

MEgaton Mass PHYSics

JE Campagne LAL-Orsay (Munich 3Liquids meeting 24/4/06)

The need for new generation experiments...

Still many important issues...

Baryon number violation

Proton decay

- Astroparticle physics
 - Understand gravitational collapse
 - Star formation in the early universe
 - Explore violent phenomena in the universe
 - **Dark matter and astrophysical sources**
- Neutrino properties
- **Solar thermonuclear fusion processes**
- Geophysical models, Earth density profile

Galactic SN v

Diffuse SN v

Trigger SN v,

Incoming muons

LBL - v, Atm. - v, SN - v,

Solar - v

Geo - v, U, Th - v

NNN Workshops

Aussois 05, Seatle 06, Hamamatsu 07

Water Cerenkov 500kT → 1Mt

Mton Water Čerenkov

Concept of a Mton water Cherenkov detector dates back to 1992

- M. Koshiba: "DOUGHNUTS" Phys. Rep. 220 (1992) 229 Hype
- Concept of Hyper-Kamiokande was first presented at NNN99
 - > K. Nakamura, Int. J. Mod. Phys. A18 (2003) 4053

American concept UNO in NNN99:

C.K. Jung, "Feasibility of a next generation underground water Cherenkov detector UNO", arXiv:hep-ex/0005046

Similar European project in 2005:

A. de Bellefon et al: "MEMPHYS a large scale water Cerenkov detector at Frejus", Contribution to the CERN Strategic Group

Well-proven technology (IMB, K, SK) for large scale however currently no wide expertise in Europe

Ex: MEMPHYS 1 shaft

The Japanese and US projects: HK and UNO

(strong collaboration between the 3 WC projects in NININ and beyond)

- Toshibora Mine (900 mwe)
 FV 540 ktons
 - Cavern study performed
 - Photodetector R&D on-going
- Long baseline T2K superbeam (CP-violation)
- Decision following results from T2K-Phase 1 (2013-2022 ?)
- •2nd location in Korea ?

- Henderson Mine (4000 mwe, one of the 2 DUSEL sites)
 FV 440 ktons
- •FV 440 ktons
- Cavern study to be done
- Photodetector R&D on-going
- Long baseline from BNL
- •In the NSF process

Summary of WC in the world (LAL-06-22)

	UNO (USA)	HK (Japon)	MEMPHYS (EU)			
Laboratory						
location	Henderson/Homestake	Tochibora	Fréjus			
prof. Mwe	4500/4800	1500	4800			
LBL(km)	1480÷2760/1280÷2530	290	130			
	Dimser	nsions				
type	3 cubes	2 tunnels de 5 compartments	3 to 5 shafts			
dimension	60x60x60m ³	φ: 43m x L:50m	φ:65m x L:65m			
M fid. Kt	440	550	440 à 730			
	Photode ⁻	tectors				
type	20" P M T	20" H(A)PD	12" PMT			
#	38000 (middle) 2 × 9500 (side)	20,000 per compartiment	81,000 per shaft			
Couverage	40%/10% (middle/side)	40%	30%			
	Estimate Cost 50% excavation + 50% Photodetection					
	500 M \$	500 Oku ¥	161M€ × #shafts +100M€ infra.			

1-ring vertex ~10cm Ring-direction ~ 1° σ_E ~10%/ \sqrt{E} (45% Solar v) Absolute E scale @ 3% Cerenkov threshold: ~1.07GeV:p, ~570MeV: K[±], ~120MeV: μ^{\pm} ,~0.6MeV: e^{\pm} Lowest trigger threshold: 5MeV (trig. rate x10 every MeV due to ambiant radioactivity)

Timing capability: an example for $p \rightarrow K^+ \bar{\nu}$

Autotrigger capability

The first use of the PMT timing is the approximate vertex determination

Particle Id.

