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CNGS - Neutrino Beam Studies

> Goals of the CNGS  project ¬ 
ν - oscillation over Long Base-Line ¬ Appearance of ντ

>> Optimization of the ν beam line ¬   
Simulation tools - Target - Magnetic lenses

>>> Effects of alignment errors ¬
Proton on target - beam line elements

>>>> Monitoring systems along the beam line ¬
At near and far locations
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Neutrino Oscillations

ν’s can change flavor ?!  --> 
Yes, �if they have mass�!

Hints from atmospheric ν experiments:  νµ → ντ  

Osc(ν1 ↔ ν2) = A sin2(1.27 (m2
2 - m1 

2) L/Eν)

L/E ≈ 103 km/GeV
∆m2 ≈ 2.5 10-3 eV2

A = sin2(2θ) ≈ 1

(L)

Neutrinos come in three flavors -->  νe    νµ   ντ 
             neutral particles -- very small mass (zero?) -- weak interaction with matter 
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•  build an intense νµ beam at CERN-SPS
•  search for ντ appearance at Gran Sasso laboratory
                                               (730 km from CERN) 

�Long Base-Line� νµ → ντ oscillation experiments

Other projects in the world  >>> built to check νµ disappearance! <<<
K2K (Japan) running;  NuMI/MINOS (US) under construction

Goal of the CNGS project
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At Gran Sasso National Laboratory (LNGS):

>>>> The Difficult Task: Detect the Tau-Neutrino <<<<

- two experiments in preparation:
τ

1mm

PbEmulsion

ντ1) OPERA  --> CNGS1
                 (> 1 kt emulsion �target�)

2) ICARUS  --> ...
                         liquid argon TPC (example from 600 t module)
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Why LNGS?
existing laboratory with
its infrastructure (since 1987)

Rock shielding from cosmic rays

Large halls directed to CERN

Why Long Base-Line?
Background low enough

Event rate acceptable
--> 730 km almost perfect
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distance

ντ CC events

Background events
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CNGS: the main components

(based on CERN experience: PS / SPS neutrino beams -> WANF)

vacuum

700 m           100 m              1000m                67 m        a

p + C → (interactions) → π+, K+, (µ+) → (decay in flight) → µ+ + νµ

+ few % of ( νµ , νe )

protons from SPS: 400 GeV/c, beam-size σ = 0.5mm
fast extraction (2 x 10 µs) - 2.4 1013 pot/spill - rep. rate = 6s 
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More information: --> SL Seminar, K. Elsener, 12. 7. 2001
--> http://proj-cngs.web.cern.ch/proj-cngs
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Recent ν beam studies
In the framework of the CNGS Secondary Beam Working Group

May 1999: CNGS beam optimized for ντ appearance at LNGS

Sep. 2000:  �Workshop on Neutrino Beam Instrumentation�
 (K2K, NuMI, MiniBoone and CNGS presentations) 

Dec. 2000:  �CNGS: Update on secondary beam layout� 
 SL-Note 2000-063 EA

Feb. 2001:  �On Particle Production for High Energy Neutrino Beams� 
 CERN-SL-2001-005 EA / Eur. Phys. J. C20 (2001) 13-27 

May 2001: �CNGS: effects of possible alignment errors� 
 CERN-EP-2001-037 / CERN-SL-2001-016 EA

Oct. 2001: �
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CNGS Optimization

CNGS beam-line layout. Goal:
        

maximize neutrino flux in the LNGS direction 

Improvements w.r.t. WANF-WBB:

--> increase intensity (proton on target)

--> improve focusing (target / horn / reflector layout)

--> increase size (decay length and width)

--> reduce material in horn/reflector and along beam-line

 --> better knowledge of beam spectra (MC simulations)
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Neutrino beam simulation tools

Very time-consuming due to LBL
1 pot → 10-6 neutrinos at LNGS

Hours for few % statistical accuracy: 
Needed for final validation of Needed for final validation of 

beam layout and characteristicsbeam layout and characteristics

few % statistical accuracy in minutes
Useful during any optimization phasesUseful during any optimization phases

Available codes:
     FLUKA Stand-alone
     NEOBEAM (GEANT3 + FLUKA)

Fast alternative:
     Parameterization of secondary particle production 
     + fully biased tracking and decay kinematics

Requirements:
     Detailed secondary particle production (π/K) in target 

(including re-interactions due to hadronic cascade development)

     3-D transport/decay of parent mesons/muons along beam-line
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Total ν interaction cross-section
(σ0 Eν)

ν energy (Eν) in lab frame

Solid
angle Nucleon

target
density in

the detector

A fast neutrino beam simulation:
phase-space weighting 

νπ

Zdet

Decay tunnelFocusing
devices

Target

Lh,max

Lh

Rdet

Ldet

1 meson = 1 neutrino !

