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The longstanding question

Is it possible to detect/measure the Cosmological
Relic Neutrino background (CvB) ?

We know that neutrino of CvB are non-relativistic

and weakly-clustered
o UHE cosmic rays scattering (indirect, unknown sources)
 Torsion balance (target polarization, strong v-v asymmetry)

Short answer: NO !l

All the methods proposed so far require either strong
theoretical assumptions or experimental apparatus having
unrealistic performances

A.Ringwald “Neutrino Telescopes” 2005 — hep-ph/0505024
G.Gelmini hep-ph/0412305
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This process has no energy threshold !



Antineutrino capture on EC decaying nuclei
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The effect of m = O

Neutrino masses of the order of 1 eV are compatible with
the present picture of our Universe



Neutrino capture on * decaying nuclel
(exploiting m = 0)
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The events induced by Neutrino Capture have a unique
signature provided by a gap of 2m, centered at Qg



Antineutrino capture on EC decaying nuclei

(exploiting m = 0)
Electron Capture
E, = Qgc—Ex
e+ (AZ)—-> (AZ1)+v,+ny Ey= Ex

Ex = captured electron binding energy

vote +(AZ) - (AZ-1)+ X Always energetically allowed

IF: Ex —m,< Qgc< Ex+m, (in the limit E,— m,,)

the EC decay is forbidden (no background)

Ve t (AZ) = (AZ-1) + et E,. = 2m, - Q¢
IF: 2m, —m, < Qgc < 2m,+m,

no threshold and the B* decay is forbidden (no background)



NCB Cross Section

a new parametrization

GQ W,
Beta decay rate ;= ﬁ peE.F(Z,E.)C(E.,py,)3Ey,py dE,
GQ
NCB OnceUp = ?ﬁpeEeF(Za E&)C(Et?apv)v

The nuclear shape factors Cgand C, both depend on the same nuclear
matrix elements

Vo C(EL,p),)s vl B F(E,, Z)

It is convenient to define A =/ By dE!
Me C(Eﬁapv)u Pe Ee F(EE, Z) p €
272 1n 2
Uy =
ONcB A tlﬁ)

More details in: AGC, M.Messina and G.Mangano JCAP 06(2007)015



NCB Cross Section

a new parametrization
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Oncaly = 277 In2 This is valid for both f* and EC decaying nuclei
Aty
Wo ! —
= [ R B R, Voaptue on b ok
> "0 Ca(av) fa(qv) S -
A= z v capture on EC nuclei
peEeF(Zv Ee)c(pe,pv)v
A 2y "2 Ca(av) fal@) V + e~ capture on EC nuclei

=, 12Ce (B gapa(Ey)

In a large number of cases A can be evaluated in an exact way and
NCB cross section depends only on Q; and t,, (measurable)



Example: NCB Cross Section

on * nuclei for different types of decay transitions
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« Superallowed transitions  oxesvy =27°1n2

e This is a very good approximation also for allowed

transitions since
C( E‘apv)ﬁ ~ 1
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e I-th unique forbidden
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NCB Cross Section Evaluation

The case of Tritium

2
Using the expression OncpUy = ?ﬁpeEeF(Z’a E.)C(Ee, pv)v

: Vy
we obtain onee (PH) — = (7.740.2) x 107* cm?
imp—>0

where the error is due to Fermi and Gamow-Teller matrix
element uncertainties

peEeF(Za Ee)
fti2

Using shape factors ratio oyosv, = 27°1n2

ononPH)2L = (7.8440.03) x 105 cm?
© limp—o0

where the error is due only to uncertainties on Q; and t,,



NCB Cross Section Evaluation
specific cases

p* EC

Isotope  Decay Q Half-life once (v /c) i
(keV) (sec) (116(3?41 cm?) Isotope Decay E,t,hr Half-life ONCE

(Ji = Jf) (keV) (sec) (10~* cm?)

