

# LAGUNA WG5: Sites

#### Juha Peltoniemi

Presented in LAGUNA meeting Zürich 12th October 2006





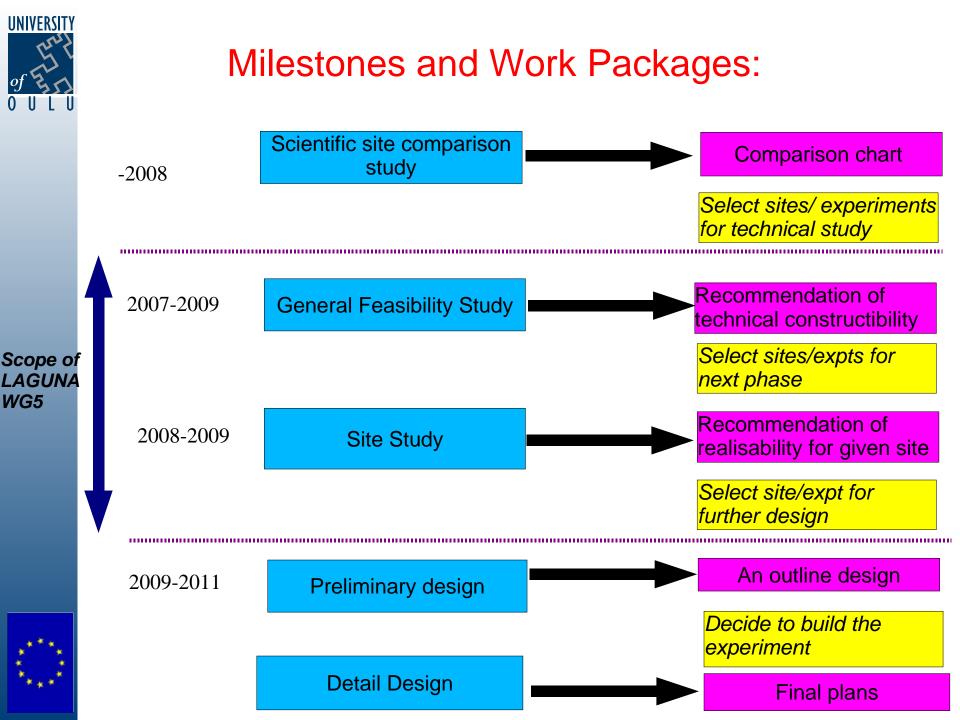
# LAGUNA WG5: SITES

- Members:
  - Juha Peltoniemi (convener), Finland
  - Neil Spooner, UK
  - Luigi Mosca, France
  - Jan Kisiel/Agnieszka Zalewska, Poland
  - Representatives of other possible sites welcome
- Purpose:
  - Study the feasibility of very large excavations
  - Compare local conditions
  - Pre-select suitable sites
- Work closely with ILIAS-N2-WG1
  - And respective wg in ILIAS-next





## Sites and experiments


| Site         | Depth<br>(m.w.e.) | Site type | Rock type         | Liquid scintillator | Water<br>Cherenkov        | Liquid<br>Argon |
|--------------|-------------------|-----------|-------------------|---------------------|---------------------------|-----------------|
| Pyhäsalmi    | 4000              | Mine      | Hard rock         |                     |                           |                 |
| Frejus       | 4800              | Tunnel    | Hard rock         |                     |                           |                 |
| Boulby       | 2800              | Mine      | Salt (hard rock?) |                     |                           |                 |
| Sieroszowice | 2000              | Mine      | Salt&rock         |                     |                           |                 |
| Gran Sasso   | 3000              | Tunnel    | Limestone (soft)  | Not expressed inte  | rest to participate in th | nis WG          |
| Canfranc     | 2000              | Tunnel    |                   | Not expressed inte  | rest to participate in th | nis WG          |
| Green Fields | 5000              | Own shaft | Hardest rock      |                     |                           |                 |

Pylos 4000 Deep see Out of scope for this WG



Application must be written strategically as open as possible







# 1. Feasibility Study: General Layout

- Tasks:
  - Define the detailed requirements of the experiments
  - Investigate the possibilities to locate the experiments in the local bedrock
  - Make a preliminary prediction of the construction costs
  - Produce propaganda material
- Deliverable:
  - Recommendation of technical constructibility of the experiments in the considered sites
- Decision that needs this information:
  - Select the experiments/sites for the next phase





