<u>CNGS - Neutrino Beam Studies</u>

> Goals of the CNGS project ¬
v - oscillation over Long Base-Line ¬ Appearance of v_t

>> Optimization of the v beam line ¬ Simulation tools - Target - Magnetic lenses

>>> Effects of alignment errors ¬ Proton on target - beam line elements

>>>> Monitoring systems along the beam line -At near and far locations

Neutrino Oscillations

Neutrinos come in three flavors --> v_e v_μ v_τ neutral particles -- very small mass (zero?) -- weak interaction with matter

V's can change flavor ?! --> Yes, "if they have mass"!

 $Osc(v_1 \leftrightarrow v_2) = A sin^2(1.27 (m_2^2 - m_1^2) L/E_y)$

Goal of the CNGS project

"Long Base-Line" $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillation experiments

Why LNGS?

existing laboratory with its infrastructure (since 1987)

Rock shielding from cosmic rays Large halls directed to CERN

Why Long Base-Line?

Background low enough

Event rate acceptable --> 730 km almost perfect

CNGS: the main components

(based on CERN experience: PS / SPS neutrino beams -> WANF) 700 m 1000m 67 m 100 m Decay tube Hadron stop Muon detectors Helium bags π/K - decay Target Reflector million Horn Muon Pion / Kaor Fe Proton Neutrino beam ******** 11/11/11/11/11/11

p + C \rightarrow (interactions) $\rightarrow \pi^+$, K⁺, (μ^+) \rightarrow (decay in flight) $\rightarrow \mu^+ + \nu_{\mu}$

vacuum

+ few % of ($\overline{
u}_{\mu}$, u_{e})

protons from SPS: 400 GeV/c, beam-size σ = 0.5mm fast extraction (2 x 10 µs) - 2.4 10¹³ pot/spill - rep. rate = 6s

More information:

--> SL Seminar, K. Elsener, 12. 7. 2001 --> http://proj-cngs.web.cern.ch/proj-cngs

<u>Recent v beam studies</u>

In the framework of the CNGS Secondary Beam Working Group

May 1999: CNGS beam optimized for v_{τ} appearance at LNGS

- Sep. 2000: "Workshop on Neutrino Beam Instrumentation" (K2K, NuMI, MiniBoone and CNGS presentations)
- Dec. 2000: "CNGS: Update on secondary beam layout" SL-Note 2000-063 EA
- Feb. 2001:"On Particle Production for High Energy Neutrino Beams"
CERN-SL-2001-005 EA / Eur. Phys. J. C20 (2001) 13-27
- May 2001: "CNGS: effects of possible alignment errors" CERN-EP-2001-037 / CERN-SL-2001-016 EA

Oct. 2001:

CNGS Optimization

CNGS beam-line layout. Goal:

maximize neutrino flux in the LNGS direction

Improvements w.r.t. WANF-WBB:

- --> increase intensity (proton on target)
- --> improve focusing (target / horn / reflector layout)
- --> increase size (decay length and width)
- --> reduce material in horn/reflector and along beam-line
- --> better knowledge of beam spectra (MC simulations)

Neutrino beam simulation tools

Requirements:

Detailed secondary particle production (π/K) in target

(including re-interactions due to hadronic cascade development)

3-D transport/decay of parent mesons/muons along beam-line

Available codes: FLUKA Stand-alone NEOBEAM (GEANT3 + FLUKA) Very time-consuming due to LBL 1 pot → 10⁻⁶ neutrinos at LNGS Hours for few % statistical accuracy: Needed for final validation of beam layout and characteristics

Fast alternative:

Parameterization of secondary particle production

+ fully biased tracking and decay kinematics

few % statistical accuracy in minutes Useful during any optimization phases

A fast neutrino beam simulation: phase-space weighting

1 CNG	GS Neutrino Beam Studies
SL	seminar by F. Pietropaolo

<u>BMPT parameterization</u> of secondary particle yields from proton interactions on light nuclei

p_L/E_{max}

0.016
 0.022

0.034
 0.045
 0.067

4 0 090

▲ 0.15 ∧ 0.30

Empirical formula based on general physical arguments

M. Bonesini et al. (BMPT collab.), Eur. Phys. J. C 20 (2001) 13-27 **Fit free parameters on exp. data from 400/450 GeV p-Be interactions** H.W. Atherton et al., CERN 80-07, 1980

G. Ambrosini et al. (SPY collaboration), Eur. Phys. J. C10 (1999) 605

BMPT parameterization:

Scaling to different proton energy & target material

Well known dependence on Atomic Number and x.