1

$$\mathcal{P}^{angle}(e \text{ ou } \mu) = e^{-\frac{1}{2} \left(\frac{\theta^c - \theta^{att}(e \text{ OU } \mu)}{\delta \theta}\right)^2}$$

 $\begin{array}{ll} \mbox{1*ring } \mu \rightarrow e \\ \mbox{10\% 1-ring } e \rightarrow \mu \end{array}$

Compare the expected and measured Cerenkov angle

$$\mathcal{D}_n^{pattern}(e \text{ ou } \mu) = e^{-\frac{1}{2} \left(\frac{\chi^2(e \text{ OU } \mu) - \chi^2_{min}}{\sigma_{\chi^2_n}}\right)^2}$$

Compare the expected and measured charge of *i*th PMT from the *n*th ring

$$\mathcal{L}_n(e \text{ ou } \mu) = \prod_{\theta_i < 1,5 \ \theta^c} \operatorname{prob} \left[q_i^{obs}, q_{i,n}^{att}(e \text{ ou } \mu)) + \sum_{n' \neq n} q_{i,n'}^{att} \right]$$

Proton decay

An Upper Bound exists coming from the GAUGE sector (d=6) model indépendant I. Dorsner, P. F. Perez PLB 625 (05) 88

$$\tau_p^M \le 6.0 \times 10^{39} \ \frac{(M_X/10^{16} \,\text{GeV})^4}{\alpha_{GUT}^2} \ (0.003 \,\text{GeV}^3/\alpha)^2 \,\text{years} \quad \tau_p^D \le 1.4 \times 10^{37} \ \frac{(M_X/10^{16} \,\text{GeV})^4}{\alpha_{GUT}^2} \ (0.003 \,\text{GeV}^3/\alpha)^2 \,\text{years}$$

Specific model gives faster decay rates...

It is quite diffical and unatural to set to 0 all the decay channels simultaneously

 $v + meson \leftrightarrow charged lepton + meson$

$$p \rightarrow K^+ \nu \qquad p \rightarrow$$

$$p \rightarrow e^+ \pi^0$$

JE Campagne LAL-Orsay (Munich 3Liquids meeting 24/4/06)

Some recent models predictions

Model	Decay modes	Prediction	References
Georgi-Glashow model	-	ruled out	[8]
Minimal realistic	all channels	$\tau_p^{upper} = 1.4 \times 10^{36}$	[9]
non-SUSY $SU(5)$		-	
Two Step Non-SUSY SO(10)	$p \rightarrow e^+ \pi^0$	$\approx 10^{33-38}$	[10]
Minimal SUSY $SU(5)$	$p \rightarrow \bar{\nu} K^+$	$\approx 10^{32-34}$	[11]
SUSY $SO(10)$	$p \rightarrow \bar{\nu} K^+$	$\approx 10^{33-36}$	[12]
with 10_H , and 126_H			
M -Theory (G_2)	$p \rightarrow e^+ \pi^0$	$\approx 10^{33-37}$	[13]

P. F. Perez @ LPNHE 17/2/06

 $p \rightarrow K^+ \overline{\nu}$

H₂0: K⁺ below Č threshold Imaging/Timing K⁺ $\rightarrow \pi^{+}\pi^{0}$; $\mu^{+}\nu$ avec ou sans ¹⁵O

 \rightarrow^{15} N γ prompt (6MeV) tag

	3	Bkgd
H ₂ 0 (*)	8.6%	3/Mt.y
Scint. Liq.	65%	<1/Mt.y
LAr	97%	<1/Mt.y

*: SK analysis

Summary of proton decay

P.F.Perez

Definitively not exhaustive neither p channels nor n decay...

Diffuse SN

Detection of SNv with z $\lesssim 1$

 $\mathsf{Flux} \propto \mathsf{all} \; \mathsf{SN}(\mathsf{z})$ in particular those which produce a Black hole

JE Campagne LAL-Orsay (Munich 3Liquids meeting 24/4/06)

MEMPHYS: 60-150* Sig/65 BG [15-30]MeV 2yrs (1Mt.y)

$$v_e + {}^{40}\text{Ar} \rightarrow {}^{40}\text{K}^* + e^- \text{ (see GLACIER)}$$

*: at SK limit

SN parameter measurements

SN 1987A (KAM-II,IMB) DSN (SK)

DSN 5yrs SK-Gd ⇔1yr MEMPHYS-1shaft-Gd

Yukse, Ando Beacom astro-ph/0509297

SN II Explosion

Early lightcurve of SN1987A

JE Campagne LAL-Orsay (Munich 3Liquids meeting 24/4/06)

What to do with this SNv?

