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Several phenomenological and cosmological aspects of a minimal extension of the Georgi-

Glashow model, where the Higgs sector is composed by 5H , 15H , and 24H , are studied. It

is shown that the constraints coming from the unification of gauge interactions up to two-

loop level predict light scalar leptoquarks. In this GUT scenario, the upper bound on the

total proton decay lifetime is τp ≤ 1.4 × 1036 years. The possibility to explain the matter-

antimatter asymmetry in the universe through the decays of SU(2)L scalar triplets is also

studied. We find that a successful triplet seesaw leptogenesis implies an upper bound on

the scalar leptoquark mass, MΦb

<∼ 106−7 GeV. We conclude that this GUT scenario can be

tested at the next generation of proton decay experiments and future colliders through the

production of scalar leptoquarks.

I. INTRODUCTION

Grand unified theories (GUTs) based on the SO(10) gauge symmetry [1, 2] are usually consid-

ered as the most appealing candidates for the unification of electroweak and strong interactions.

They offer a number of advantages over SU(5) theories [3]: (i) They provide a natural explanation

of the smallness of neutrino masses through the seesaw mechanism [4]; (ii) they accommodate all

fermions of one generation into one representation; (iii) they represent, in their minimal form, the

most promising theory of fermion masses (For realistic grand unified theories based on the SO(10)

gauge symmetry see e.g. Refs. [5, 6, 7].).

Nevertheless, it is well known that the only promising way to test the idea of grand unification

is through nucleon decay. Therefore, it is very important to investigate the simplest realistic grand

unified theory where proton decay can be well predicted. This crucial issue brings us back to
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non-supersymmetric GUT scenarios, since the unification scale is rather low (MGUT ≈ 1014 GeV).

In particular, we focus on the simplest realistic SU(5) theories, where the unification scale can be

accurately predicted. Even though SU(5) possesses uncorrelated regions in the Yukawa sector, the

simplicity of the Higgs sector in the non-supersymmetric case offers a hope that the theory can be

verified in near future.

In a recent work [8], some of us argued that the simplest realistic extension of the Georgi-

Glashow (GG) model is the one containing the 5H , 15H and 24H representations in the Higgs

sector. The purpose of this paper is to demonstrate that the next generation of collider and proton

decay experiments will refute or verify this minimal SU(5) scenario. A first attempt was made in

Ref. [8] in this direction. Here we offer the full two-loop treatment of the gauge coupling unification

and discuss the constraints on the Higgs sector. To show the testability of the model, we include

all the presently available experimental limits in our discussion. The upper bound on the total

proton decay lifetime in our GUT model is corrected, and we investigate the possibility to explain

the baryon asymmetry observed in the universe through the decays of SU(2)L scalar triplets living

in 15H , showing how important the constraints coming from leptogenesis turn out to be. The

latter, when combined with the unification constraints, lead us to conclude that the present GUT

scenario could be tested at the next generation of collider experiments through the production of

light leptoquarks.

II. A MINIMAL SU(5) SCENARIO

Ever since its inception in 1974, the SU(5) model of Georgi and Glashow [3] has been considered

as the minimal grand unified theory. It offers partial matter unification of one standard model (SM)

family a (a = 1, 2, 3) in the anti-fundamental 5a and antisymmetric 10a representations. The GUT

symmetry is broken down to the standard model by the vacuum expectation value (VEV) of the

Higgs field in the 24H , while the SM Higgs resides in the 5H . The beauty of the model is undeniable,

but the model itself is not realistic. Indeed, there are several problems some of which are correlated:

• Gauge coupling unification.

The most dramatic problem of the naive SU(5) is the lack of unification. Namely, using the

whole freedom of the model, one can compute the maximum value of the ratio between the

parameters B23 = b2 − b3 and B12 = b1 − b2, where bi (i = 1, 2, 3) are the beta functions

of the particle content of the theory for U(1)Y , SU(2)L and SU(3)C , respectively. One gets

B
SU(5)
23 /B

SU(5)
12 ≤ 0.60, while the present experimental data requires B23/B12 = 0.719±0.005.
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• Relation between Yukawa couplings of quarks and leptons.

A second major problem is related to the predicted relation YD = Y T
E between the down quark

and charged lepton Yukawa coupling matrices. This prediction is in strong disagreement with

the experiment, especially in the case of the first and second generations of fermions. There

are two solutions to this issue: one can add higher-dimensional operators [9] or introduce

the 45H representation [10].

• Neutrino masses.

In the Georgi-Glashow model, neutrinos are massless. However, today we know that they

do have a tiny mass. Therefore, the model has to be extended in order to account for non-

vanishing neutrino masses. There are two possible solutions: one can introduce at least two

right-handed neutrinos and use the so-called Type I seesaw mechanism [4], or one can add

the representation 15H in order to generate neutrino masses through the Type II seesaw

mechanism [11].

• Doublet-triplet (DT) splitting problem.

