Large underground cavities in a salt mine from Slanic-Prahova

R. Margineanu, B. Mitrica, A. Saftoiu

Horia Hulubei National Institute of R&D for Physics and Nuclear Engineering, Magurele, ROMANIA

O. G. Duliu

University of Bucharest

The Unirea salt mine environment: temperature: 12.0 -13.0 °C humidity: 65-70 % excavated volume: 2.9 million m³ floor area: 70000 m² average high: 52-57 m The hill over the mine is about 150m height Salt lens dimensions: Length: 5km Width: 3km Thickness: 0.5km

UNIREA salt mine gallery

- The construction of low-background radiation laboratory started in January 2006 and ended in April 2006.
- - conception, design, constructor selection, material selection;
- material conditioning, transportation and construction;
- leveling the mine floor under laboratory using granulated salt,

UNDERGROUND LABORATORY

The goal was the setting up of an underground laboratory for:

high resolution gamma ray spectrometry
whole body counter
radiation metrology

Experiments for radiation background measurement

- high resolution spectrometry systems (Canberra, Ortec)
- •TLDs
- •Eberline FH 40G
- epithermal neutron activation analyses of salt and salt impurities
- passive Radon detectors

Background spectra collected with a CANBERRA GeHP detector with 22.8% rel. efficiency

NNN08 Paris, France Sept. 11-13, 2008

Neutron activation analyses of salt from UNIREA salt mine

Element	Neutron activation analyses		
Uranium	<1ppm		
Kalium	ND		
Thorium	ND		

Neutron activation analyses of salt impurities from UNIREA salt mine

Element	Neutron activation analyses	
Uranium	6.4 ppm	
Kalium	15400 ppm	
Thorium	5.5 ppm	

Radon concentration in Unirea salt mine gallery

Detector	N tracks	density [tracks/mm²]	corrected density	Rn conc. [Bq/m³]*
A112	53	1,132	0,817	11
A439	48	1,026	0,711	9

*uncertainty ~40%

Other measurements are in progress, especially for detectors background correction

minimum = 0,09 mm⁻² and maximum: 0,55 mm⁻², average=0,31 \pm 0.16 mm⁻²

Measurements performed by Prof. C. Cosma from UBB Cluj Napoca ROMANIA

A recent measurement of external dose rate gives: •in different places in Unirea salt mine - 1.2 ± 0.3 nSv/h •in underground laboratory - 1.6 ± 0.3 nSv/h.

The external dose rate was measured with an EBERLINE FH40G-L10 calibrated by producer.

The separation walls from laboratory, filled with salt, contain $1mg/kg K_4[Fe(CN)_6]3H_2O$. In this condition the external dose rate due to $K_4[Fe(CN)_6]3H_2O$ is about 0.35 nGy/h.

GLACIER: Giant Liquid Ar Charge Imaging ExpeRiment

	Liquid Argon
Density (g/cm3)	1.4
dE/dx (MeV/cm)	2.1
Refractive index (visible)	1.24
Cerenkov angle	36°
Scintillation	Yes (≈50000 g/MeV @ l=128nm)

A. Marchionni, ETH Zurich LAGUNA Meeting, July 2008

GLACIER

A scalable detector with a non-evacuable dewar and ionization charge detection with amplification

Giant Liquid Argon Charge Imaging ExpeRiment

A first study of an underground LAr storage tank

LAGUNA Meeting, July 2008

3D model of Unirea salt mine galleries

s, France 2008

3D model of low part of Unirea salt mine galleries

case 2 GLACIER detector

2008

a cylindrical tank around the pillar

details of cylindrical tank

details of cylindrical tank

NNN08 Paris,

Conclusions

The GLACIER detector could be constructed in Unirea salt mine

There are two options:

1. One or more cylinders of r=22m and h=20m (LAr volume about 26000m³)

2. A cylindrical vessel around the salt pillar with R=109m, r= 37m, h=20m, (LAr volume about 80000m³)

NNN08 Paris, France Sept. 11-13,

2008