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Figure 1: Single power
law fit of the elec-
tron Local Interstellar
Spectrum (multiplied by
E3
k), after rescaling.

[D. Casadei and V. Bindi, “The

origin of cosmic ray electrons

and positrons,” ApJ 612 (2004)

262–267.]

VN Sesto Fiorentino, April–May, 2005



0.2 Cosmic rays and electromagnetic radiation

0.2.1 Cosmic magnetic fields

In most cosmic gases the magnetic permeability µ is close to 1 (no magnetization).

H = B/µ0 −M = B/µ ' B.

So for all practical purposes we can use the terms magnetic field strength (H) and
magnetic induction (B) as synonyms.

An electric charge Ze traveling with velocity v through a magnetic field H experiences
a force F called the Lorentz force:a

F = Ze (v ×H) . (1)

According to Eq. (1), the charge spirals along the field lines without changing energy E
[neglecting the radiation energy loss; see below]. In a constant an homogeneous
magnetic field, the particle describes a helical motion with constant pitch. The velocity
component v‖ along the direction of the field H is a constant of the motion and the

circulate (or transverse) velocity v⊥ about the field lines then defines the pitch angle

θ = arctan
(
v⊥/v‖

)
.

aAs usually, we put here c = 1.
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The radius rH of the circular orbit that the particle describes transverse to the field is
called gyroradius or Larmor radius.

F
r

H
q H

It can be obtained by setting the Lorentz force (1) equal to the centrifugal force acting
on the particle.

Let p⊥ = v⊥E be the transverse momentum and ωH = v⊥/rH be the gyrofriquency
(or cyclotron frequency). Then the centrifugal force has magnitude

ṗ⊥ = p⊥ωH = p⊥v⊥/rH . (2)

From Eqs. (1) and (2) we have

p⊥v⊥/rH = Z|e|Hv⊥ (H = |H|)

and thus
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ωH =
Z|e|H
E

or ωH [s−1] ≈ 1.76× 107
(me

E

)
H [Ø], (3)

rH =
p⊥

Z|e|H or rH [cm] =
R [V]

300H [Ø]
, (4)

where R = HrH = p⊥/(Z|e|) is the magnetic rigidity.a

Note 1: The conventional in CR physics definition R = p/Z|e| assumes that the
particle’s motion is strictly perpendicular to the magnetic field.

Note 2: For an arbitrary magnetic field H = H(r, t), Eq. (4) is the definition of
the local instantaneous gyroradius.

Eq. (4) can be rewritten in a more convenient form for CR astrophysics:

rH ≈
2.2 au

Z

(
p⊥

10 GeV/c

)(
10−6 Ø

H

)
[1 au ' 1.5× 1013 cm]. (5)

Since H = 10−6 Ø is a typical magnitude of interstellar magnetic fields, Eq. (5) shows
that the gyroradii of high-energy cosmic rays are comparable with the size of a
planetary system or much larger.

aUnits: V = Volt, Ø= Oe = Ørsted = Oersted (another name for the Gauss since 1930).
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0.2.2 Thermal particles and frozen-in flows

Let us now estimate the typical magnitude of velocity of a thermal (nonrelativistic)
particle of mass m ∼ 1 GeV/c2 moving in a cosmic gas cloud. Taking the gas
temperature T ∼ 100 K, one can write

vthermal ∼
√

3kT/m ' 5× 10−6c ' 1.5 km/s,

where k ' 8.62× 10−14 GeV/K is the Boltzmann constant.

Taking H = 10−6 Ø as a typical value of interstellar magnetic field (see Table 1 below)
we can estimate the gyroradius of the thermal particle as

rthermal
H ∼ 1.5× 107 cm.

This is a very small value compared to the expected dimensions of cosmic fields

Rcosmic field ≫ 107 cm.

Therefore, charged particles moving with thermal velocities characteristic of cosmic
gases are effectively tied to the magnetic field lines.