Another problem in the naive SU(5) is that it cannot explain why the Higgs doublet liv-

ing in 5H is light. Although there are no solutions to this issue in the context of a non-

supersymmetric scenario, different mechanisms are conceivable in SUSY SU(5) to achieve

the splitting between the triplet and the doublet. (See for example Ref. [12] for a review.)

The simplest way [8] to address the first three problems listed above in a non-supersymmetric

framework consists of extending the minimal GG model with the 15H and allowing for higher-

dimensional operators. More precisely, the Higgs sector is 24H = Σ = (Σ8,Σ3,Σ(3,2),Σ(3̄,2),Σ24) =

(8,1, 0) + (1,3, 0) + (3,2,−5/6) + (3,2, 5/6) + (1,1, 0), 15H = Φ = (Φa,Φb,Φc) = (1,3, 1) +

(3,2, 1/6) + (6,1,−2/3), 5H = Ψ = (ΨD,ΨT ) = (1,2, 1/2) + (3,1,−1/3), where Σ(3,2) and Σ(3̄,2)

are fields eaten by the superheavy gauge fields V . In what follows we define the GUT scale through

their mass: MGUT = MV . As emphasized in [8], in this non-supersymmetric grand unified model,

the GUT scale is low and can be predicted with great precision. This gives us the possibility to test

the grand unification idea at future proton decay experiments. In fact, in our view, grand unified

theories are the theories for the decay of the proton, since they provide us with the necessary input

to compute the corresponding partial lifetimes. Of course, one can also think of other minimal

extensions of grand unified theories based on higher groups. However, since in those models it is
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very difficult to predict the GUT scale and the masses of the superheavy gauge bosons mediating

nucleon decay, the predictions for the lifetime of the proton are far from accurate.

In the GUT scenario proposed in [8] the scalar potential reads as:

V = V naive
SU(5) + 5

T
ai C hab 5bj 15ij

H − µ2
Φ

2
Tr 15†H15H +

aΦ

4
(Tr 15†H15H)2

+
bΦ

2
Tr (15†H15H15†H15H) + c2 Tr (15†H24H15H) + c3 5†H 15H 5∗H

+ c∗3 5T
H 15†H5H + b1 Tr (15†H15H)Tr 242

H + b3 5†H5H Tr (15†H15H )

+ b5 5†H15H15†H5H + b6 Tr (15H15∗H242
H) + b7 Tr (15∗H24H15H24∗H)

+ b8 5†H24H15H5∗H + b∗8 5T
H24H15†H5H + higher-dimensional terms, (1)

where V naive
SU(5) is the scalar potential of the Georgi-Glashow model.

III. UNIFICATION

In this section we present the constraints that exact gauge coupling unification places on the

masses of the scalars of the theory. We first present the one-loop level analysis to outline the

basic features of the scalar mass spectrum and only then we resort to the more accurate two-loop

analysis.

A. One-Loop Analysis

The one-loop level relations between the gauge couplings at MZ and the unifying gauge coupling

αGUT = g2
GUT /(4π) at MGUT are

α−1
i

∣

∣

MZ

= α−1
GUT +

bi

2π
ln

MGUT

MZ
, (2)

where i = 1, 2, 3 for U(1), SU(2), and SU(3), respectively, and bi are the familiar one-loop β

function coefficients. The SM particle content with n light Higgs doublet fields yields b1 = 40/10+

n/10, b2 = −20/6 + n/6 and b3 = −7.

Eqs. (2) hold under the assumption that there is a particle “desert” between MZ and MGUT .

However, there is no particular reason that this should be the case. If there are I particles with

intermediate masses MI (MZ ≤ MI ≤ MGUT ), these equations remain unaltered except for the

substitutions bi → Bi, where Bi = bi +
∑

I biIrI are the so-called effective coefficients. Here biI

are the appropriate one-loop coefficients of the particle I and rI = (ln MGUT /MI)/(ln MGUT /MZ)

(0 ≤ rI ≤ 1) is its “running weight”.
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The elimination of αGUT from Eqs. (2) leaves the following two equations that connect the

effective coefficients Bij = Bi − Bj with the low-energy observables [13]:

B23

B12
=

5

8

sin2 θW − αem/αs

3/8 − sin2 θW
, ln

MGUT

MZ
=

16π

5

3/8 − sin2 θW

αemB12
. (3)

Adopting the following experimental values at MZ in the MS scheme [14]: sin2 θW = 0.23120 ±
0.00015, α−1

em = 127.906 ± 0.019 and αs = 0.1187 ± 0.002, these read

B23

B12
= 0.719 ± 0.005 , (4a)

ln
MGUT

MZ
=

184.9 ± 0.2

B12
. (4b)

Eq. (4a) is sometimes referred to as the B-test. It basically shows whether unification takes place

or not. Eq. (4b), on the other hand, could be referred to as the GUT scale relation since it yields

the GUT scale value once Eq. (4a) is satisfied.