🏶 SN trigger

> GALEX + SN formation \Rightarrow 1 SN/y D<10 Mpc

- H20 450kT [18-30MeV]: 4.5/(Mpc)² and 0.4BG/day
- H20+Gd 240kT [12-38MeV]: 4.5/(Mpc)² et 0.3BG/day

However 9 SN with D<10 Mpc in 3 years (x3 the expected rate)...</p>

- 2 events $\Delta t < 10s$ (no BG) \Rightarrow SN Alarm
- SN via Optic \Rightarrow if $\Delta t < 10s 1$ event \Rightarrow Alarm confirmed

> In coincidence with GW, if possible(???) \Rightarrow sensitivity $m_v \sim 1 eV$

Si → Fer burning if D<2kpc : n-capture requested</p>

Neutronization burst : possible but better with GLACIER
SN direction:

> ES e- 2°→0.6° (H_2 0 + Gd)

Time evolution of the energy spectrum: Burst + Shock Wave +Earth θ_{13} parameter + mass Hierarchy

Hierarchy	sin²θ ₁₃	v_e neutronization peak	Shock wave	Earth effect
Normal	≳ 10-3	Absent	ν _e	ν _e ν _e (delayed)
Inverted	≳ 10-3	Present	v _e	∨ _e − ∨ _e (delayed)
Any	≲ 10 -5	Present		v _e v _e

A. Mirizzi @ LPNHE 17/2/06

Exploiting these complementary signatures one could extract useful information on the neutrino mass hierarchy and on θ_{13}

 $(v_{\mu\tau} + p NC)$ measurement of independent fraction of the binding energy)

Neutronization burst (~ 25 ms, after the bounce)

Robust feature of the SN simulation

 $v_{e,x} e^{-} \rightarrow v_{e,x} e^{-}$ (ES)

Possibility to probe non standard physics

Resonant Spin Flavor transitions [E.Akhmedov et al., hep-ph/0310119]

Neutrino_Decay [S.Ando, hep-ph/0405200]

Possibility to look for non standard \overline{v}_{e} fraction (H₂0)

Man made Oscillations...

Non couvert ici par ex.: échelle de masse, Majorana vs Dirac, v stérile...

JE Campagne LAL-Orsay (Munich 3Liquids meeting 24/4/06)

Δm_{21}^2 et $\sin^2\theta_{12}$ « solar parameters »

0.77kT.y

Reacteurs \mathcal{V} Background for Supernova v						
S. Choubey, S.T. Petcov, hep-ph/0404103						
99% CL	range	spread	range	spread		
Data set	$\Delta m^2_{21}/10^{-5} \mathrm{eV}^2$	Δm^2_{21}	$\sin^2 heta_{12}$	$\sin^2 heta_{12}$		
only solar	3.2 - 14.9	65%	0.22 - 0.37	25%		
solar+1 kTy KL	6.5 - 8.0	10%	0.23 - 0.37	23%		
solar+2.6 kTy KL	6.7-7.7	7%	0.23 - 0.36	22%		
3 yrs SK-Gd	7.0 - 7.4	3%	0.25 - 0.37	19%		
5 yrs SK-Gd	7.0 - 7.3	2%	0.26 - 0.35	15%		

KamLAND

Letter by S. Petcov & Th. Schwetz to come

A possible « Roadmap » (inspired by A. Cervera @ CSG-Orsay06)

1st step: present era

Ongoing: 2005-2010

- Improve the precision on the atmospheric parameters looking at ν_{μ} disappearance
- Confirm (atm. osc)=(ν_{μ} \rightarrow ν_{τ}) and first look at $~\nu_{\mu}$ \rightarrow ν_{e}
- 2 nd step:prospective eraApproved/Proposed: 2009-2015• Demonstrate visibility of sub-leading transitions: $V_{\mu} \rightarrow V_{e}$, $V_{e} \rightarrow V_{e}$
- Explore θ_{13} down to 2^o (today <10^o)

3rd step: deep search era

Discussed: 2015-2025

$$\theta_{13} > 3^{o}$$
 —— Known by 2011 —— $\theta_{13} < 3^{o}$

- Existing facilities could reach it
- ... but with very small sensitivity
 - to δ_{CP} and mass hierarchy

• No access for ongoing experiments at that time

Cleaner and more intense beams + bigger detectors

$|\Delta m_{31}^2|$ et $\sin^2\theta_{23}$ « *atmospheric parameters* »

precision area!