Comparison with exp. data

BMPT parameterization:

Secondary particle yield for finite length target

Accounting for forward-going leading particles re-interactions (target geometry dependent)

Comparison with SPY data from targets of different lengths

Important for long neutrino targets

Improved "WANF geometry":

Low Z material (Carbon)

to maximize secondary part. yield Length \approx 130cm (3 interaction lengths) to absorb most protons $\emptyset = 4mm$ to 5mm for full containment of p-beam NOTE: $\emptyset = 4$ mm preferable to

Maximize pion yield
Ø = 5 mm preferable for
target lifetime (heat dispersion)
proton beam alignment accuracy

Interspaced layout to "let the pions out" from sides End "plug" (no rod spacing) to induce re-interaction of high energy pions

<u>CNGS optimization:</u> v_{τ} appearance at Gran Sasso

Ideal neutrino beam: $p_t=0$ for all positive π/K -- No material -- $E_v = 0.42 E_{\pi}$

Principle of focusing with a Magnetic Horn

Magnetic volume given by "one turn" at high current ($B \approx I / r$):

- cylindrical outer conductor
- deflection proportional to (B dL / p)
- "parabolic" shape of inner conductor to focus

SL seminar by F. Pietropaolo

Horn Focusing: positive particles trajectories p = 35 GeV p_t = 80 - 680 MeV

Reflector Focusing: positive particles trajectories p = 50 GeV p_t = 180 - 780 MeV (horn under-focused)

Reflector Focusing: positive particles trajectories p = 22 GeV p_t = 100 - 400 MeV (horn over-focused)

Focused range = 20 ÷ 50 GeV

<u>CNGS</u> -- "Magnetic Horn" characteristics

Length: 6.5 m -- Diameter: 70 cm -- Weight: 1500 kg Pulsed devices: 150kA (horn) / 180 kA (reflector), 1 ms Water-cooled: distributed nozzles

The inner conductor:

nearly parallel to particle trajectories

- as thin as possible (particle absorption)
- as thick as necessary (mechanical stability)
 - --> 2mm thick --> 0.2 mm profile accuracy

<u>CNGS optimization:</u> v_{τ} appearance at Gran Sasso

May 1999: CNGS beam optimised for v_{τ} appearance at LNGS

Nov 2000: >>> hard work for Secondary Beam Working Group <<<

--> change of focusing (target / horn / reflector layout)

--> reduction of material in horn and reflector

--> increase current in horn and reflector (WANF: 100 kA --> CNGS 1998: 120 kA --> 1999: 150 kA --> 2000: 150/180 kA)

Result: few % increase in v_{τ} events rate at LNGS

CNGS beam validation:

Expected rates:

In <u>1 year of CNGS operation</u> , we expect:							
	(4.8x10 ¹³ protons in SPS, 55% efficiency 1997)						
protons on target				4.5 x 10 ¹⁹			
v_{μ} in 100 m ² at Gran Sasso					3.5 × 10 ¹³		
ν_{μ}	v_{μ} "Charged Current" (v + N -> N' + μ) events per kt \approx 2600						
Other "flavours" v events: \overline{v}_{μ}				μ	55 (2.1%)		
			Ve		21 (0.8%)		
\overline{v}_e					2 (0.07%)		
	In case of $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillations						
	Δm^2 (oscillation parameter)	1	2.5	5	10 ⁻³ eV ²		
	v_{τ} "detectable" events	2.5	15	60			

Effects of Alignment Errors

Optimization process: Ideal alignments of beam-line Hard time to get few % increase in beam intensity at LNGS Real world: Mis-alignments of beam-line elements: Proton beam / Target Horn / Reflector (Geodesic pointing error...) Effects at Gran Sasso? Which detectors along beam-line (and where)?