The B-test fails badly in the SM case (B23/B12 = 0.53), and hence the need for extra light

particles with suitable Bij coefficients to bring the value of the B23/B12 ratio in agreement with

its experimental value. In our case the presence of the 15H is essential. The Bij coefficients for all

the particles in our scenario are presented in Table I. Clearly, Σ3, Φa and Φb improve unification

with respect to the SM case, while Σ8, ΨT and Φc act in the opposite manner. We recall that we

set MV = MGUT , where MV is the mass of the superheavy gauge bosons. We thus take Σ8, ΨT

and Φc to reside at or above the GUT scale in our numerical analysis. We relax this assumption

later to discuss its impact on our findings.

TABLE I: Bij coefficients.

Higgsless SM ΨD ΨT V Σ8 Σ3 Φa Φb Φc

B23
11

3

1

6
− 1

6
rΨT

− 7

2
rV − 1

2
rΣ8

1

3
rΣ3

2

3
rΦa

1

6
rΦb

− 5

6
rΦc

B12
22

3
− 1

15

1

15
rΨT

−7rV 0 − 1

3
rΣ3

− 1

15
rΦa

− 7

15
rΦb

8

15
rΦc

The value of B12 determines the scale of unification through the GUT scale relation (4b).

Therefore, a lower bound on B12 translates into an absolute upper bound on the GUT scale. If

we naively set MΣ3
= MΦa

= MΦb
= MZ (rΣ3

= rΦa
= rΦb

= 1) we obtain B12 > 6.4 and

accordingly MGUT < 3.2 × 1014 GeV. This constraint, when combined with the relation MGUT =

MV , determines an upper bound on the proton lifetime, if the corresponding value of αGUT is

known. To find the latter we resort to the numerical analysis. However, the non-supersymmetric

nature of our scenario suggests this value to be around 1/39.
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In the one-loop analysis we treat MGUT , MΣ3
, MΦa

and MΦb
as free parameters and investigate

the possibility to find a consistent scenario with exact gauge coupling unification. Since we have

four free parameters and two equations—Eqs. (4a) and (4b)—we opt to present the MΣ3
and MΦa

contours in the MGUT –MΦb
plane in Fig. 1. The line of constant α−1

GUT is also shown.

1.0 1.5 2.0 2.5

2

4

6

8

10

MGUT (1014 GeV)

lo
g
 M

φ
b
 / 

(1
 G

eV
)

MΣ3
=MZ

Mφa
=130 GeV

108

106

104

104

108

Mφb
=242 GeV

αGUT
-1=38.8

FIG. 1: Plot of lines of constant MΣ3
and MΦa

in the MGUT –log (MΦb
/1 GeV) plane, assuming exact

one-loop unification. We use the central values for the gauge couplings as given in the text. All the masses

are given in GeV units. The triangular region is bounded from the left (below) by the experimental limit

on MΦa
(MΦb

). The right bound is MΣ3
≥ MZ . The two grey solid (thick dashed) lines are the lines of

constant MΣ3
(MΦa

). The line of constant α−1

GUT is also shown. The region to the left of the vertical dashed

line is excluded by the proton decay experiments if α = 0.015GeV3.

The triangular region in Fig. 1 represents the available parameter space under the assumption

that ΨT , Σ8 and Φc reside at or above the GUT scale. The region is bounded from the left and

below by the experimental limits on MΦa
and MΦb

, respectively. (For the discussion on the origin of

the experimental limits see [8] and references therein.) The right bound stems from the requirement

that MΣ3
≥ MZ . It is expected that the Large Hadron Collider (LHC) will place a more stringent

lower limit on the mass of the scalar leptoquark Φb at around 1 TeV (For experimental bounds on

leptoquark masses see Refs. [15].).
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Fig. 1 reveals that the masses of the three scalar fields that improve unification, namely, Σ3,

Φa and Φb, have to be below the GUT scale. This, however, does not hold at two-loop level. The

GUT scale is rather low and, for a given value of αGUT , the predicted value for the proton decay

lifetime is within the reach of the present and future proton decay experiments. More precisely,

if the nucleon matrix element is taken to be α = 0.015 GeV3, the region to the left of the vertical

thick dashed line in Fig. 1 is already excluded by the present limits on the proton decay lifetime.

In order to generate this bound we assume maximal flavor suppression of the gauge d = 6 proton

decay operators as explained in the next section in more details. Clearly, due to the simplicity of

our scenario, experimental limits place firm upper bounds on MΣ3
, MΦa

and MΦb
.

What happens if we relax the MΨT
,MΣ8

,MΦc
≥ MGUT assumption? If either MΨT

or MΦc

are below the GUT scale, then they both decrease MGUT due to an increase of the B12 coefficient.

They also change the B23/B12 ratio in the wrong direction, which has to be compensated by

appropriate changes in the Σ3, Φa and Φb contributions. Pictorially, as one lowers MΨT
and

MΦc
the MΦa

= 130 GeV line in Fig. 1 moves very slowly to the left while, at the same time,

MΣ3
= MZ moves very rapidly in the same direction until the triangular region shrinks to a point.