T2HK E_v~ 750MeV SPL E_v~ 300MeV (Fermi motion limitation)

JECampagne, M. Maltoni, M.Mezzetto, Th. Schwetz hep-ph/0603172

CP-phase and hierarchy within ten years

assume $\sin^2 2\theta_{13} = 0.1$

Huber, Lindner, Rolinec, Schwetz, Winter, hep-ph/0403068

θ_{13} : sensitivity time evolution (take care...)

If θ_{13} is found on the road the priority will have to be adapted

.....

SPL current design

SPL main goals:

- increase the performance of the CERN high energy accelerators (PS, SPS & LHC)
- address the needs of future experiments with neutrinos and radio-active ion beams

How to overcome Super Beam limitations?

Main problem :

SPL protons produce less negative pions, so less antineutrinos antineutrino cross-section ~ 5 times smaller than neutrinos So 10 SPL years have to be shared as ~ 2 neutrino + 8 antineutrino years

A solution :

Produce a v_e beam to study $v_e \rightarrow v_{\mu}$ oscillation and run it SIMULTANEOUSLY

with $\nu_{\,\mu}$ beam from SPL

Compare $v_{\mu} \rightarrow v_{e}$ and $v_{e} \rightarrow v_{\mu}$ (T asymetry, equivalent to CP asymetry)

THIS WAS THE INITIAL MOTIVATION FOR A BETA BEAM

Beta-beam baseline design

Super Beam + β Beam + MEMPHYS

JECampagne, M. Maltoni, M.Mezzetto, Th. Schwetz hep-ph/0603172

ou 5ans en combinant SPL (v_{μ}) + BB(v_{e})

Study inside the ISS/BENE WG

Band: 2%→5% syst BB: 5+5y SPL: 2+8y T2HK: 2+8y all: 440kT fid. mass Systematics dominant SB: beam contents SB et BB: x-section, eff./Bgd (NF: matter profile, eff./Bgd)

JECampagne, M. Maltoni, M.Mezzetto, Th. Schwetz hep-ph/0603172

Mass hierarchy: Synergy BB & SPL, and also ATM

JECampagne, M. Maltoni, M.Mezzetto, Th. Schwetz

ATM: v atmosph. 4.4Mt.y

– – – : LBL alone
_____: LBL + ATM

Notice βB+SPL vs T2HK !!! Not yet included in the paper

Dégénérescences...

 $P_{\mu e} \simeq \sin^2 2\theta_{13} \sin^2 \theta_{23} \sin^2 \Delta_{31} + \alpha^2 \sin^2 2\theta_{12} \cos^2 \theta_{23} \Delta_{31}^2$ $+ \alpha \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23} \Delta_{31} \sin \Delta_{31} \cos(\Delta_{31} \pm \delta_{CP})$

several possibilities to resolve the degeneracies are known:

- combining information from detectors at different baselines and/or energies
 - e.g., second osc. maximum, different off-axis angle
- using additional oscillation chanels (ν_e → ν_r)
- spectral information (broadband beam)
- adding information on θ₁₃ from a reactor experiment
- combing data from LBL and atmospheric neutrino experiments

MEMPHYS+ SPL+BB+ ATM

O: θ_{23} **Octant H:** sign $|\Delta m^2_{31}|$

sin²θ₂₃=0.6

BB: 5+5y SPL: 2+8y 440kT fid. mass

ATM can solve degeneracies!!!

JECampagne, M. Maltoni, M.Mezzetto, Th. Schwetz hep-ph/0603172

Other way to solve the degeneracies: use v_e and v_{μ}

BB: 5y (v_e) SPL: 5y (v_μ) ATM: 5y MEMPHYS 440kT fid. mass

Still a wrong hierarchy clone with $\chi^2=3.3$

A new very large laboratory in Europe?

Results of a pre-study conducted by the SETEC Co. (present road tunnel)

3 shafts

(1 shaft ~ 150kT

fiducial mass)

65m

65m

The estimated overall cost is ≈ 80 M€ X Nb of shafts

A simpler scheme under study of access tunnels

A new very large laboratory in Europe?

