname{lower}}}$$

Long-baseline reactor neutrino experiment

S. Choubey, S.T. Petcov, hep-ph/0404103

99% CL	range	spread	range	spread
Data set	$\Delta m^2_{21}/10^{-5} { m eV}^2$	Δm_{21}^2	$\sin^2 heta_{12}$	$\sin^2 \theta_{12}$
only solar	3.2 - 14.9	65%	0.22 - 0.37	25%
solar+1 kTy KL	6.5 - 8.0	10%	0.23 - 0.37	23%
solar+2.6 kTy KL	6.7 - 7.7	7%	0.23 - 0.36	22%
3 yrs SK-Gd	7.0 - 7.4	<mark>3%</mark>	0.25 - 0.37	19%
5 yrs SK-Gd	7.0 - 7.3	2%	0.26 - 0.35	15%

J.F. Beacom, M.R. Vagins, hep-ph/0309300

SK doped with 0.2% Gadolinium (GADZOOKS!) tag neutrons from the reaction $\bar{\nu}_e + p \rightarrow e^+ + n$

Long-baseline reactor neutrino experiment

%-level determination of θ_{12} : dedicated reactor exp. at ~60 km

S. Choubey, S.T. Petcov, hep-ph/0410283

73 GW kt yr 2% syst. uncert. $\rightarrow \sin^2 \theta_{12}$ with

2% (6%) at 1σ (3σ)

see also J. Bouchiat, hep-ph/0304253; Minakata et al., hep-ph/0407326

Improving on the 'atmospheric' parameters $heta_{23}$ and $|\Delta m^2_{31}|$

ν_{μ} -disappearance in LBL accelerator experiments

 ν_{μ} -disappearance in LBL accelerator experiments

upcoming experiments:

- conventional beam experiments MINOS, CNGS
- superbeam experiments T2K, NOVA

assume 5 yrs of running in neutrino mode

Huber, Lindner, Rolinec, Schwetz, Winter, hep-ph/0403068

precision at
$$3\sigma \equiv \frac{\text{upper}^{(3\sigma)} - \text{lower}^{(3\sigma)}}{\text{true value}}$$

for true values $|\Delta m_{31}^2| = 2 \cdot 10^{-3} \text{eV}^2$ and $\sin^2 \theta_{23} = 0.5$:

	$ \Delta m_{31}^2 $	$\sin^2 heta_{23}$
current	86%	68%
MINOS+CNGS	26%	78%
T2K	12%	46%
ΝΟνΑ	25%	86%
Combination	9%	42%

H. Minakata, M. Sonoyama and H. Sugiyama, hep-ph/0406073

subsequent generation of LBL experiments like T2HK, CERN-Frejus exps (SPL, BB), NuFact will provide a sub-percent determination of $|\Delta m^2|$ and $\sin^2 2\theta_{23}!$

What is the value of θ_{13} ?

What is the value of θ_{13} ?

• naively one would expect $\theta_{12} \sim \theta_{23} \sim \theta_{13}$ $\rightarrow \theta_{13}$ around the corner

What is the value of θ_{13} ?

- naively one would expect $\theta_{12} \sim \theta_{23} \sim \theta_{13}$ $\rightarrow \theta_{13}$ around the corner
- $\theta_{13} \ll 1$ hint for some symmetry
What is the value of θ_{13} ?

- naively one would expect $\theta_{12} \sim \theta_{23} \sim \theta_{13}$ $\rightarrow \theta_{13}$ around the corner
- $\theta_{13} \ll 1$ hint for some symmetry

• relatively large θ_{13} opens the possibility to observe generic 3-flavour effects (CP-violation)

- reactor experiments with near and far detectors
 D-Chooz, KASKA, Daya Bay, Angra, Braidwood, RENO
- LBL $\nu_{\mu} \rightarrow \nu_{e}$ appearance experiments MINOS, CNGS, T2K, NO ν A, T2HK, SPL, BB, NuFact