Hadron decay
probability inside

the tunnel

Interact.
in

material

2/3 body
decay

branching
ratio

Probability that the
ν is emitted in the
detector direction

W =
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Fit free parameters on exp. data from 400/450 GeV p-Be interactions
H.W. Atherton et al., CERN 80-07, 1980
G. Ambrosini et al. (SPY collaboration), Eur. Phys. J. C10 (1999) 605

Few % accuracy

BMPT parameterization of secondary particle
yields from proton interactions on light nuclei
Empirical formula based on general physical arguments

M. Bonesini et al. (BMPT collab.), Eur. Phys. J. C 20 (2001) 13-27
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BMPT parameterization:
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100 GeV/c p → C 24 GeV/c p → Be

Scaling to different proton energy & target material
Well known dependence on Atomic Number and x.

Comparison with exp. data

Validate
the model
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BMPT parameterization:
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CNGS target layout

Improved �WANF geometry�:
      Low Z material (Carbon) 

to maximize secondary part. yield
      Length ≈ 130cm (3 interaction lengths)

 to absorb most protons 
      Ø = 4mm to 5mm 

for full containment of p-beam

      
NOTE: Ø = 4 mm preferable to

  maximize pion yield
                Ø = 5 mm preferable for

  target lifetime (heat dispersion)
  proton beam alignment accuracy

10 cm   9cm 

Interspaced layout 
to �let the pions out� from sides
End �plug� (no rod spacing) to induce 
re-interaction of high energy pions
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Ideal neutrino beam: pt=0 for all positive π/K -- No material -- Eν = 0.42 Eπ 

CNGS optimization: ντ appearance at Gran Sasso
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(22 mrad accept.)

Posc * στ (arb. units)
∆m2 = 2.5 10-3 eV2

sin22θ = 1
WBB

Can be matched
by a focusing system

with two magnetic lenses
(Horn + Reflector)

Eν ≈   7 ÷ 24 GeV
Eπ ≈ 20 ÷ 50 GeV
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0.35 m

Principle of focusing with a Magnetic Horn

Magnetic volume given by �one turn� at high current ( B ≈ I /r ):
 -  cylindrical outer conductor
 -  deflection proportional to (B dL / p) 
 -  �parabolic� shape of inner conductor to focus
    35 GeV positively charged particles leaving the target

inner conductor

Acceptance
22 mrad
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Horn Focusing:
positive particles trajectories 

p = 35 GeV 
pt = 80 - 680 MeV

Horn / Reflector: secondary beam focusing
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Horn Focusing:
positive particles trajectories 

p = 35 GeV 
pt = 80 - 680 MeV

Reflector Focusing:
positive particles trajectories 

p = 50 GeV 
pt = 180 - 780 MeV

(horn under-focused)

Horn / Reflector: secondary beam focusing
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Horn Focusing:
positive particles trajectories 

p = 35 GeV 
pt = 80 - 680 MeV

Reflector Focusing:
positive particles trajectories 

p = 50 GeV 
pt = 180 - 780 MeV

(horn under-focused)

Reflector Focusing:
positive particles trajectories 

p = 22 GeV 
pt = 100 - 400 MeV

(horn over-focused)

Horn / Reflector: secondary beam focusing
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Horn / Reflector: secondary beam focusing

Focused range = 20 ÷  50 GeV
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CNGS  -- �Magnetic Horn�  characteristics

Length: 6.5 m   --   Diameter: 70 cm   --   Weight:  1500 kg
Pulsed devices: 150kA (horn)  / 180 kA (reflector), 1 ms
Water-cooled: distributed nozzles

The inner conductor:

nearly parallel to 
       particle trajectories

- as thin as possible
       (particle absorption)
- as thick as necessary
       (mechanical stability)

   --> 2mm thick 
   --> 0.2 mm profile 
        accuracy
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>>> Ideal neutrino beam <<<
     All positive π/K pointing forward (pt=0)
     No material along the beam-line
     From decay kinematics: Eν = 0.42 Eπ 