Charged particles can move quite freely along the lines of force but have difficulty
moving across them any significant distance. In other words, the thermal particles are
essentially “frozen onto” the field like relic mammoths are frozen onto the Siberian
permafrost (Fig. 2).
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In fact, the cosmic magnetic fields have their
origins in the organized motion of charged
particles. That is why one can also say that
the magnetic fields are “frozen” into the in-
terstellar medium. The motion of such gas-
field or, more generally, plasma-field hybrids
is called frozen-in flow.
Unlike the canned mammoths, the charged
thermal particles can diffuse across the mag-
netic fields due to collisions with surround-
ing particles. If the particle collisions are
frequent, they tend to destroy the magnetic
fields. For this reason, frozen-in fields can-
not be maintained in dense plasmas.
Another type of particle motion is their drift
due to the presence of additional fields, such
as gravitational and electrostatic. Drifts do
not directly act to dissipate cosmic magnetic
fields but, in conjunction with collisions, they
affect the frozen-in flows.

Figure 2: There are believed to be about
106 mammoths frozen onto the per-
mafrost of north-east Siberia.
[From <http://www.cnn.com/2002/TECH/08/

21/clone.mammoth/> .]

VN Sesto Fiorentino, April–May, 2005



Figure 3: The Comet Halley, which has re-
turned with a 74–79 year period since 240
B.C. The image shows the full tail of the
comet recorded from Sutherland by Brian
Carter, March 14, 1986.
[From South African Astronomical Observatory (SAAO)

<http://www.saao.ac.za/pr/gallery/> .]

Figure 4: The ion and dust tail structure of
the Comet Halley on March 5, 1986. At this
point in its orbit, Halley had recently passed
perihelion on February 9, 1986 and was at
its most active. This 10 minute exposure
was recorded at Mauna Kea Observatory on
IIIa-J emulsion without filters. The dust tail
stretched for over 6◦ on the sky.
[From “Views of the Solar System” by C. J. Hamilton

<http://www.solarviews.com/noflash.html> .]
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Figure 5: Artistic view of the geomagnetic field and its interplay with the solar wind.
[From the NASA Space Plasma Physics Group, <http://science.nasa.gov/ssl/pad/sppb/> .]

Left panel: The Earth acts like a huge magnet (H⊕ ∼ 2Ø). One can visualize the field lines by
thinking of the Earth as having a bar magnet (dipole) running from the North to South poles.
Right panel: The Sun produces a hot gas that travels through space at about 106 miles per hour,
carrying particles and magnetism outward past the planets. Thanks to the Earth’s magnetic field,
the solar wind is stopped and deflected around the Earth so that most of it does not hit our
atmosphere head on. In essence, the Earth is immersed in the heliosphere. Changes on the
Sun affect the solar wind flow; for example, solar flares, which are explosions associated with
sunspots, cause strong gusts of solar wind.
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Figure 6: Composite image of the
Crab Nebula by the Chandra X-ray
Observatory showing X-ray (in
blue), optical (in green), and radio
(in red) images superimposed. The
inner blue ring is about one light
year across.
The energetic nonthermal particles of

the very compact pulsar near the center

of this object generate the nebula and

the diffuse continuum of synchrotron

emission. The size of the X-ray image is

smaller those of optical and radio. This is

because the higher energy X-ray emitting

electrons radiate away their energy more

quickly than the lower energy radio

and optically emitting electrons as they

move.

[From the Chandra Photo Album,

<http://chandra.harvard.edu/

photo/index.html> .]
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Figure 7: The Milky Way is the galaxy
which is the home of our Solar Sys-
tem together with 200-400 billion other
stars and their planets, and thousands of
clusters and nebulae, including at least
almost all objects of Messier’s catalog
which are not galaxies on their own.
[From the Messier Catalog, <http://www.seds.

org/messier/more/mw.html> .]