Measuring θ_{13}

Measuring θ_{13}

Measuring θ_{13} by $\nu_{\mu} \rightarrow \nu_{e}$ at beams

The measurement of θ_{13} with the $\nu_{\mu} \rightarrow \nu_{e}$ appearance channel suffers from correlations and degeneracies:

G.L. Fogli, E. Lisi, Phys. Rev. D54 (1996) 3667
J. Burguet-Castell et al., Nucl. Phys. B608 (2001) 301
H. Minakata, H. Nunokawa, JHEP 10 (2001) 001
V.Barger, D.Marfatia, K.Whisnant, Phys. Rev. D65 (2002) 073023; D66 (2002) 053007
P.Huber, M.Lindner, W.Winter, Nucl. Phys. B645 (2002) 3; Nucl. Phys. B654 (2003) 3 and many more

Not $\sin^2 2\theta_{13}$, but only a specific parameter combination is measured very accurately

The $\nu_{\mu} \rightarrow \nu_{e}$ oscillation probability in vacuum

$P_{\mu e} \simeq \sin^2 2\theta_{13} \sin^2 \theta_{23} \sin^2 \Delta_{31}$

 $\mp \alpha \sin 2\theta_{12} \sin 2\theta_{13} \sin \delta \cos \theta_{13} \sin 2\theta_{23} \sin^3 \Delta_{31}$

 $- \alpha \sin 2\theta_{12} \sin 2\theta_{13} \cos \delta \cos \theta_{13} \sin 2\theta_{23} \cos \Delta_{31} \sin^2 \Delta_{31}$

 $+ \alpha^2 \sin^2 2\theta_{12} \cos^2 \theta_{23} \sin^2 \Delta_{31},$

with

$$\Delta_{31} \equiv \frac{\Delta m_{31}^2 L}{4E_{\nu}} , \quad \alpha \equiv \frac{\Delta m_{21}^2}{\Delta m_{31}^2} = 0.035^{+0.009}_{-0.004}$$

Measuring $\sin^2 2\theta_{13}$ at reactors

"Clean" measurement of $\sin^2 2\theta_{13}$:

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \frac{\Delta m_{31}^2 L}{4E_{\nu}} + \left(\frac{\Delta m_{21}^2 L}{4E_{\nu}}\right)^2 \cos^4 \theta_{13} \sin^2 2\theta_{12}$$

last term negligible for $\frac{\Delta m_{31}^2 L}{4E_{\nu}} \sim \pi/2$ and $\sin^2 2\theta_{13} \gtrsim 10^{-3}$

determination of θ_{13} is free of correlations and degeneracies

P. Huber, M. Lindner, T. Schwetz and W. Winter, Nucl. Phys. B 665 (2003) 487 [hep-ph/0303232]H. Minakata, H. Sugiyama, O. Yasuda, K. Inoue and F. Suekane, Phys. Rev. D 68 (2003) 033017

$\sin^2 2\theta_{13}$ discovery reach evolution

plot by W. Winter from Albrow et al., hep-ex/0509019

$$\begin{split} \Delta m^2_{31} &= +2.5\times 10^{-3} \; \mathrm{eV^2} \\ \sin^2 2\theta_{23} &= 1 \end{split}$$

FPD = Fermilab Proton Driver LBL exps.: neutrinos only

$\sin^2 2\theta_{13}$ discovery reach evolution

plot by W. Winter from Albrow et al., hep-ex/0509019

$$\begin{split} \Delta m^2_{31} &= +2.5\times 10^{-3} \; \mathrm{eV^2} \\ \sin^2 2\theta_{23} &= 1 \end{split}$$

FPD = Fermilab Proton Driver LBL exps.: neutrinos only 2^{nd} GenPDExp = T2HK NuFact anti- ν after 2.5 yr

The CP-phase δ and the type of the mass hierarchy

CP-phase and hierarchy within ten years

assume $\sin^2 2\theta_{13} = 0.1$

Huber, Lindner, Rolinec, Schwetz, Winter, hep-ph/0403068

Sensitivity to CP-violation at 3σ

M.Mezzetto, talk at NuFact 2006

SPL: 2ν + $8\overline{\nu}$ yr, 440 kton

 β B: 5 ν +5 $\bar{\nu}$ yr, 440 kton

 $\beta B + SPL$

T2HK: 2ν + $8\overline{\nu}$ yr, 440 kton

NuFact: 5ν + $5\overline{\nu}$ yr, 2×50 kton at 3500 and 7000 km

Parameter degeneracies in LBL experiments provide a severe limitation for the determination of θ_{13} , the CP phase δ and the hierarchy!