Most intense possible νµ  beam ! But�

>>> We need the best ντ  beam <<<

No need for low energy, wide angle, particles

Goal : best ντ beam
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CNGS (no material)

CNGS optimization: ντ appearance at Gran Sasso

≈15 ντ evts/kt/years
@ ∆m2 = 2.5 10-3 eV2

    sin22θ = 1

CNGS (final release)
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Recent changes to CNGS layout

May 1999: CNGS beam optimised for ντ appearance at LNGS

Nov 2000: >>> hard work for Secondary Beam Working Group <<<

--> change of focusing (target / horn / reflector layout)

--> reduction of material in horn and reflector

 --> increase current in horn and reflector
         (WANF: 100 kA --> CNGS 1998: 120 kA

      --> 1999: 150 kA 
            --> 2000: 150/180 kA)

  Result: few % increase in ντ events rate at LNGS
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CNGS beam validation:

NEOBEAM
(Fluka)

vs
Fast Simulation

Beam release from: �CNGS: Update on secondary beam layout�, SL-Note 2000-063 EA
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Expected rates:

In 1 year of CNGS operation, we expect:
(4.8x1013 protons in SPS, 55% efficiency  --  1997)

protons on target 4.5 x 1019

νµ in 100 m2 at Gran Sasso 3.5 x 1013

νµ �Charged Current� (ν + N -> N� + µ) events per kt  ≈ 2600
Other �flavours� ν events:  νµ        55 (2.1%)

νe        21 (0.8%)
νe        2 (0.07%)

� In case of νµ → ντ oscillations �

∆m2 (oscillation parameter)   1 2.5  5 10-3 eV2

ντ �detectable� events 2.5  15 60
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Effects of Alignment Errors 

Optimization process:
Ideal alignments of beam-line
Hard time to get few % increase in beam intensity at LNGS

Real world:
Mis-alignments of beam-line elements:

Proton beam / Target
Horn / Reflector
(Geodesic pointing error�)

Effects at Gran Sasso?
Which detectors along beam-line (and where)?

Intense Use of MC Simulations to get Reliable Answers
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CNGS: possible monitor locations

700 m           100 m              1000m                67 m           

SEM foils
Hadron profile monitors

�High energy µ� monitors
�Low energy µ� monitors

Reminder: measure the muons <--> measure the νµ neutrinos
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      to proton beam mis-alignment w.r.t. target 
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Fluka detailed simulation of target and target box:
      >> All particles recorded (hadrons, e±, γ)
      >> Very low threshold: 10 MeV (1 MeV for e±, γ)

∆θ (mr)∆x (mm)

Downstream/Upstream
ratio: multiplicity
(beam steering)
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Expected CNGS particle profiles
at monitor locations

first muon pit second muon pitHadron monitor
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After 15 m Fe hadron dump
(≈20 GeV range-out filter)

More sensitive to Horn
mis-alignments

After 67 m of molasse
(≈50 GeV range-out filter)

More sensitive to
Reflector mis-alignments

      Fluka standalone
      Fast simulation

r (m) r (m)r (m)
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Clear loss around Horn
focused momenta

Loss ≈ -2.8 ± 0.2 %

First muon pit very sensitive
to Horn focused particles

Average displ. = 19.1 ± 0.5 cm

Second muon pit sensitive to
much higher energies

Average displ. = -3.5 ± 1.2 cm

      Mis-aligned case
     Aligned case

Reflector lat. displ.
(30 mm )             -3.0 ± 0.2 %       21.5 ± 0.5 cm            18.8 ± 1.2 cm

Example 1: 6 mm horn lateral displacement6 mm horn lateral displacement
           (expected accuracy  ≈ 0.1 mm!!)
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Uniform loss at any
momenta

Loss ≈ -3.0 ± 0.2 %

First muon pit insensitive
(Horn/Reflector dominate)

Average displ. = -1.2 ± 0.5 cm

Second muon pit sensitive to
high energy part. direction

Average displ. = 14.8 ± 1.2 cm

p-beam angular displ.
(1 mr)                     -1.3 ± 0.2 %         2.3 ± 0.5 cm            10.4 ± 1.2 cm

first muon pit second muon pitντ evts at LNGS

      Mis-aligned case
     Aligned case

Example 2: 1 mm p-beam lateral displacement1 mm p-beam lateral displacement
           (expected accuracy  ≈ 0.1 mm!!)