# 2. Feasibility Study: Site Study

- Tasks:
  - Investigation of the suitability of the rock of the considered site
  - Studies of the realisations of the experiments on the conditions of the sites
  - Prediction of costs
- Deliverable:
  - Recommendation of the realisability of the experiments in the chosen locations
- Consequtive decision:
  - Select the experiment/site for further design





# 3. Preliminary Design

- Tasks:
  - Investigation of the rockbed of the sites (sampling & analysis)
  - Process planning of experiments (interface expt-environment)
  - Architectural design
  - Rock construction planning (rock mechanics, rock removal,...)
  - Structure planning (foundations, supports, hooks, tanks, ...)
  - Planning of building technics (air, water, power, heat/cool, ...)
  - Equipment planning
- Deliverable:
  - An outline design, with an estimate of construction costs for each case
  - "A conceptual design report"
- Consecutive decisions:
  - Select the experiment and the site to be done (first)
    - By this community
  - Fund and realise the experiment
    - By funding agencies





# 4. Detail Design

- Tasks:
  - As above in 3, but in full detail
- Deliverable:
  - Final construction plans
    - Call for tenders for the contract
- This phase typically done after final decisions
  - included for the construction costs
  - Not within this Design Study





# Budget

- The budget prediction for the planning of the cavity:
  - Preliminary information from Finnish consults, not a bid.
  - Includes the design of the tank (like a fuel tank)

|                    | MEMPHYS | GLACIER | LENA | TOTAL |
|--------------------|---------|---------|------|-------|
| Feasibility Study  | 0,50    | 0,35    | 0,25 | 1,10  |
| Site Study         | 1,00    | 0,65    | 0,45 | 2,10  |
| Preliminary Design | 10,00   | 1,30    | 0,80 | 12,10 |
| Detail Design      | 14,50   | 2,50    | 1,50 |       |
| TOTAL              | 26,00   | 4,80    | 3,00 |       |

- Design of underground labs is expensive
  - Must be done very well
  - So far very large contingency
  - Well planned is half done
- Clearly cannot do parallel 3\*5 studies to the end
  - Need to restrict after first and second phases to 1-3 studies
  - Total for 5 sites may not be 5 times above: Synergies achievable





## Consult work

- Need to hire external consults for planning
  - Unrealistic to do it ourselves
- Consults may participate either as (if there is choice at all):
  - Partner: true costs, no profit
  - Subcontractor: European-wide call for tenders
- International coherence mandatory
  - Different consults must commit to co-operate
  - One common consult agency for all?
    - How to organise local conditions?
- To get better cost estimates, we have to define our goals and conditions very exactly.
- Previous studies:
  - Frejus pre-feasibility study for MEMPHYS: ca 100 kEUR
  - CUPP pre-feasibility study for smaller halls: ca 90 kEUR





## Final remarks

- Budget request:
  - Mostly external contractors/non-scientific partners
  - May need some technical/scientific staff
  - Minor networking costs
  - Min 4 MEUR (already on the higher side)
  - Max >45 MEUR (beyond all realism)
  - Local contributions mandatory (at least 25 %)
- The proposed planning cost includes a tank:
  - As a traditional fuel tank, as it is usually integrated in rock
  - Anything beyond that is extra
  - Overlap with WG2



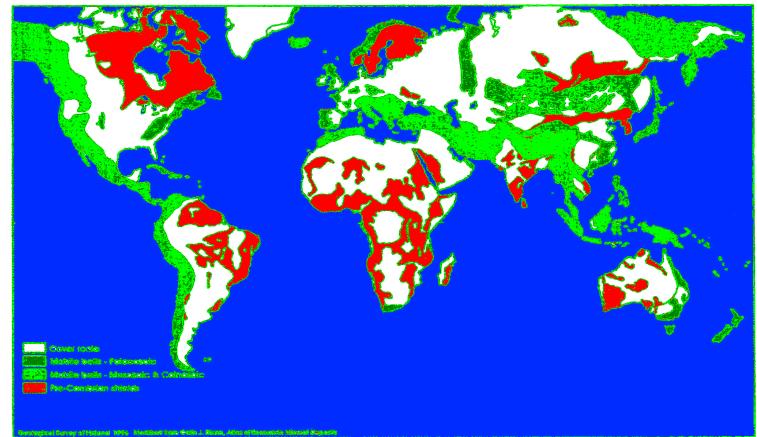


#### Old/reserve slides follow





## Site selection issues


- Requirements to be defined
  - Background
    - Depth (muons)
    - Radioactivity
  - Size of cavities
  - Logistics
  - Services and supplies (e.g. Liquid argon)
  - Conditions in the depth
    - Temperature, humidity etc
  - (Distance to beam source)
- Properties of sites to be considered
  - Rock quality
    - Constructivity of large (and small) caverns
  - Access
  - Existing infrastructures
  - Co-operation with host infrastructure
    - Road tunnel, mine, ...