allowed regions at 2σ , 99%, 3σ CL

true values: $\sin^2 2\theta_{13} = 0.03$ $\delta = -0.85\pi$ $\sin^2 \theta_{23} = 0.4$ $\Delta m_{31}^2 = 2.2 \times 10^{-3} \text{eV}^2$

allowed regions at 2σ , 99%, 3σ CL

true values: $\sin^2 2\theta_{13} = 0.03$ $\delta = -0.85\pi$ $\sin^2 \theta_{23} = 0.4$ $\Delta m_{31}^2 = 2.2 \times 10^{-3} \text{eV}^2$

allowed regions at 2σ , 99%, 3σ CL

true values: $\sin^2 2\theta_{13} = 0.03$ $\delta = -0.85\pi$ $\sin^2 \theta_{23} = 0.4$ $\Delta m_{31}^2 = 2.2 \times 10^{-3} \text{eV}^2$

allowed regions at 2σ , 99%, 3σ CL

true values: $\sin^2 2\theta_{13} = 0.03$ $\delta = -0.85\pi$ $\sin^2 \theta_{23} = 0.4$ $\Delta m_{31}^2 = 2.2 \times 10^{-3} \text{eV}^2$

ambiguities in θ_{13} and δ no information on the hierarchy

several possibilities to resolve the degeneracies are known:

 combining information from detectors at different baselines and/or energies
 e.g., second osc. maximum, different off-axis angle

- combining information from detectors at different baselines and/or energies
 - e.g., second osc. maximum, different off-axis angle
- using additional oscillation chanels $(\nu_e \rightarrow \nu_{\tau})$

- combining information from detectors at different baselines and/or energies
 - e.g., second osc. maximum, different off-axis angle
- using additional oscillation chanels $(\nu_e \rightarrow \nu_{\tau})$
- spectral information (broadband beam)

- combining information from detectors at different baselines and/or energies
 - e.g., second osc. maximum, different off-axis angle
- using additional oscillation chanels $(\nu_e \rightarrow \nu_{\tau})$
- spectral information (broadband beam)
- adding information on θ_{13} from a reactor experiment

- combining information from detectors at different baselines and/or energies
 - e.g., second osc. maximum, different off-axis angle
- using additional oscillation chanels $(\nu_e \rightarrow \nu_{\tau})$
- spectral information (broadband beam)
- adding information on θ_{13} from a reactor experiment
- combing data from LBL and atmospheric neutrino experiments

Some comments on the hierarchy determination

 it's hard experimentally but very interesting for theory

 it's hard experimentally but very interesting for theory

• needs a large θ_{13} : $\sin^2 2\theta_{13} \gtrsim 0.01$

- it's hard experimentally but very interesting for theory
- needs a large θ_{13} : $\sin^2 2\theta_{13} \gtrsim 0.01$
- needs matter effects

- it's hard experimentally but very interesting for theory
- needs a large θ_{13} : $\sin^2 2\theta_{13} \gtrsim 0.01$
- needs matter effects
 - very long baseline ($\gtrsim 700$ km) in beam exps.
 - atmospheric neutrinos
 - supernova neutrinos

 $NO\nu A$ proposal, hep-ex/0503053

NO ν A: 30 kt at 810 km 3ν + $3\overline{\nu}$ yrs

PD = proton driver

2nd Det: 50 kt detector at 710 km, 30 km off-axis

 $3\nu+3\overline{\nu}$ yrs NO ν A+PD + $3\nu+3\overline{\nu}$ yrs NO ν A+PD+2nd Det = 12 yrs total