Intense Use of MC Simulations to get Reliable Answers

CNGS: possible monitor locations

Reminder: measure the muons $\langle -- \rangle$ measure the V_{μ} neutrinos

Angular displ. (at focus)

Fluka detailed simulation of target and target box: \gg All particles recorded (hadrons, e[±], γ)

>> Very low threshold: 10 MeV (1 MeV for e^{\pm} , γ)

Downstream/Upstream ratio: multiplicity (beam steering)

SEM foil diameter

3 cm

SEM split foils sensitivity

Lateral displacement

11 October 2001

Radial profiles at entrance to decay tunnel

(Fluka simulation: all particles)

Overall sensitivity

to beam-line misalignments

							
	ν _τ CC interact. loss (%)	1 st muon chamber average displ. (cm)	2 nd muon chamber average displ. (cm)	1cm SEM after target L/R asymmetry (%)			
Proton beam lateral displacements (alignment accuracy ≈ 0.1mm)							
0.5 mm	0.	-0.6	7.3	14			
1.0 mm	- 2.8	-1.2	14.8	27			
Proton beam angular displacements (alignment accuracy ≈ 0.1mr)							
0.5 mr	0.	-1.2	3.7	21			
1.0 mr	-1.3	-2.3	10.4	32			
Horn lateral displacements (alignment accuracy ≈ 0.1mm)							
3 mm	-1.0	10.1	-0.6	Small offersta at Chan Easta			
6 mm	-2.8	19.1	-3.5	Measurable along beam-line			
Reflector lateral displacements (alignment accuracy ≈ 0.1 mm)>>> Monitors are sufficient to the second displacements (alignment accuracy ≈ 0.1 mm)							
10 mm	-0.4	5.7	-10.7	disentangle source of misalignment			
30 mm	-3.0	21.5	-18.8				
>>>> Statistical accuracy <<<<							
	0.2	0.5	1.2	< 1			
11 October 20	001	CNGS Neutrino Bear	n Studies Strongolo	34			

Detectors for the muon monitoring system:

- Muon detector system at WANF neutrino beam: array of Si detectors in each muon pit
- CNGS muon detectors: not yet designed
 - Si detectors one option ("base-line") <-- WANF !
 - BLM ionisation chambers another option
 - ... other options...

NOTE: Access to muon detector stations very restricted

Beam Loss Monitor Ionisation Chambers as muon detectors

Pro: robust, stable in time, large signals (allow distant electronics = 1 km), good S/N ready to use (with front-end electronics & DAQ) in modules of 36

Contra: poor linearity at highest μ flux (under investigation)

11 October 2001

BLM's characteristics:

<u>Sensitivity to beam-line mis-alignments</u> using BLM's in the muon pits:

Polar

Working hypotheses: < 18 BLM's per pit

σ_{meas} = 3% / "full scale" (noise + relative calibr.) good linearity over full signal range

Orthogonal

Arrangements (17 BLM's): Centered on beam axis Left/Right symmetric

Estimator:

weighted sum of (L-R) differences depends on σ_{meas} , ΔR , number of BLM's No need for absolute calibration !

Goal: best arrangement best spacing (△R) minimal number of BLM's

<u>Sensitivity to beam-line mis-alignments</u> using BLM's in the muon pits: (2)

>> Best \$\Delta R\$ depends on muon profile width
 >> Polar/orthogonal configs --> equivalent sensitivity

<u>Sensitivity to beam-line mis-alignments</u> using BLM's in the muon pits: (3)

σ _{meas} = 3%	ν _τ CC interact. Loss (%)	Average profile displ. (cm)	Relative of 16 BLM's	error (%) 32 BLM's		
1 st muon chamber (max spanned radius = 80 cm)						
Horn lateral displacements						
3 mm	-1.0	10.1	14%	6%		
6 mm	-2.8	19.1	8%	3%		
2 nd muon chamber (max spanned radius =120 cm)						
Proton beam lateral displacements						
0.5 mm	0.	7.3	18%	7%		
1 0 mm	-2.8	14 8	10%	4%		

- » wide variety of configurations (uniform/non-uniform spacing) give comparable sensitivity
- >> 16+1 BLM's allow detect displ. with negligible effect at LNGS (if $\sigma_{meas} = 3\%$)
- » 32+1 BLM --> factor 2.5 better (more detailed description of muon profile)

>> 1 motorized BML for x-y scanning --> useful complement!

Neutrino flux monitors at Gran Sasso

Monitor time-stability of beam intensity

Summary (optimistic...)

> The CNGS neutrino beam is well tuned for $\nu_{\mu} \to \nu_{\tau}$ appearance over Long Base-Line

>> Misalignments of the beam line elements within project values will not affect ν_τ event rate at Gran Sasso

>>> Muon monitoring arrays (based on BLD's) - located after the CNGS dump - should provide reliable information to control beam intensity and misalignments

>>>> Large area detectors at Gran Sasso would provide "on-line" feedback on overall beam performance