Figure 8: Spiral galaxy M31 (An-
dromeda). It is our nearest large neigh-
bor galaxy, forming the Local Group of
galaxies together with its companions
(including M32 and M110, two bright
dwarf elliptical galaxies), our Milky Way
and its companions, M33, and others.
[From the Messier Catalog, <http://www.seds.

org/messier/m/m031.html> .]
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Table 1: Cosmic media with magnetic fields shown in Figs. 3–8 and typical gyroradii of
thermal particles.

Example∗) Size (cm) H (Ø) rH (cm)

Comet ionized Halley’s 5× 1012 3× 10−5 3× 106

trail comet

Stellar wind Solar wind 1× 1013 3× 10−5 3× 106

near Earth (nominal)

Supernova Crab 5× 1018 3× 10−4 5× 104

remnant nebula

Spiral galaxy The Milky 3× 1020 ∼ 10−5 ∼ 108

arm Way, M31 ×1023 to ∼ 105 to ∼ 10−4

Extragalactic Metagalaxy ∼ 1028 to . 10−9 & 1010

medium cosmic horizon (?)
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0.2.3 Cosmic Magnetobremsstrahlung

References: [1] V. L. Ginzburg and S. I. Syrovatskii, “Cosmic Magnetobremsstrahlung (Syn-
chrotron Radiation),” Ann. Rev. Astron. Astrophys. 3 (1965) 297–350.

[2] M. S. Longair, “High Energy Astrophysics. An informal introduction for
students of physics and Astronomy,” Cambridge University Press, Cambridge
(1981), Chapter 18.

[3] V. S. Berezinsky, V. A. Dogiel, S. V. Bulanov, V. L. Ginzburg and
V. S. Ptuskin, “Astrophysics of cosmic rays,” edited by V. L. Ginzburg,
Amsterdam, Netherlands: North-Holland (1990), Chapter 1.

Since the motion of a charged particle in the magnetic field H is unsteady is must emit
electromagnetic waves. The cyclic frequencies of these waves are equal to the cyclotron
frequency ωH and its overtones nωH , where n is any integer.

A nonrelativistic particle emits mainly the 1ts harmonic. But it is not the case for an
ultrarelativistic particle . If E � m the particle emits waves within a narrow cone with
the cone angle

δ ∼ 1/Γ = m/E

(Fig. 9). That is why the electromagnetic waves are emitted like the sparks arising
during knife grinding (Fig. 10).
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q

y

Figure 9: The velocity cone of an elec-
tron moving in a spiral trajectory about
a magnetic field H. Here v is the in-
stantaneous velocity of the electron, θ is
the angle between v and H and ψ is the
angle between k and velocity cone.

Figure 10: Antonio Puga (1602–1648):
“The Knife Grinder”. The musketeer
staying in the plane of the grindstone
probably beholds sparks.

An observer placed in the plane of the orbit will see successive pulses of radiation with
the time interval τ = 2π/ωH (Fig. 11).
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Figure 11: The electric field in the wave
zone as a function of time for a particle
performing circular motion in a magnetic
field H. It is assumed that the field of a
rapidly moving dipole is rotated with and
angular velocity ωH . (Fig. 4 of Ref. [1].)

d~1/G

A B
v

O

C

L

Figure 12: Relativistic focusing and
Doppler effect in synchrotron radiation.
The particle moves with velocity v ≈ c
and angular velocity ωH . The observer
O sees successive sparks of radiation with
intensity schematically shown in Fig. 11.

The duration of each pulse can be estimated as

∆t ≈
(
rHδ

2v

)
1

Γ 2
=

(
mc

|e|H⊥

)(
mc2

E

)2

. (6)
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where the factor Γ−2 is due to the Doppler shift. Indeed the difference between the
times of arriving the radiation in point O (Fig. 12) from points A and B is equal to

tA − tB = (L/v)(1− v/c).
(it would be L/v for infinite c). Next,

L/v = rH sin δ ≈ rHδ/v,

(1− v/c) =
1− v2/c2

1 + v/c
≈ 1− v2/c2

2
=

1

2Γ 2
.