Combining LBL and atmospheric neutrino data

Combining LBL and atmospheric neutrino data

Huber, Maltoni, Schwetz, PRD71, 053006 (2005) [hep-ph/0501037]

blue: LBL only, red: ATM only, shading: LBL+ATM

450 kton, 2ν + $8\overline{\nu}$ yrs LBL data, 50 present SK ATM data

atmospheric ν s with a magnetized iron detector (INO)

atmospheric ν s with a magnetized iron detector (INO)

of events needed for a 2σ hierarchy determination

Petcov, Schwetz, in preparation

 S_{μ} (S_{μ}^{high}): μ -like data with 15% (5%) energy, 15° (5°) direction resolution S_e : *e*-like data with 85% charge identification

30 kt, 10 yrs \rightarrow \sim 1200 μ -events

Summary

Summary

present

Summary

present

future

Summary

present

future

be prepared for surprises: MiniBooNE

additional slides

Oscillatory signal in atmospheric neutrinos

Super-K Coll., Phys. Rev. Lett. 93 (2004) 101801

$$P_{2\nu} = 1 - \sin^2 2\theta \, \sin^2 \left(\frac{\Delta m^2}{4} \frac{L}{E_{\nu}}\right)$$

'Solar' parameters

global solar neutrino data: Homestake,SAGE,GNO,SK,SNO

'Solar' parameters

global solar neutrino data: Homestake,SAGE,GNO,SK,SNO

The SNO experiment: $\nu_e + d \rightarrow p + p + e^ \nu_x + d \rightarrow p + n + \nu_x$ SNO-II 391d nucl-ex/0502021 $\frac{\phi_{CC}}{\phi_{NC}} = 0.340 \pm 0.023 \pm 0.030$

 7σ evidence for a non-zero $\nu_{\mu,\tau}$ flux from the sun

constraint on θ_{12} :

 $\frac{\phi_{CC}}{\phi_{NC}} \approx P_{ee}^{\rm SNO} \approx \sin^2 \theta_{12}$

 $\sin^2 heta_{12} = 0.30^{+0.02}_{-0.03}
ightarrow 0.3$ the schwetz GBR neutrino meeting, Paris, 20–21 october 2005 – p.52

The KamLAND energy spectrum

evidence for flux suppression and spectral distortion

KamLAND vs solar data

KamLAND vs solar data

 $\Delta m^2 = 7.9 \pm 0.3 \times 10^{-5} \text{ eV}^2$, $\sin^2 \theta_{12} = 0.31^{+0.02}_{-0.03}$

The bound on θ_{13}

CHOOZ bound depends on the value of Δm_{13}^2

CHOOZ+atm+K2K: $\sin^2 \theta_{13} < 0.029 (0.067)$

The bound on θ_{13}

solar data contribute for low Δm_{13}^2

CHOOZ+atm+K2K: $\sin^2 \theta_{13} < 0.029 (0.067)$ solar+KamL: $\sin^2 \theta_{13} < 0.041 (0.079)$ global: $\sin^2 \theta_{13} < 0.021 (0.046)$

The θ_{13} bound from KamLAND and solar

complementarity between solar and KamLAND data

$$P_{\text{KL}} = \left(1 - 2\sin^2\theta_{13}\right) \left(1 - \sin^2 2\theta_{12} \sin^2 \frac{\Delta m_{21}^2 L}{4E_{\nu}}\right)$$
$$P_{\text{Sol}} \approx \left(1 - 2\sin^2\theta_{13}\right) \begin{cases} \sin^2\theta_{12} & \text{high } E_{\nu} \\ (1 - 0.5\sin^2 2\theta_{12}) & \text{low } E_{\nu} \end{cases}$$

The global bound on θ_{13}

$\sin^2 \theta_{13} < 0.021 (0.046)$ at 90% CL (3 σ)

$\sin^2 2\theta_{13}$ -limit within the next ten years

Huber, Lindner, Rolinec, Schwetz, Winter, hep-ph/0403068

Potential if $\sin^2 2\theta_{13}$ turns out to be large

Potential if $\sin^2 2\theta_{13}$ turns out to be large

Superbeam anti-neutrino running vs reactor experiments

θ_{13} *limit*

