

Proton decay and neutrino astrophysics with the future LENA detector

Teresa Marrodán Undagoitia tmarroda@ph.tum.de

Institut E15 Physik-Department Technische Universität München

Paris, 11.09.08

LENA	Particle physics	Neutrino astronomy	Measurements	Summary

- Proton decay and particle physics in LENA
- 3 Neutrino astronomy
- 4 Liquid scintillator measurements

LENA	Particle physics	Neutrino astronomy	Measurements	Summary

- Proton decay and particle physics in LENA
- 3 Neutrino astronomy
- Liquid scintillator measurements

Neutrino astronomy

 Pre-feasibility study: Pyhäsalmi site

- -> Talk by Guido Nuijten
 - Studies for other sites: on-going within LAGUNA DS

LENA	Particle physics	Neutrino astronomy	Measurements	Summary

Proton decay and particle physics in LENA

- 3 Neutrino astronomy
- 4 Liquid scintillator measurements

LENA	Particle physics	Neutrino astronomy	Measurements	Summary

Proton decay

- Theoretically favored modes
 - $p \rightarrow e^+ \pi^0$ • $p \rightarrow K^+ \overline{\nu}$ -> clear signature in liquid scintillators
- Predicted lifetimes: $\tau \sim 10^{34}$ y
- Super-Kamiokande best limits: $\tau(p \rightarrow e^+\pi^0) \gtrsim 5.4 \cdot 10^{33} \text{ y (90\% C.L.)}$ $\tau(p \rightarrow K^+\overline{\nu}) \gtrsim 2.3 \cdot 10^{33} \text{ y (90 \% C.L.)}$

LENA	Particle physics	Neutrino astronomy	Measurements	Summary
Free	oroton decay	$n \rightarrow K^+ \overline{\nu}$		

 $(1/\perp)$

 $T(I/\perp)$

$$\begin{array}{l} \tau(K^+) = 105 \; {\rm MeV} & \tau(K^+) = 12.8 \; {\rm ns} \\ \bullet \; K^+ \to \mu^+ \nu_\mu \; \; 63.43\% & \bullet \; K^+ \to \pi^+ \pi^0 \; 21.13\% \\ \bullet \; T(\mu^+) = 152 \; {\rm MeV} & \bullet \; T(\pi^+) = 108 \; {\rm MeV} \\ \bullet \; T(\pi^0) = 110 \; {\rm MeV} \end{array}$$

LENA	Particle physics	Neutrino astronomy	Measurements	Summary

Free proton decay $p \rightarrow K^+ \overline{\nu}$

$$T(K^+) = 105 \text{ MeV} \quad au(K^+) = 12.8 ext{ ns}$$

•
$$K^+ \to \mu^+ \nu_\mu$$
 63.43%
• $T(\mu^+) = 152 \text{ MeV}$

•
$$K^+ \rightarrow \pi^+ \pi^0$$
 21.13%
• $T(\pi^+) = 108 \text{ MeV}$
• $T(\pi^0) = 110 \text{ MeV}$

LENA	Particle physics	Neutrino astronomy	Measurements	Summary

Background rejection

- Pulse-shape analysis on the risetime
- proton decay efficiency of $\sim 65\%$

Number of events 10³

10

20 30 40 50 60 70 80 90

Two peaks:

- Kaon + Muon: $\sim 257 \text{ MeV}$
- Kaon + Pions: $\sim 459 \text{ MeV}$
- Efficiency: ε_E = 0.995
- Included: protons from ¹²C

Potential of LENA (10 y measuring time)

0 80 90 100 110 Number of photoelectrons (pe)

Spectrum3 Entries 10000

- For Superkamiokande current limit: τ = 2.3 · 10³³ y
 About 40 events in LENA and ≤ 1 background
- Limit at 90% (C.L) for no signal in LENA:
 - o $\tau > 4.1 \cdot 10^{34}$ y with $\epsilon = 65\%$

Phys. Rev. D 72, 075014 (2005)

LENA	Particle physics	Neutrino astronomy	Measurements	Summary

Proton decay $\rho \rightarrow e^+ \pi^0$

- First calculation:
 - Good energy resolution of LS (< 1%)
 - Narrow energy cut: B < 1 event/y
 - \rightarrow Low efficiency ($\epsilon =$ 12%)
 - Achievable sensitivity in 1 year: $\tau \sim {\rm few} \ 10^{32} \ {\rm y}$

- Possible improvement:
 - background discrimination via "tracking"
 - fast scintillator and electronics required

Reactor neutrinos with LENA

- S. T. Petcov and T. Schwetz, Phys. Lett. B642, 487 (2006)
- Determination of θ_{12} and Δm_{12}^2
 - For the Fréjus location
 - After one year measuring time, 3σ precision on oscillation parameters:
 - \rightarrow 20% on θ_{12} and 3% on Δm_{12}^2

J. Kopp et al., JHEP 01, 053 (2007)

- Using a mobile $\overline{\nu}_e$ source (e.g. a nuclear powered ship)
 - For an underwater detector location
 - \rightarrow sin² 2 θ_{13} < 0.004 after about 3 years