Together with Eqs. (3) and (4) this leads to Eq. (6).

The radiation spectrum constructed from pulses following one another at time intervals
τ = 2π/ωH will consist, obviously, of harmonics of the main frequency ωH . In fact,
since τ � ∆t (for Γ >> 1), the spectrum may be considered continuous in the region
of high harmonics. The maximum of the spectrum corresponds to the frequency

ωm ∼
1

∆t
∼
(
|e|H⊥
mc

)(
E

mc2

)2

.

Therefore the spectrum represents very high overtones:

nm = ωm/ωH ≫ 1.
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Numerical example: Let the electron energy be E = 0.5 GeV the field
strength be H = 10−5 Ø. Then ωH ≈ 0.176 s−1 while ωm ≈ 108 s−1.
Therefore nm ∼ 109. Clearly in such conditions the spectrum is so thick that is
practically continuous.

The exact consideration leads to the follow-
ing formula for the spectral distribution of
the power of the total synchrotron radiation:

J(ν,E) =

(√
3|e|3H⊥
mc2

)
p

(
ν

νc

)
,

where ν is the frequency of the radiation,

p(x) = x

∫ ∞

x

K5/3(x
′)dx′,

K5/3(x) is the Bessel function of the order of

5/3 and νc = (3/2)Γ 2νH sin θ is the critical
frequency.

Figure 13: The spectral distribution of
the power of the total (over all direc-
tions) synchrotron radiation from ultra-
relativistic electrons moving in a mag-
netic field. (Fig. 7 of Ref. [1].)

VN Sesto Fiorentino, April–May, 2005



The frequency and power at the maximum of the spectrum are

νmax ≈ 0.29νc ≈ 0.45Γ 2νH sin θ ≈ 1.20× 106H⊥

(
E

mc2

)2

Hz,

J (νmax, E) ≈ 1.60

(
|e|H⊥
mc2

)
≈ 2.16× 10−22H⊥

erg

s · Hz
.

Numerical example: Let the electron energy be E = 0.5 GeV and the field
strength be H⊥ = 3× 10−6 Ø. Then νmax ≈ 4× 108 Hz. This corresponds to
the wave length λmax = c/νmax ≈ 0.7 m. This is within the radio diapason.

Generally, electrons with energies between 100 MeV and 10 GeV will produce in the
interstellar space the non-thermal radio-wave radiation.

It can easily be estimated that the integral flux of electrons with E > 1 GeV

Fe(> 1 GeV) ∼ 10
electrons

m2 · ster · s ∼ 0.01 FCR (> 1 GeV) (7)

is enough to explain the observed intensity of the Galaxy. This nicely corresponds to the
flux of the CR electrons and positrons near the Earth.
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Let us now assume that the integral flux of electrons has the power-law form

Fe(> E) = KeE
−γ . (8)

Than it can be shown that the intensity of the radio radiation has the form

J(ν) = 1.35× 10−22a(γ)KeRH
γ/2

(
6.26× 1018

ν

)γ/2
erg

cm2 · ster · s · Hz
,

where R is the dimension of the radiative volume, H is the average value of the field
strength along the direction of observation and a(γ) is a slowly varying function of γ

a(γ) =

√
3

π
Γ

(
3γ + 4

12

)
Γ

(
3γ + 22

12

)
Γ

(
γ + 6

4

)

23−γ/2(γ + 2)Γ

(
γ + 8

4

)

tabulated in Table 2.

Table 2: Function a(γ).