In other words, any scenario in which MΨT
or MΦc

or both are below the GUT scale would be more

significantly exposed to the tests through the proton decay lifetime measurements and accelerator

searches than the scenario shown in Fig. 1.

If, on the other hand, one lowers the mass of Σ8, the MΦa
= 130 GeV line moves to the right

more rapidly than the MΣ3
= MZ line until the triangular region becomes a point when MΣ8

reaches

105 GeV. At that point MGUT reaches the upper bound1 of 3.2 × 1014 GeV for MΣ8
= 105 GeV,

MΣ3
= MZ , MΦa

= 130 GeV, MΦb
= 242 GeV and α−1

GUT = 37.3. Again, the upper bound on the

masses of Σ3, Φb and Φa would be significantly lower as long as MΣ8
< MGUT .

B. Two-Loop Analysis

The simplicity of the Higgs sector allows us to repeat the same analysis at the two-loop level.

We require exact unification and present the available parameter space in Fig. 2. In the two-loop

analysis we must also take into account the one-loop running of the Yukawa couplings. The relevant

input parameters at the MZ scale, such as the fermion masses and CKM angles that are used in the

running are specified in Table I of Ref. [16]. The stars in Fig. 2 represent points that correspond

1 We will confront this bound with the outcome of the two-loop analysis and use it to evaluate the corresponding
upper bound on the total proton decay lifetime.
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to exact unification.
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FIG. 2: Unification of the gauge couplings at the two-loop level. Stars correspond to exact numerical

two-loop unification solutions. There are two sets of lines of constant value. The steeper set is associated

with MΦa
and the other one represents the lines of constant MΣ3

. All the masses are in GeV units. The

region to the left of the vertical dashed line is excluded by the proton decay experiments if α = 0.015GeV3.

The upper bound on the GUT scale is shifted to a higher value (about a factor of
√

2) with

respect to the one-loop case. There also appears a line along which MΣ3
is not required to be

below MGUT to accomplish exact unification. Moreover, the allowed values of MΦa
are significantly

larger than in the one-loop analysis. As before, by relaxing the assumption MΨT
,MΦc

≥ MGUT

(MΣ3
≥ MGUT ), the allowed region moves to the left (right) and shrinks as we lower the relevant

masses.

At two-loop level, the corrected upper bound on MGUT is 4.6 × 1014 GeV for MΣ8
= MZ ,

MΣ3
= MZ , MΦa

= 6.4× 103 GeV, MΦb
= 242 GeV and α−1

GUT = 37.06. We use these values in the

next section to derive an accurate upper bound on the proton decay lifetime. If α = 0.015 GeV3

the proton decay lifetime measurements already exclude the part to the left of the thick dashed

line (MGUT
>∼ 1.1 × 1014 GeV) and establish a triangular region with the maximal value for MΦb

around 109 GeV.

With the two-loop analysis at hand, we can finally answer the following question. How much

improvement in the lifetime limits do proton decay experiments need in order to completely exclude

our scenario? In the “worst” case scenario the two-loop GUT scale is approximately by a factor of
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four larger than the current proton decay bound presented in Fig. 2. Hence, an improvement in

the measurements of proton lifetime by a factor of 44 is called for to completely rule out this GUT

scenario. The situation is actually much better than that, since even the slightest improvement

in the proton lifetime bounds (by a factor of fifteen) will make our scenario incompatible with

exact unification unless either Φb or Σ3 resides below 103 GeV, thus making them accessible in

accelerator experiments.

C. Σ → −Σ Invariance

Fig. 2 shows that Σ3 and Σ8 are highly non-degenerate in some parts of the allowed parameter

space. This, however, seems in conflict with the tree-level relation MΣ3
= 4MΣ8

of the Σ potential,

which is invariant under the Σ → −Σ transformation [17]. Since we commit to the scenario that

includes all possible terms allowed by the gauge symmetry, we are forced to depart from this

commonly used invariance. This has three important consequences: (i) the cubic term (Tr Σ3) in

the potential violates the validity of the MΣ3
= 4MΣ8

relation [18]; (ii) the higher dimensional

terms linear in Σ/Λ in the Yukawa part of the Lagrangian allow for masses of quarks and leptons

that are in agreement with the experimentally observed values 2; (iii) a term linear in both Σ and

15H appears in the scalar part of the potential that is relevant for both the proton decay and

neutrino masses if 15H couples to matter fields.

To demonstrate how constraining the demand for Σ → −Σ invariance is, we present one example

in a somewhat simpler setting. Recall the Georgi-Glashow SU(5) model with two Higgs fields—

one in the adjoint and the other in the fundamental representation. After imposing the Σ → −Σ

invariance there are seven terms left in the scalar potential. It is easy to show [17] that once Σ24

gets a VEV v1 of the order of the GUT scale and ΨD gets the electroweak scale VEV v2, the

electrically neutral component of Σ3 must get a VEV of the order of v3 ∼ v2
2/v1 (For the relevant

equations and further discussion see [19]. We note that there is a term +λ4v2v
2
3 missing on the

right hand side of Eq. (11) of Ref. [19].) The above statement, however, is not necessarily correct

if we include two more terms in the potential that are absent under the Σ → −Σ invariance. In

other words, a classical solution with appropriate VEVs for Σ24 and ΨD but with no VEV for Σ3

is allowed if the potential is not invariant under Σ → −Σ .