z3HN' g_ éggﬁ 3??22 9 183 IS; X }8_3 "Be 37 — 17 637.80 4.40 x 107 6.80 x 107°
1 - . . X i X - 7 3— 3 6 -2
937y B~ 6063  4.952x 10 239 x 107 5?6 2 T2 T 107 — 10_5
106R B~ 39.4 3.92278 x 107 588 x 104 Fe S 790.62 8.64 x 10" 1.55 x 10
107pg B~ 33 2.0512 x 10" 2.58 x 10710 %8Ge 07— 17 916.00 2.34 x 10" 1.39 x 107
""Re 8- 2.64 13727 x10° 432 x 107" %W 0t —» 1% 930.70 1.87 x 10° 5.14 x 10™*
e g+ G605 1308 10F 466 edl? Ca 17— gj 600.61 3.22 x 10"> 8.35 x 10~°
13 g+ 1198.5 5.00 x 102 53 % 10~ ?;g{r g+ — 27 741.30 7.23 x 10"* 2.40 x 10‘2
150 8+ 1732 1.224 x 102 9.75 x 103 Pd 0t =527 693.68 3.14 x 10° 4.17 x 10~
R g+ 633.5  6.809 x 10°  2.63x 107° 128mg 1% 4 7% 970.70 1.89 x 1022 5.40 x 10~'°
22N, g+ 545.6 9.07 x 107 3.04 x 1077 2 —

45T B* 1040.4  1.307 x 10* 3.87 x 1074 E,= Ey,+ 1 MeV

K capture

Nuclei having the highest product

Onee Lo



Relic Neutrino Detection

using * decaying nuclei

In the case of Tritium we estimate that 7.5 neutrino capture events
per year are obtained using a total mass of 100 g

Signal to background ratio depends crucially on the energy resolution (A)
at the beta decay endpoint (It works only if A<m,)

As an example, given a neutrino mass of 0.7 eV and an energy
resolution at the beta decay endpoint of A=0.2 eV a signal to
background ratio of 3 is obtained. In the case of 100 g mass target
of Tritium it would take one and a half year to observe a 5c effect

In case of CvB gravitational clustering we expect a significant signal enhancement

m, (V) FD (events yr=1) NFW (events yr—!) MW (events yr—1)
0.6 7.5 90 150

0.3 7.5 23 33

0.15 7.5 10 12

FD = Fermi-Dirac NFW= Navarro,Frenk and White

MW=Milky Way (Ringwald, Wong)




Relic Neutrino Detection

using EC decaying nuclei

v, +e +(AZ) > (AZ-1) + X

The lack of a suitable final state prevents the use of this reaction to
detect CvB unless either:

1) there exist an excited level (either atomic or nuclear) with energy
E,=Qgc—Ex*tm,

2) the captured electron is “off-mass” shell m4=m_,—E_

3) it exist a nucleus A (stable) for which Qg = Ex— m

A%



Relic Antineutrino Detection
using EC decaying nuclei

v, +(AZ)— (A Z-1)+e*
The energy threshold prevents the use of this reaction to detect CvB

unless:

1) use CvB as a target for accelerated fully ionized beam
« EC decay is inhibited (no electrons to be captured)

 lons should have 2
B B L g ey

Ui 2m, M~ m,
Incase M ~1GeV and m, ~1eV

2

| o Yynp 2m°1n 2
o Interaction rate is given by )\NoB = ;l . $EC
1/2

For allowed transitions and
using n,= 56, E,,=10eV: N
Y

1013 Anvos =~ 10716 g1
100 Too slow to be detected !



Relic Antineutrino Detection
using EC decaying nuclei

+(AZ) - (A,Z-1) + e

2) there exist a nucleus for which

2mg —m, < Qgc < 2m,+m,,

In this case:

o the reaction has no energy threshold on the incoming antineutrino

e Unique signature since B* decay is forbidden

o Ccross section is evaluated using EC decay observables



Conclusions

The fact that neutrino has a nonzero mass has renewed the interest on
Netrino Capture on B* and EC decaying nuclei as a tool to measure
very low energy neutrino

A detailed study of NCB cross section has been performed for a large
sample of known beta decays avoiding the uncertainties due to nuclear
matrix elements evaluation

The relatively high NCB cross section when considered in a favourable
scenario could bring cosmological relic neutrino detection within reach
in a few years using B* decaying nuclei

The energy threshold in one case and the absence of a suitable final
state in the other prevent the use of EC decaying nuclei unless very
specific conditions are fulfilled (difficult, but worth searching further...)



v Anisotropy Probe
Collaboration

CvB map in 207?
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