γ 0 1.0 1.5 2.0 2.5 3.0 4.0

a 0.283 0.147 0.103 0.0852 0.0742 0.0725 0.0922
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If the observations suggest that J(ν) ∝ ν−α, we can immediately determine the
exponent γ = 2α in the spectrum (8). If in addition we know something about R and
H, we can also estimate the constant Ke in Eq. (8). We can conclude that

The cosmic magnetobremsstrahlung provides a tool to measure the CR flux in
our Galaxy as well as in very distant astrophysical objects.
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Figure 14: Spectral energy distribution of the unpulsed
electromagnetic emission from the Crab Nebula. [From

von H. Völk, “Gamma-Astronomie mit abbildenden Cherenkov-Teleskopen,”

Sterne und Weltraum 38 (1999) 1064–1070. Two recent data points from

CELESTE and STACEE measurements are added to the original figure.]

Wide-range spectrum from
the Crab nebula in Fig. 14
shows two peaks, SP and ICP,
which are interpreted as syn-
chrotron emission from high
energy electrons and inverse
Compton scattering of syn-
chrotron photon by the same
electrons. The electron ener-
gies producing the dominant
SP at lower energies are in-
dicated by the arrows. The
Compton Gamma Ray Ob-
servatory (CGRO) telescopes
COMPTEL and EGRET de-
termine the synchrotron fall-
off and the transition to the
ICP expected at some tens of
GeV. The gap between the
satellite and ground-based ex-
periments are now being filled
by Cherenkov telescopes using
large-area solar power collec-
tors.
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0.3 Historical background

[See PowerPoint presentation “Lecture01.ppt”.]
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0.4 Observational data on primary cosmic-ray spectrum

[See PowerPoint presentation “Lecture02.ppt”.]
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Part II
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1 Elements of Particle Transport Theory
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1.1 Transport equations

1.1.1 Schematic view

We consider first the most general elements of the linear theory for propagation of
relativistic particles through a medium. In this theory, a cascading process in the
medium is described by a system of integro-differential Transport Equations (TE) or
linearized Boltzmann equations. Schematically they can be written as

D̂a Fa =
∑

b

Iba[Fb] + Sa. (9)

✦ Fa is the phase density of particles a;

✦ D̂a is a linear differential operator which describes the phase density evolution due
to diffusion, convection, continuous energy loss and interactions of particles a with
external fields;a

✦ Iba[. . .] is a linear functional (collision integral) which takes into account vanishing
of particles a due to absorption, elastic and inelastic scattering and decay, as well
as their emerging

aIn the absence of diffusion, convection and continuous energy loss fluctuations, the bDa is a first-order
differential operator and the TE becomes the linearized Boltzmann equations.
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- in inelastic collisions of particles b from the matter scatterers A
(b+A→ a+ . . .), including the “regeneration processes” a+A→ a+ . . ., and

- in decay of unstable particles b (b→ a+ . . ., b 6= a);

✦ Sa is the density of sources of particles a acting in the medium regardless of the
development of the cascade.

As for every equation of mathematical physics, the TE must be complemented with
appropriate boundary and/or initial conditions.

1.1.2 Characteristics of interactions

Let ρA(r) and nA(r) be the weight and particle number densities of scatterers A in the
space point r of the medium, respectively. Clearly,

ρA(r) = mAnA(r),

where mA is the mass of particle A. If, in particular, A is a nucleus with atomic weight
A [in g/mol−1] then mA = N0/A, where N0 = 6.02214199× 1023 mol−1 is Avogadro’s
number. The weight concentration (fraction) of scatterers A is given by

CA(r) = ρA(r)/ρ(r) = mAnA(r)/ρ(r),

where ρ(r) is the local density of the medium. By definition,
∑

ACA(r) = 1.
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We define the total macroscopic cross section for interaction of particle a with the
matter, Σtot

a (E, r) [where E is the total energy of particle a], as weighted average of
the total microscopic cross sections, σtot

aA(E), over all types of scatterers,

Σtot
a (E, r) =

∑

A

nA(r)σtot
aA(E) = ρ(r)

∑

A

CA(r)m−1
A σtot

aA(E). (10)

Similar way we can define the inelastic macroscopic cross section

Σin
a (E, r) =

∑

A

nA(r)σin
aA(E) = ρ(r)