We conclude this section with the following observation. In our analysis we include all the

2 Here Λ is the scale where some new physics, relevant for the ultraviolet (UV) completion of the theory, enters.
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terms allowed by the underlying gauge symmetry. In this way we insure that the predictions of our

scenario are independent of any particular set of assumptions. The benefit of such an approach is

clear: if the predictions of our scenario are experimentally refuted, then the scenario is ruled out

regardless of any particular assumptions.

IV. UPPER BOUND ON THE TOTAL PROTON DECAY LIFETIME

Proton decay is a generic prediction coming from matter unification. We thus believe this to

be the most promising way to test the beautiful idea of grand unification. It is commonly thought

that non-supersymmetric GUT scenarios are ruled out by the limits on nucleon decay lifetimes,

since the unification scale is around 1014 GeV. This, however, holds only in GUT scenarios where

the Yukawa sector is quite constrained. In general, this is no longer true because proton decay

predictions are different for each model of fermion masses [20]. To show that our minimal non-

supersymmetric GUT scenario based on SU(5) gauge group is not ruled out by such limits, we

look for an upper bound on the total proton decay lifetime. For new experimental lower bounds

on the partial lifetime of the proton see Ref. [21].

It is well known that in any non-supersymmetric scenario the most important contributions to

the decay of the proton are the so-called gauge d = 6 contributions. In the physical basis, these

effective operators read as [22]:

O(νl, dα, dC
β ) =

g2
GUT

2M2
V

(V1 VUD)1α (V3 VEN)βl uC γµ L dα dC
β γµ L νl , (5)

O(eC
α , dβ) =

g2
GUT

2M2
V

(

V 11
1 V αβ

2 + (V1 VUD)1β(V2 V †
UD)α1

)

uC γµ L u eC
α γµ L dβ , (6)

O(eα, dC
β ) =

g2
GUT

2M2
V

V 11
1 V βα

3 uC γµ L u dC
β γµ L eα . (7)

In the above equations V1 = U †
C U , V2 = E†

C D, V3 = D†
C E, V4 = D†

C D, VUD = U † D, VEN =

E† N are mixing matrices; L = (1 − γ5)/2 and α, β = 1, 2; l = 1, 2, 3. Our convention for the

diagonalization of the up, down, charged lepton and neutral lepton Yukawa matrices is specified

by

UT
C YU U = Y diag

U , DT
C YD D = Y diag

D , ET
C YE E = Y diag

E , NT Yν N = Y diag
ν . (8)

The quark and leptonic mixing are given in our notation by VUD = U †D = K1VCKMK2 and

VEN = K3VPMNS, respectively, where K1, K3 and K2 are diagonal matrices containing three and

two phases, respectively.
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The way to find an upper bound on the total proton decay lifetime by investigating the possible

freedom in the Yukawa sector of grand unified theories has been pointed out in Ref. [20]. For a

given value of αGUT and the super-heavy gauge boson mass, it has been shown that the upper

bound in the case of Majorana neutrinos is given by [20]:

τp ≤ 6

α2
GUT

×
(

MV

1016GeV

)4

×
(

0.003GeV3

α

)2

× 1039 years . (9)

Here, α is the value of the matrix element, usually taken α = 0.003GeV3 as a conservative value.

However, in a recent lattice calculation, α = 0.015GeV3 has been obtained [23]. (There is also

a factor 4 difference between the previous equation and Eq. (9) of Ref. [20]. This is due to an

erroneous normalization in [20].)

By inspecting the full parameter space where unification can be achieved in our GUT scenario

(cf. Figs. 1 and 2), it is then possible to find the upper bound on the total proton decay lifetime.

Using the maximal MGUT value and associated values for αGUT , we can estimate the upper bound

on τp, taking into account the one- and two-loop running of the gauge couplings, respectively.

Using α = 0.015GeV3 [23], these bounds read as

τ (one-loop)
p ≤ 3.5 × 1035 years, (10)

τ (two-loop)
p ≤ 1.4 × 1036 years. (11)

There is a difference of a factor 4 for the upper bounds on the total proton lifetime between the

two cases. As can be appreciated, our grand unified scenario is not ruled out by the present

experimental lower bound on the proton decay lifetime (typically τexp
>∼ 1033 years [21]). The

regions that are ruled out are presented by the vertical dashed thick lines in Figs. 1 and 2.

In order to complete our study, let us also discuss the d = 6 Higgs contributions. In Ref. [8],

the predictions coming from those operators were studied in detail. It was shown that besides the

usual d = 6 Higgs terms there are also contributions due to the mixing between the colored triplet

ΨT and the light leptoquark Φb. This mixing comes from the interaction term c3 5†H 15H 5∗H .