#### Bedrock zones in the Earth

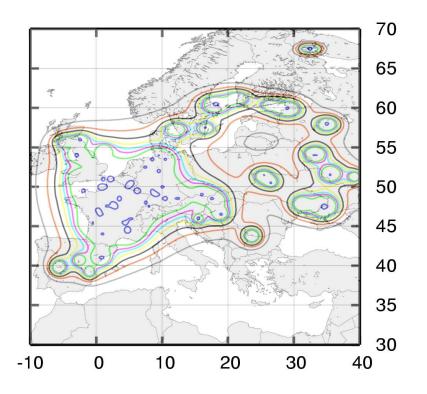
- Red: very old bedrock, hard crystalline rock: usually very good
- Green: mobile belts (mountains etc), hard rock: fair/variable
- White: sedimentary covers (soft rock): often bad
- Local variations within each zone





## Rock types

- Hard rock (e.g. Granites)
  - The hardness of the rock not a problem for excavation
  - The most stable environment
  - Possible to excavate very big caverns
  - Water tight deep (shallow parts wet)
  - U & Th contents vary, may be high
- Soft rock (sediments, limestone, sandstone etc)
  - Challenging environment
  - Water conductor
- Salt
  - Very low radioactivity (U&Th)
  - Very dry
  - Easy and fast to dig new caverns
  - Long terms stability of large caverns problematic
  - Very large stable caverns virtually impossible




#### Nuclear reactor background

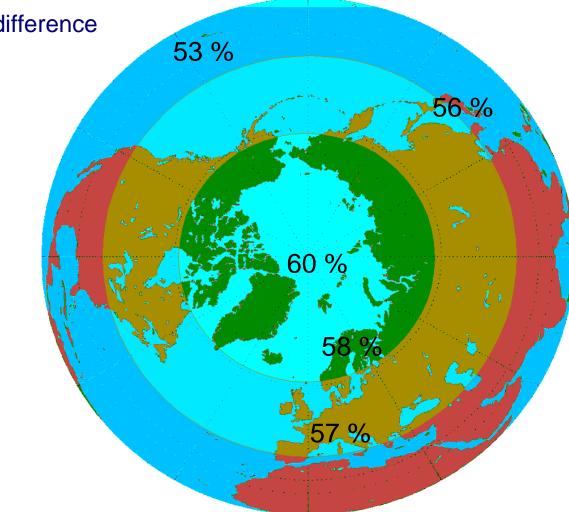
- Relevant mostly for LENA
- Reactor fluxes estimated globally
- Marine reactors irrelevant?

Reactor electron anti-neutrino flux density

Prediction for 2015



|       |          | _ |
|-------|----------|---|
| 1e+09 |          | K |
|       |          | C |
| 9e+09 |          | S |
| 8e+08 |          | S |
| 7e+08 |          |   |
| 6e+08 | <u> </u> | P |
| 5e+08 |          |   |
| 4e+08 |          |   |
| 3e+08 |          |   |


| Location   | ν (10 <sup>8</sup> 1/m² s) |
|------------|----------------------------|
| Pyhäsalmi  | 40                         |
| Gran Sasso | 54                         |
| Frejus     | 175                        |
| Canfranc   | 196                        |
| Boulby     | 190                        |
| Kamioka    | 408                        |
| Sudbury    | 100                        |
| Soudan     | 33                         |
| Pylos      | 12                         |
|            |                            |

2005



#### Galactic supernovae

- Possibility that the Earth shadows a galactic supernova
  - The norther the better
  - Small difference







## Neutrino oscillation physics

- Suitable baseline may be important
  - Many detectors may reserve neutrino beams
  - Beam source (neutrino factory, betabeam, superbeam) not yet decided, and not to be decided in the near future
  - Optimal baseline still an open issue
- Not to include beam aspects to LAGUNA proposal
  - Separate projects and applications?