∑

A

CA(r)m−1
A σin

aA(E), (11)

where σin
aA(E) is the microscopic inelastic cross section [σin

aA + σel
aA = σtot

aA]. Then we
define differential macroscopic cross section for production of particles a through
interactions of particles b with matter,

Σs
ba(p0,p, r) = ρ(r)

∑

A

CA(r)

mA

(
d 3σbA→aX

dEdΩ

)
= ρ(r)

∑

A

CA(r)

mA
pfAba (p0,p) . (12)

Here

fAba(p0,p) = E

(
d 3σbA→aX

d 3p

)
=

1

p

(
d 3σbA→aX

dEdΩ

)
(13)

is the Lorentz-invariant inclusive cross section for the reaction b+A→ a+X;
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✦ X is the system of all secondaries including fragments of the target nucleus A and
except a;

✦ p0 and p are the momenta of particles b and a, respectively, in lab. frame
(concurrent with the rest frame of the medium).

The last equality in Eq. (13) follows from the relationsa

d 3p = p2dpdΩ, pdp = EdE, p2dp = pEdE (p ≡ |p|).

Notes:

1. In fact, the inclusive cross section fAba is a function of no more than three
independent scalar variables. One of the standard sets is

p = |p| (or E),

p⊥ (or p
2

⊥),

s = m2
a +m2

A + 2mAE0 (or E0),

where p⊥ is defined as p sin θ and the remaining notation is

θ = arccos (Ω0Ω),
Ω0 = p0/p0, Ω = p/p,

E0 =
√
p2
0 +m2

b (ma,b are the masses of particles a and b).

aRemember that c = 1, ~ = 1.

VN Sesto Fiorentino, April–May, 2005



2. All particles participated in the inclusive reaction b+ A→ a+X are considered to
be nonpolarized. In other word, the definition of the inclusive microscopic cross
section fAba assumes summation over spins of colliding particles and averaging over
the spins of particles in final state.

3. The cross section fAaa for inclusive reaction a+ A→ a+X includes contribution
from the elastic scattering, a+A→ a+A,

fAaa = fA,elaa + fA,inaa .

A conventional approximation at high energies is

d 3σaA→aA (p0,p)

dpdΩ
≈
d 2σaA→aA

(
p, p⊥

)

dΩ
δ (p0 − p).

4. We will consider the media whose densities are finite, piecewise-continuous
functions vanishing in infinity,

lim
r→∞

ρ(r) = 0.

These condition are valid for any normal astrophysical object, including Earth and
its atmosphere. The same conditions are therefore valid for macroscopic cross
sections as functions of r. In particular,

lim
r→∞

Σtot,in
a (E, r) = 0, lim

r→∞
Σs
ba(p0,p, r) = 0.
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Next we define the (local) collision length or mean free path between collisions

λtot
a (E, r) =

1∑
ACA(r)m−1

A σtot
aA(E)

, (14)

the (local) interaction length or mean free path between inelastic interactions

λin
a (E, r) =

1∑
ACA(r)m−1

A σin
aA(E)

. (15)

and the (local macroscopic) inclusive spectrum

W s
ba(p0,p, r) =

∑
A CA(r)(mA)−1pfAba(p0,p)∑

ACA(r)m−1
A σtot

bA(E0)
(16a)

or (sometimes, this definition turns out to be more appropriate)

W s
ba(p0,p, r) =

∑
A CA(r)(mA)−1pfAba(p0,p)∑

ACA(r)m−1
A σtot

bA(E)
. (16b)

Then the macroscopic cross sections can be written as

Σtot
a (E, r) =

ρ(r)

λtot
a (E, r)

, Σin
a (E, r) =

ρ(r)

λin
a (E, r)

,
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and

Σs
ba(p0,p, r) =

ρ(r)

λtot
b (E0, r)

W s
ba(p0,p, r) = Σtot

b (E0, r)W s
ba(p0,p, r)

=
ρ(r)

λtot
b (E, r)

W s
ba(p0,p, r) = Σtot

b (E, r)W s
ba(p0,p, r).