However, there is an extra contribution to this mixing coming from the term b8 5†H 24H 15H 5∗H

that we mentioned before. Therefore, when applying Eq. (10) of [8] to the present case, one should

replace c3 by c3 − λb8/
√

30 ≡ c̃3/2. Since the Higgs contributions are very ambiguous, one can

verify that the upper bound on the proton decay lifetime in our GUT scenario is indeed given by

Eqs. (10). In particular, we remark that in the present scenario it is always possible to set to zero

all Higgs contributions to the nucleon decay by choosing the matrices Aij = −Aji and Dij = 0,

except for i = j = 3. (See Ref. [8] for notation and details.)
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Certainly, if proton decay is not observed, the next generation of experiments will improve the

lower bounds on partial lifetimes by a few orders of magnitude. For instance, the goal of Hyper-

Kamiokande is to explore the proton lifetime at least up to τp/B(p → e+π0) > 1035 years and

τp/B(p → K+ν̄) > 1034 years in about 10 years [24]. Thus, our minimal GUT scenario will be

tested or ruled out at the next generation of proton decay experiments, since the upper-bound on

the total proton decay lifetime in our scenario is τp ≤ 1.4 × 1036 years.

V. CONSTRAINTS FROM TRIPLET SEESAW LEPTOGENESIS

The origin of the baryon asymmetry observed in the universe is an outstanding problem in par-

ticles physics and cosmology. The most recent Wilkinson Microwave Anisotropy Probe (WMAP)

results and big bang nucleosynthesis analysis of the deuterium abundance imply [25]

ηB =
nB − nB̄

nγ
= (6.1 ± 0.3) × 10−10 , (12)

for the baryon-to-photon ratio of number densities. Among the viable mechanisms to explain

this primordial matter-antimatter asymmetry, leptogenesis [26] has undoubtedly become one of

the most compelling scenarios. Indeed, the evidence for non-vanishing neutrino masses and the

possibility that their origin is directly linked to lepton number violation point towards leptogenesis

as a natural mechanism for the generation of the cosmological baryon asymmetry. Moreover, in

GUT scenarios, where the existence of heavy (boson or fermion) particles is predicted, leptogenesis

can be easily realized by means of the out-of-equilibrium decays of such particles at temperatures

below their mass scale. The lepton asymmetry generated in the presence of CP -violating processes

is then partially converted into a baryon asymmetry by the sphalerons [27].

In its simplest framework, consisting on the addition of hierarchical heavy right-handed neu-

trinos to the standard model, successful leptogenesis implies a lower bound on the mass of the

lightest heavy Majorana neutrino, MN1

>∼ 108 (109) GeV, which holds assuming a thermal (zero)

initial abundance of the N1 neutrinos before decaying. On the other hand, if the same heavy

neutrinos are responsible for the generation of the light neutrino masses via the well-known seesaw

mechanism [4], then their natural mass scale is expected to be MN ∼ v2/mν ∼ 1014 GeV, for a

light neutrino mass scale around the atmospheric neutrino scale, i.e. mν ∼ matm ≃ 5 × 10−2 eV.

However, in the presence of other lepton-number violating interactions, such as the ones mediated

by SU(2)L scalar triplets, the leptonic asymmetry produced by the out-of-equilibrium decay of the

heavy Majorana singlets can be totally washed out, if the triplet mass scale is lower than MN . In
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the latter case, leptogenesis could proceed through the decay of the lightest triplet scalar. As we

shall see below, the Φa (⊂ 15H) SU(2)L scalar triplet with a mass MΦa
≥ 109−10 GeV constitutes

a natural candidate for a successful triplet seesaw leptogenesis in our minimal SU(5) scenario.

To study the viability of thermal leptogenesis, we consider the simplest extension of the min-

imal SU(5) model proposed in [8], which consists on the addition of right-handed neutrinos. We

remark that, in the present framework, the introduction of a single heavy Majorana neutrino is

the minimal extra particle content required to implement the leptogenesis mechanism through the

out-of-equilibrium decay of the triplet Φa into leptons involving the virtual exchange of the right-

handed neutrino. The relevant terms of the right-handed Majorana neutrino and scalar triplet

Lagrangian are

L ∋ −1

2
MNNT C N − H†N̄ YN ℓ − M2

Φa
Tr Φ†

aΦa −
1

2
ℓT Ciσ2ΦaYν ℓ +

1

2
c̃3H

T iσ2ΦaH + H.c. , (13)

with ℓ = (ν, e)T , H = (H0,H−)T ,

Φa =







1√
2

δ+ δ++

δ0 − 1√
2

δ+






, (14)

MN is the right-handed neutrino mass matrix, YN and Yν are the coupling matrices. For simplicity,

flavour indices have been omitted. The triplet (type-II seesaw) contribution to the effective neutrino

mass matrix Mν is given by

M II
ν = c̃3Yν

v2

M2
Φa

, (15)

v = 〈H0〉 = 174 GeV, while the usual right-handed neutrino (type-I seesaw) contribution is

