# Liquid scintillator R&D in Europe

#### Christian Buck, MPIK Heidelberg



MAX-PLANCK-GESELLSCHAF

### NNN08 Paris, September, 2008



#### Introduction

- Scintillator components
- Energy transfers
- Metal loaded scintillators

#### Conclusions





### Liquid scintillator past and present

- Metal loaded:
- ➢ Reines
- ➢ Bugey
- ≻ Chooz
- ➢ Palo Verde





- Unloaded: > KamLand
- Borexino



Christian Buck MPIK Heidelberg



### Challenges: Stability and purity



Paris, NNN08

MPIK Heidelberg

### Liquid scintillator properties

- High energy resolution
- Low energy detection threshold
- high purity (Borexino)
- fast signals (better understanding of timing properties)
- moderate cost
- Improved stability of metal loaded scintillators



#### Liquid scintillator future



Christian Buck MPIK Heidelberg



### Liquid scintillator components



Christian Buck MPIK Heidelberg



#### **Comparison solvents**



Christian Buck MPIK Heidelberg



## Purification methods



Christian Buck MPIK Heidelberg



## Purification methods

- Column purification
  - Radioimpurities
  - Optics
- $\succ$  N<sub>2</sub> purging
  - Radon, <sup>85</sup>Kr
  - Light yield (oxygen)
- Water extraction
  - Radioimpurities
- Distillation
  - Radioimpurities
  - Optics



phase

#### Borexino



#### KamLand



Christian Buck MPIK Heidelberg



LAB

- Is LAB a new high light yield, transparent solvent? Not really.
  - Used since decades
  - Average light yield
  - Average transparency
- It is a high flash point, low toxicity solvent at moderate cost and reasonable optics,
- ≻ …but:

Christian Buck MPIK Heidelberg

- Mixture
- Biphenyls (absorption/emission!)
- Timing properties



20 30

Time [ns]

40 50

60

10

0

-10



#### Solvent mixtures

Advantage: Parameters tuneable

- optimize material compatibility
- change timing properties
- match density
- adjust light yield

Light production in alkanes

➤ Radiation creates e<sup>--</sup> - hole pairs

Recombination, fragmentation,
radicals, reactions -> excited molecules
energy transfer to fluors



C.Buck, dissertation, MPIK (2004) C.Aberle, diploma thesis, MPIK (2008)



M.Wurm, diploma thesis, TUM(2005)

Christian Buck MPIK Heidelberg



### **Comparison fluors**



Christian Buck MPIK Heidelberg



#### Energy transfer (non-radiative)



Christian Buck MPIK Heidelberg

#### **Critical concentration**



Christian Buck MPIK Heidelberg



### Light yield model





## **Timing properties**



T.Marrodan Undagoitia, dissertation, TU München (2008)





Christian Buck MPIK Heidelberg



### Metal loaded scintillators

- Solar neutrinos (LENS, SIREN):
  - Metal: Ytterbium, Indium, Gadolinium
  - Challenge: High loadings
- Reactor (Double Chooz, Daya Bay)
  - Metal: Gadolinium
  - Challenge: Stability
- ββ-decay (SNO+)

Christian Buck MPIK Heidelberg

- Metal: Neodymium
- Challenges: transparency; purity





#### Indium

Indium-loaded scintillators at LLBF > 1 year
➢ MPIK: In(acac)<sub>3</sub> (F.X.Hartmann et al.) } 50 g/l
➢ INR/LNGS: Carboxylic acid version ↓ Indium







### Gadolinium (Carboxylates)

#### INR/LNGS: 2 x 1.2 t Gd-LS (0.1%) in frame of LVD



#### Double Chooz mockup (TMHA, MPIK Hd 2003):







Christian Buck MPIK Heidelberg



## Gadolinium (β-diketones)



- Purified by sublimation
- stability tests at MPIK since > 3 years
- > att. length (1 g/l) > 50 m above 420 nm
- > 100 kg produced (2 DC detectors)

#### stability/compatibility at CEA Saclay







### Neodymium



#### MPIK (2003): Tests on BDK and carboxylate versions (F.X.Hartmann et al.)



Christian Buck MPIK Heidelberg



### Summary

- Many solvent and fluor candidates
  - Choice depends on application and detector characteristics
  - Requirement for "safe" scintillators (PXE, LAB,...)
- Energy transfer models allow light yield predictions
- Several applications for metal loaded scintillators
- Liquid scintillators were / will be key technology for large scale neutrino detectors
- > Significant improvement in last years (stability etc.)

