Large-Aperture Hybrid Photo-Detector

<u>Y. Kawai^{1,5}</u>, H. Nakayama², A. Kusaka², H. Kakuno²,
 T. Abe², M. Iwasaki², H. Aihara², M. Tanaka³,
 M. Shiozawa⁴, H. Kyushima⁵, M. Suyama⁵

¹The Graduate University for Advanced Studies, Hayama, Kanagawa Pref., Japan ²University of Tokyo, Tokyo, Japan ³High Energy Accelerator Research Organization, Tsukuba, Ibaragi Pref., Japan ⁴Institute for Cosmic Ray Research, Kashiwa, Chiba Pref., Japan ⁵Hamamatsu Photonics K.K., Iwata, Shizuoka Pref., Japan

Goal

To create a new photosensor to be the next generation massive water-Cherenkov detector

with

✓ A large photocathode
 ✓ Better time and energy resolution
 ✓ Lower power consumption and
 ✓ Simpler structure for lower cost because...

S0...

our answer to the demand is the creation of the

Large-Aperture Hybrid Photo-Detector (HPD)

Principles of HPD Operation

cf. Super Kamiokande Type PMT

HPDs

✓ have a simpler structure.

 are expected to save on production costs because they are suitable for quantity production with easier production and quality control.

✓ have better S/N but lower gain.

Comparison of Developed HPD and Conventional Large-Aperture PMTs

Parameters*		Developed HPD (13-inch HPD)	13-inch PMT (R8055)	20-inch PMT (R3600-02 for Super
Order of Gain		10 ⁵	10 ⁷	Kamipkande)
Single Photon Time Resolution		190ps	1400ps	2300ps
Single Photon Energy Resolution		44% (preliminary)	70%	150%
Pulse Response	Rise Time	1ns	6ns	10ns
	Pulse Width	2.2ns	10ns	20ns
Transient Time		12ns	100ns	95ns
Dynamic Range (Signal Intensity in p.e.)		3000 p.e.	2000 p.e.	1000 p.e.

* Under rated operating voltage of 1.5kV for R8055 and 2kV for R3600-02. HV of +20kV bias voltage of 390V for HPD

EB and Avalanche Gain

AD Bias=30V(fixed), HV=Swept

HV=+10kV(fixed), Bias=Swept

Impulse Response (Raw Signal)

HV=+20kV(fixed), Bias=Swept Light Source: Pulsed Laser (PW: ~70ps, : ~400nm)

Rise Time: ~1ns Pulse Width: ~2.2ns for Bias Voltages of over 350V

Multi-Photoelectron Pulse Height Spectra

HV=+20kV, Bias=370V

Light Source: Pulsed Laser

(PW: ~70ps, : ~400nm)

Resolution for Single Photon Signal: ~ 44%

Time Resolution for Single Photon Signal

Photoelectron Transit Time

HV=Swept, Bias=290V Light Source: Pulsed Laser (PW: ~70ps, : ~400nm)

Transit Time: ~12ns for HV of 20kV

Photoelectron Collection Efficiency and Effect of Magnetic Field (Simulation)

Photoelectron Collection Efficiency as a function of HV (No Magnetic Field) Collection Efficiency [%] Parallel Perpendicular 0.5

Operating High Voltage [kV]

Collection Efficiency [%]

Collection Efficiency as a function of Magnetic Field (at HV of +20kV)

Dynamic Range

Incorporated Avalanche Diode and its C-V Characteristics

AD Bias Voltage [V]

Summary

- We have developed a 13-inch HPD and confirmed
- ✓ Fast Time Response; Rise Time of ~1ns, Pulse Width of ~2.2ns
- ✓ Excellent Single Photon Time Resolution of ~190 ps ()
- ✓ Excellent Single Photon Energy Resolution of ~44 %
 ✓ Total Gain of >2 x 10⁵
- Promising as a photosensor for the next generation water-Cherenkov detector.
- Next Steps
- □ Optimization of manufacturing process
- Evaluation of long-term operation stability

Acknowledgments

- This work has been supported by SENTAN, JST.
- We thank the members of HAMAMATSU PHOTONICS for their enthusiastic contribution to this work.