(Results of a pre-study by SETEC/STONE, Fréjus tunnel construction company)

- 1) The best rock quality is found in the middle of the mountain, at a depth of 4800 mwe
- of all the 20 considered shapes : the "shaft (= well) shape" is strongly preferred
- 3) cylindrical shafts are feasible up to a diameter Φ = 65 m and a full height h = 80 m (\approx 250 000 m³)

Figure 1.2 – Frejus Motorway tunnel, summary of the convergences between chainage 0+000 km and 7+000 km.

R&D Photodetecteurs

Hamamatsu R&D

HPD

13inch HPD

Q

1 p.e.

-20 0 20 40 60 80 100 120 140 160 180

33cm

13inch

20"

B41 1075e

Q [electron]

13cm

20kV!

500

400

300

200

100

0 p.e.

 Diameter 	20" <=>	12"
 projected area 	1660	615 cm ²
●QE(typ)	20	24 %
●CE	60	70 %
●Cost	2500	800 €
●Cost/p.e/cm	13	8 €

PMT Photonis@NNN05

Summary

- R&D for a large format hybrid photo detector has started.
- · Initial study shows excellent performance:
 - ✓ Single photon sensitivity
 - ✓ Wide dynamic range (up to the readout limit)
 - ✓ Good time resolution (better than 1ns)
 - ✓ Good uniformity (over a large photocathode)
- Promising

H. Aihara @ NNN05

Needs low noise electronics

R&D Electronique

- Integrated readout : "digital PM (bits out)"
 - Charge measurement (12bits)
 - Time measurement (1ns)
 - Single photoelectron sensitivity
- High counting rate capability (target 100 MHz)
- Large area pixellised PM :
 - > 16 low cost PMs
 - Centralized ASIC for DAQ
 - Variable gain to have only one HV

Multichannel readout

- Gain adjustment
- Subsequent versions of OPERA_ROC ASICs
- Network
 - > Wireless?

IPNO-LAL-LAPP

French funding agency $(ANR \neq CNRS/IN2P3 \text{ and } CEA)$ Demand for a Joint R&D : > LAL-IPNO-LAPP > Photonis Co. > 3years, 400k€, 1FTE physicist, 5FTE Engineers ⇒ LAL: electonics: 100k€ + 1 post-doc IPNO: photodetector tests + mechanics: 180k€ ⇒LAPP: Data network: 53k€ Photonis: PMTs provider: 64k€

Expected answer in July 06

The 3 technologies have complementarity Physics and common R&D

Networking activities

- A1) Physics potential of Large Deep Underground experiments in both non- accelerator and accelerator sectors, interdisciplinary aspects (geoneutrinos)
- A2) Underground Laboratories for very large detectors : best strategies for excavation, access and equipments (ventilation, air-conditioning, power supply, low background environment, etc.),
- ♦ A3) Safety optimisation in Very Large Underground Facilities
- ♦ A4) Interdisciplinary aspects of the facility

Joint Research Activities

- B1) Development of low-cost photo-sensors for Cerenkov and scintillation processes in optical and DUV regions, of different types (vacuum or gaseous, in connection with industry)
- B2) Development of solutions for low-cost readout electronic for a large number of channels \oplus
- B3) Development of large scale liquid production and purification systems \oplus
- ⊕ B4) Technical feasibility and safety of large underground liquid containers (tanker)
- B5) Site definition and local studies for large scale caverns with large underground apparatuses (rock/salt quality, access requirements, ventilation systems, power supply, ...)

Start structure for FP7, connection with ILIAS...

Sensibilité à la hiérarchie de masse

H₂0

•	$\overline{\nu}_e + p \rightarrow n + e^+ \text{ (Q=1.8 MeV)}$ $n + p \rightarrow d + \gamma; E_{\gamma} = 2.2 \text{ MeV} \qquad \sim 8700 \text{ events}$
•	$\overline{\nu}_{e} + {}^{12}C \rightarrow {}^{12}B + e^{-}+ \text{ (Q=17.3 MeV)}$ ${}^{12}B \rightarrow {}^{12}C + e^{+} + \overline{\nu}_{e}; \ \tau_{1/2} = 20.20 \text{ ms} \sim 494 \text{ events}$
•	$ u_e + {}^{12}C \rightarrow e^- + {}^{12}N \text{ (Q=13.4 MeV)} $ ${}^{12}N \rightarrow {}^{12}C + e^+ + \nu_e; \ \tau_{1/2} = 11.00 \text{ ms} \sim 85 \text{ events}$
•	$\begin{array}{ll} \nu_{\chi} + {}^{12}\mathrm{C} \rightarrow {}^{12}\mathrm{C}^{*} + \nu_{\chi} \\ & \text{with} {}^{12}\mathrm{C}^{*} \rightarrow {}^{12}\mathrm{C} + \gamma; \text{E}_{\gamma} = \text{15.11 MeV} {\sim} \text{2925 events} \end{array}$
۰	$ u_{\rm X} + e^- \rightarrow \nu_{\rm X} + e^- \text{(elastic scattering)} \sim 610 \text{ events}$
•	$ u_x + p \rightarrow v_x + p $ (elastic scattering) Detector energy threshold: $E_{th} = 0.2 \text{ MeV}$ ~7370 events