M I
ν = −v2Y T

N M−1
N YN . (16)

In the presence of CP -violating interactions, the Φa decay into two leptons generates a non-

vanishing CP asymmetry

ε = 2
Γ(Φ∗

a → ℓ + ℓ) − Γ(Φa → ℓ̄ + ℓ̄)

ΓΦ + ΓΦ∗

, (17)

where ΓΦ denotes the total triplet decay width. Since in the present minimal SU(5) framework

there are only two decay modes, Φa → ℓ + ℓ and Φa → H + H, one can write

Bℓ ΓΦ ≡ Γ(Φa → ℓ + ℓ) =
MΦa

16π
TrY †

ν Yν , (18)

BHΓΦ ≡ Γ(Φa → H + H) =
1

16π

|c̃3|2
MΦa

, (19)
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where Bℓ and BH are the corresponding tree-level branching ratios (Bℓ + BH = 1). A nonzero ε

asymmetry is then generated by the interference of the tree-level decay process with the one-loop

vertex diagram, as shown in Fig. 3.

+Φ∗
a

H

H

Φ∗
a

ℓ

ℓ

N

ℓ

ℓ

FIG. 3: Tree-level and one-loop diagrams contributing to the CP asymmetry in the scalar triplet decay.

Assuming MΦa
≪ MN , the resulting asymmetry is approximately given by [28]

ε ≃ 1

8π2

M3
Φa

v4

Im [Tr M II
ν M I†

ν ]

ΓΦ
. (20)

Using the relation

16πv2ΓΦ

√

Bℓ BH = M2
Φa

√

Tr M II†
ν M II

ν , (21)

and recalling that the effective seesaw neutrino mass matrix is Mν = M I
ν + M II

ν , Eq. (20) can be

recast in the form [29]

ε ≃ MΦa

√
Bℓ BH

4πv2

Im [Tr M II
ν M†

ν ]
√

Tr M II†
ν M II

ν

. (22)

In order to discuss the bounds implied by leptogenesis, it is convenient to write the CP asym-

metry ε as the product

ε = εmax sin δL , (23)

where εmax is the maximal CP asymmetry and δL is an effective leptogenesis phase. Using Eq. (22),

it is then straightforward to show that the following upper bound holds3

εmax =
MΦa

4πv2

(

Bℓ BH

∑

m2
νi

)1/2
, (24)

where mνi
are the light neutrino masses. Clearly, the absolute maximum of the above expression

is attained when Bℓ = BH = 1/2. This situation, however, does not necessarily corresponds to

3 This value is typically much smaller than the maximal value allowed by unitarity, |ε| < 2min(Bℓ,BH).
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a maximal baryon asymmetry, since the efficiency of leptogenesis, dictated by the solution of the

relevant Boltzmann equations, is not necessarily maximal in such a case. In fact, a numerical study

of these equations shows that the efficiency is minimal for Bℓ = BH = 1/2 and maximal when either

Bℓ ≪ BH or Bℓ ≫ BH [29].

Assuming no pre-existing asymmetry, the total baryon asymmetry, obtained after partial lepton-

to-baryon conversion through the sphalerons, is given by

ηB ≃ −3 × 10−2 ε κf , (25)

where κf is the efficiency factor, normalized in such a way that κf approaches one in the limit of

thermal initial Φa abundance and no washout. The expression (25), when combined with Eq. (24)

leads to a lower bound on the mass MΦa
. Indeed, using the observed value ηmin

B = 5.8 × 1010 ( cf.

Eq. (12)), one finds

MΦa

>∼
1.5 × 108 GeV

κf

√
Bℓ BH

0.05 eV
√

∑

m2
νi

. (26)

It is possible to obtain a simple estimate of the efficiency of leptogenesis by comparing the total

triplet decay rate with the expansion rate of the universe. We define, as usual, the decay parameter

KΦ ≡ ΓΦ

H(T = MΦa
)

, H(T ) = 1.66 g
1/2
∗

T 2

MP
, (27)

where H(T ) is the Hubble rate, MP ≃ 1.2 × 1019 GeV is the Planck mass and g∗ is the effective

number of relativistic degrees of freedom (g∗ = 106.75 in the SM). Using Eq. (21), we can rewrite

KΦ in the form

KΦ =
23√
Bℓ BH

√

∑

m2
νi

0.05 eV
. (28)

For not very large values of KΦ
>∼ 1, an order-of-magnitude estimate of the efficiency factor is

κf ∼ 1/KΦ and Eqs. (26) and (27) imply

MΦa

>∼
3.4 × 109 GeV

Bℓ BH
, (29)

which for Bℓ = BH = 1/2 yields MΦa

>∼ 1.4 × 1010 GeV. Clearly, a more precise analysis requires

the solution of the full set of Boltzmann equations [29]. Nevertheless, for κf ≃ 10−2 − 10−3 and