Sensitivity to mis-alignments
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Overall sensitivity 
    to beam-line misalignments

< 1

-
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-
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L/R asymmetry (%)

>>>> Statistical accuracy <<<<
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> Small effects at Gran Sasso
>> Measurable along beam-line
>>> Monitors are sufficient to
     disentangle source of
     misalignment
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Detectors for the muon monitoring system:

- Muon detector system at WANF neutrino beam: 
array of Si detectors in each muon pit

- CNGS muon detectors: not yet designed
 •  Si detectors one option (�base-line�)  <-- WANF !
 •  BLM ionisation chambers another option
 •  � other options�

NOTE: Access to muon detector stations very restricted
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Beam Loss Monitor Ionisation Chambers
as muon detectors

Pro: robust, stable in time, large signals (allow distant electronics ≈ 1 km), good S/N
     ready to use (with front-end electronics & DAQ) in modules of 36

Contra: poor linearity at highest µ flux (under investigation)

N2 gas filling (1 bar)

Vbias ≈ 1 kV

µ beam
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BLM�s characteristics:
          ≈ matching muon beam intensity and pit layout

1st muon pit 2nd muon pit

1.0

0

.5

1.5

2.0

2.5
x 10

-2 -1 0 1 2

7

0

x 105

-2 -1 0 1 2

1.0

2.0

3.0

4.0

µ+
 (1

01
3  

po
t 

cm
2 )

-1

µ+
 (1

01
3  

po
t 

cm
2 )

-1

Sensitive to Horn displ. Sensitive to p-beam  displ.

r (m) r (m)

≈ 200 m !
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Sensitivity to beam-line mis-alignments
using BLM�s in the muon pits:

Working hypotheses:   < 18 BLM�s per pit
σmeas = 3% / �full scale� (noise + relative calibr.)
good linearity over full signal range

Orthogonal                       PolarArrangements (17 BLM�s):
Centered on beam axis
Left/Right symmetric

  Goal: best arrangement
best spacing (∆R)
minimal number of BLM�s

∆R
Estimator:
weighted sum of (L-R) differences
depends on σmeas , ∆R, number of BLM�s

No need for absolute calibration !
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Sensitivity to beam-line mis-alignments
using BLM�s in the muon pits: (2)

>> Best ∆R  depends on muon profile width
>> Polar/orthogonal configs --> equivalent sensitivity
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Sensitivity to beam-line mis-alignments
using BLM�s in the muon pits: (3)

>> wide variety of configurations
    (uniform/non-uniform spacing)
    give comparable sensitivity

>> 16+1 BLM�s allow detect displ.
    with negligible effect at LNGS
    (if σmeas = 3%)

>> 32+1 BLM --> factor 2.5 better
    (more detailed description
      of muon profile)

>> 1 motorized BML for x-y
    scanning --> useful complement!
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Neutrino flux monitors at Gran Sasso

Monitor time-stability of beam intensity

Up-stream rock --> large target
       mass (equivalent to tens of kt)

Muons emerging in the GS halls
       --> proportional to neutrino flux

�Simple� large area muon detectors:
       (vertical planes of streamer
        tubes / RPC�s)

In coincidence with SPS spill
       (10 µs --> no background)
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0.86 µ/m2/day
≈ 200 µ/day in each GS hall

1% statistical error
in 1 week - from 3 GS hall 

�Real time� feed-back

νµ
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HadronsLarge area
µ detectors
(≈15x15 m2)

interaction in 
up-stream rock
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�Flat top� radius ≈ 350 m

LNGS width ≈ 150 m

Geodesic pointing accuracy
Radial distributions of the neutrino beam at LNGS

Wrong pointing by 0.5 mrad
(360 m at LNGS)

-3% ντ CC loss !!

Expected pointing accuracy
< 0.1 mrad
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Summary (optimistic�)

>  The CNGS neutrino beam is well tuned for
νµ → ντ appearance over Long Base-Line

>>  Misalignments of the beam line elements within project 
values will not affect ντ event rate at Gran Sasso

>>> Muon monitoring arrays (based on BLD�s) - located after 
the CNGS dump - should provide reliable information 
to control beam intensity and misalignments

>>>>  Large area detectors at Gran Sasso would provide
�on-line� feedback on overall beam performance