10kpc

$v_e \text{ NC} \rightarrow {}^{40}\text{Ar*} (\text{Q=1.46MeV}) $ Burst	380
v_x , \overline{v}_x NC (⁴⁰ Ar)	30k
$ u_{e}$ + ⁴⁰ Ar \rightarrow ⁴⁰ K* + e ⁻ (Q= 1.5MeV)	24k-31k
v_x , \overline{v}_x NC (e ⁻ ES)	1,3k
\overline{v}_{e}^{-} + ⁴⁰ Ar \rightarrow ⁴⁰ Cl* + e ⁺ (Q= 7.48MeV)	540

Model	Authors	Decay modes	Prediction	References
Complete 5D SU(5)	Y. Nomura, L. Hall	$e^{+}\pi^{0}, \mu^{+}\pi^{0}$	$10^{33} - 10^{35}$	[9]
		$e^{+}K^{0}, \mu^{+}K^{0}$		
		$\nu \pi^+, \nu K^+$		
Two Step Non-SUSY SO(10)	D.G. Lee et al.	$e^{+}\pi^{0}$	$10^{28.5} - 10^{35}$	[10]
(Landscape inspired)				
5D SU(5) Strongly	Y. Nomura	$\mu^+ K^0, \overline{\nu} K^+$	$10^{33} - 10^{35}$	[8]
Coupled				
SUSY Without GUT	R. Harnick <i>et al.</i>	$\overline{\nu}K^+$	$10^{28} - 10^{35}$	[11]
SUSY Minimal SO(10)	R. Dermisek et al.	$\overline{\nu}K^+$	$< 2 \times 10^{34}$	[12]
SUSY Minimal SO(10)	H.S. Goh et al.	$\nu \pi^+$	$< 6.5 \times 10^{32}$	[13]
With 126 Higgs		$n \rightarrow \nu K^0$	$< 3 \times 10^{33}$	[13]
String Theory 6D-Branes	I. Klebanov, E. Witten	$e^+\pi^0$	$10^{35} - 10^{37}$	[14]
Three Family Hetrotic	T. Kobayashi et al.	$e^{+}\pi^{0}$	$0.4 imes 10^{33}$	[15]
String Model			-2.4×10^{34}	

Table 1: Summary of recent predictions on proton partial lifetimes.

From UNO EOI

 $H_20 + ATM$

O: θ_{23} **Octant H:** sign $|\Delta m^2_{31}|$

sin²θ₂₃=0.6

JECampagne, M. Maltoni, M.Mezzetto, Th. Schwetz hep-ph/0603172

Atmospheric parameters $|\Delta m_{13}^2|$ and θ_{23}

T. Schweiz, GDR neutrino meeting, Paris, 20-21 october 2005 - p.27

Mass hierarchy: ATMv do the job!

JECampagne, M. Maltoni, M.Mezzetto, Th. Schwetz

ATM: v atmosph. 4.4Mt.y – – – : LBL alone (L_{T2HK} ~ 3 L_{Frejus}) _____: LBL + ATM

Nova alone

N(ova) + PD: Proton Driver 3y N+PD+ 2nd Det: 12y Nova with 6y 2nd Det 2nd det= 50kT: WČ ou LAr ou Scint. Liq 710km, 2nd Pic Off Axis

JECampagne, M. Maltoni, M.Mezzetto, Th. Schwetz hep-ph/0603172

2nd maxi. E $\searrow \Rightarrow$ effet CP \nearrow et effet de Mattière \searrow