Bℓ ∼ BH , Eq. (26) implies

MΦa

>∼ 3 × 1010−11 GeV





0.05 eV
√

∑

m2
νi



 . (30)
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For hierarchical light neutrinos, one has
√

∑

m2
νi

≃ matm and the above bound leads to MΦa

>∼
3 × 1010−11 GeV. On the other hand, if neutrinos are quasi-degenerate in mass, then the WMAP

constraint
∑

mνi
< 0.69 eV leads to the less restrictive lower limit MΦa

>∼ 4 × 109−10 GeV. We

also note that this bound could be further reduced by about a factor of two, if the dark energy

component of the universe is not in the form of a cosmological constant. In the latter case, assuming

a dark energy equation of state p = −wρ with w < −1, the present cosmological bound on neutrino

masses relaxes to
∑

mνi
< 1.48 eV [30].

Combining the above leptogenesis bounds with the ones shown in Fig. 2, we conclude that

the natural implementation of the type-II seesaw mechanism and successful leptogenesis exclude

the region of the parameter space where the mass of the triplet MΦa
is below 109 − 1010 GeV.

This in turn implies that the leptoquark Φb must be light enough (MΦb

<∼ 106−7 GeV) to satisfy

the cosmological constraints, thus opening the possibility to test our minimal non-supersymmetric

SU(5) GUT scenario at the next generation of collider experiments through the production of light

leptoquarks, and particularly, at LHC.

VI. SUMMARY

We have investigated in detail the constraints coming from unification of gauge interactions

in the minimal extension of the Georgi-Glashow model, where the Higgs sector is composed by

5H , 15H and 24H . We have shown that the scalar leptoquark Φb has to be light in order to

achieve unification in agreement with all experimental constraints. Using the constraints coming

from triplet seesaw leptogenesis, the upper bound on the leptoquark mass is MΦb

<∼ 106−7 GeV.

Therefore there is a hope that our scenario could be tested at the next generation of collider

experiments through the production of these light leptoquarks.

We have also predicted an upper bound on the total proton decay lifetime which is τp ≤ 1.4×1036

years. Since at the next generation of proton decay experiments the bounds are expected to be

improved by a few orders of magnitude, this minimal non-supersymmetric SU(5) model will be

certainly tested or ruled out.

The upper bound on the proton decay lifetime and the exciting possibility to verify the model

at future collider experiments make our GUT scenario an appealing candidate for the testability

of the idea of grand unification.
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APPENDIX A: TWO-LOOP GAUGE COUPLING RUNNING

The relevant two-loop equations for the running of the gauge couplings take the form

µ
dαi(µ)

dµ
=

bi

2π
α2

i (µ) +
1

8π2

3
∑

j=1

bij α2
i (µ)αj(µ) +

1

32π3
α2

i (µ)
∑

l=U,D,E

Tr [CilY
†
l Yl] . (A1)

The general formula for bi and bij coefficients is given in [31]. Besides the well-known SM coefficients

we have:

b
Σ8(Σ3)
i =











0

0 (1
3 )

1
2 (0)











, bΦb

i =











1
30

1
2

1
3











, bΦa

i =











3
5

2
3

0











,

b
Σ8(Σ3)
ij =











0 0 0

0 0 (28
3 ) 0

0 0 21 (0)











, bΦb

ij =











1
150

3
10

8
15

1
10

13
2 8

1
15 3 22

3











, bΦa

ij =











108
25

72
5 0

24
5

56
3 0

0 0 0











,

which we incorporate at the appropriate scales. The Cil coefficients are [32]:

Cil =











17
10

1
2

3
2

3
2

3
2

1
2

2 2 0











.

To insure the proper inclusion of boundary conditions [33] at MGUT we set α−1
i

∣

∣

GUT
= α−1

GUT −
λi/(12π), where {λ1, λ2, λ3} = {5, 3, 2}. The one-loop equations for the Yukawa couplings can be

found, for example, in Ref. [32].



18

[1] H. Georgi, in Particles and Fields, ed. C. E. Carlson (AIP, New York, 1975) 575.

[2] H. Fritzsch and P. Minkowski, “Unified Interactions Of Leptons And Hadrons,” Annals Phys. 93 (1975)

193.

[3] H. Georgi and S. L. Glashow, “Unity Of All Elementary Particle Forces,” Phys. Rev. Lett. 32 (1974)

438.

[4] P. Minkowski, “Mu → E Gamma At A Rate Of One Out Of 1-Billion Muon Decays?,” Phys. Lett. B

67 (1977) 421 ;

T. Yanagida, in Proceedings of the Workshop on the Unified Theory and the Baryon Number in the

Universe, eds. O. Sawada et al., (KEK Report 79-18, Tsukuba, 1979), p. 95;

M. Gell-Mann, P. Ramond and R. Slansky, in Supergravity, eds. P. van Nieuwenhuizen et al., (North-

Holland, 1979), p. 315;
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