LENA Partic	cle physics Ne	eutrino astronomy	Measurements	Summary

Indirect dark matter search

 $\overline{\nu}_e$ energy spectrum in 10 y

S. Palomares-Ruiz and S. Pascoli, Phys. Rev. D 77, 025025 (2008)

• Annihilation of light WIMPs

 $\chi\chi\to\nu\overline{\nu}$

- Clear signature of $\overline{\nu}_e$ in liquid scintillator
- Background from reactor, atmospheric and diffuse supernove neutrinos

LENA	Particle physics	Neutrino astronomy	Measurements	Summary

Proton decay and particle physics in LENA

3 Neutrino astronomy

4 Liquid scintillator measurements

LENA	Particle physics	Neutrino astronomy	Measurements	Summary

Supernova detection

8 M $_{\odot}$ (3 · 10⁵³ erg) at D = 10 kpc (galactic center) In LENA detector: ~15000 events

Possible reactions in liquid scintillator • $\overline{\nu}_e + p \rightarrow n + e^+$; $n + p \rightarrow d + \gamma$ ~ 7500 - 13800 • $\overline{\nu}_e + {}^{12}C \rightarrow {}^{12}B + e^+$; ${}^{12}B \rightarrow {}^{12}C + e^- + \overline{\nu}_e$ ~ 150 - 610 • $\nu_e + {}^{12}C \rightarrow e^- + {}^{12}N$; ${}^{12}N \rightarrow {}^{12}C + e^+ + \nu_e$ ~ 200 - 690 • $\nu_X + {}^{12}C \rightarrow {}^{12}C^* + \nu_X$; ${}^{12}C^* \rightarrow {}^{12}C + \gamma$ ~ 680 - 2070 • $\nu_X + e^- \rightarrow \nu_X + e^-$ (elastic scattering) ~ 680 • $\nu_X + p \rightarrow \nu_X + p$ (elastic scattering) ~ 1500 - 5700

Diploma thesis by J.M.A. Winter (TU München)

Diffuse Background of Supernovae Neutrinos $\overline{\nu}_{e}$ -neutrino spectrum

In LENA detector: (44 kt f.v.) • $\overline{\nu}_e + p \rightarrow n + e^+$ Event rate in 10 y: • LL: ~ 110 events • TBP: ~ 60 events (discrimination power at > 2 σ)

M. Wurm et al., Phys. Rev. D75 023007 (2007)

Information about Star Formation Rate for (0 < z < 1)

Solar neutrinos

- Borexino experiment
- First ⁷Be neutrino measurement

Rates of solar neutrino events In the LENA fiducial volume:

 $18\cdot 10^3 \text{ m}^3$

- ⁷Be ν 's: \sim 5400 d⁻¹
 - Small time fluctuations
- pep ν's: ~ 150 d⁻¹
 - Information about the pp-flux
 → Solar luminosity in *ν*'s
- CNO ν's: ~ 210 d⁻¹
 - Important for heavy stars
- ⁸B ν 's: CC on ¹³C: \sim 360 y⁻¹

LENA	Particle physics	Neutrino astronomy	Measurements	Summary

Geoneutrinos

- Unexplained source of heat flow on Earth
- Unknown contribution of natural radioactivity
- How are ²³⁸U, ²³²Th distributed in core, mantle and crust?

In liquid scintillator:

•
$$\overline{\nu}_e + p \rightarrow n + e^+$$

K. Hochmuth et al., Astropart. Phys. 27 (2007) 21

- In LENA detector: ~ (400-4000) events/y (Scaling KamLAND results)
- ²³⁸U/²³²Th separation due to spectral form

LENA	Particle physics	Neutrino astronomy	Measurements	Summary

- Proton decay and particle physics in LENA
- 3 Neutrino astronomy
- 4 Liquid scintillator measurements

Fluorescence decay-time measurements

- Motivation: PD identification
- Photon counting method
- ⁵⁴Mn source: 834 keV γ 's
- PMT's time jitter: $\sigma = 0.9$ ns

Scintillator spectra: UV-Lamp

- UV-radiation: D₂ lamp
- Spectroscopy of the emitted light
- Ocean optics spectrometer

Light propagation

- Scattering length $\lambda_s \sim 15 \text{ m}$
 - Angle dependence of the scattered light
 - Study of polarized and unpolarized light

- Attenuation length $\lambda \sim 10 \, \text{m}$
 - Effects of absorption and scattering in the propagation

$$rac{1}{\lambda} = rac{1}{\lambda s} + rac{1}{\lambda a}$$

- Planned measurement:
 - Scintillator quenching
- R&D on liquid scintillators
- -> Talk by Christian Buck

LENA	Particle physics	Neutrino astronomy	Measurements	Summary

- Proton decay and particle physics in LENA
- 3 Neutrino astronomy
- 4 Liquid scintillator measurements

LENA	Particle physics	Neutrino astronomy	Measurements	Summary

- Lena physics
 - Good sensitivity for proton decay via $\rho \to K^+ \overline{\nu}$
 - Reactor neutrinos and indirect DM search
 - Supernova neutrinos
 - Solar neutrino measurements
- Liquid scintillator developments
 - Experiments to light production: fluorescence and spectroscopy
 - Study of light propagation: scattering and attenuation lengths