These relations are simplified essentially in the case of a homogeneous medium [the
concentrations of scatterers are independent of r] because, in this case,

λtot
a (E, r) 7−→ λtot

a (E), λin
a (E, r) 7−→ λin

a (E),

and

W s
ba(p0,p, r) 7−→ W s

ba(p0,p), W s
ba(p0,p, r) 7−→W s

ba(p0,p).

Therefore, the r dependence of the macroscopic cross sections, Σtot
a and Σs

ba, only
remains in the factor ρ(r):

Σtot
a (E, r) =

ρ(r)

λtot
a (E)

, Σin
a (E, r) =

ρ(r)

λin
a (E)

,

Σs
ba(p0,p, r) =

ρ(r)

λtot
b (E0)

W s
ba(p0,p) =

ρ(r)

λtot
b (E)

W s
ba(p0,p).
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1.1.3 Characteristics of decays

Particles a can emerge also through decay in flight of other unstable particles b if these
have corresponding decay modes.

Spinless particles

First we consider the simplest case when a spinless particle b decays into a system of
spinless particles a+X where X is a fixed set of secondary particles (exclusive decay).

[
e.g. K+ −→ π+π0, K0

S −→ π+π−π0
]

We need a few more definitions. Let

τb be the mean life of b,
Γb = (mb/τbE0) – its full width,
Γb→aX – the partial width,
Bb→aX = Γb→aX/Γb – the branching ratio or fraction, and
d 3Γb→aX/d

3p – differential (over the momentum p of particle a) width.

Then we can define the differential distribution (spectrum) of particles a generated in
exclusive decay b→ aX as

WX
ba(p0,p) =

1

Γb

d 3Γb→aX

d 3p
=

(
Bb→aX

Γb→aX

)
d 3Γb→aX

d 3p
. (17)
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The differential spectrum WX
ba is a function of no more than three scalar variables which

can be constructed from the components of momenta p0 and p of particles b and a.

Now we can introduce the macroscopic differential cross section for inclusive decay

Σd
ba(p0,p) =

mb

τbp0
Wd
ba(p0,p) =

mb

τbp0

∑

X

WX
ba(p0,p). (18)

The sum here is over all final states X allowed by the decay kinematics and
conservation laws.

Notes:

1. Formally, definition (18) may be extended also to stable particles (τb →∞) and to
particles which have no decay modes with particle a in the final state (Bb→aX = 0).
This is a banality but it will be useful for unification of the form of the TE.

2. In general case, the system X may include one or more particles of type a.

b

a a

ac

d

a
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Symbolically it can be written as X = (kY − 1)a+ Y where kY = 1, 2, . . . is the
total number of particles a and Y is a set of the other particles different from a.
Then, taking into account the quantum identity principle, one can write

Wd
ba(p0,p) =

∑

Y

kYWX
ba(p0,p),

where the sum is over all possible states Y .

Accounting for spin

Both energy and angular distributions of particles which emerge from decay of other,
more heavy particles with a nonzero spin are dependent of the degree of polarization of
the beam of the decaying particles.

Let us limit ourselves with the (comparatively) simple but very important case when
particles a have spin of 1/2 and emerge from decay of spinless particles b. Then
particles a decay, giving rise for other secondaries.

An important example of such a chain is

π+ →µ+ + νµ (πµ2 decay)

µ+ → e+ + νe + νµ (µe3 decay)

The energy and angular distributions of e+, νe and νµ from the µe3 decay are
functions of the longitudinal muon polarization, Pµ+ . It is well-known that, in the
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parent pion rest frame, the muon from the πµ2 decay is fully polarized up or down its
momentum (subject to the muon charge). But, after a Lorentz boost transformation
along the pion momentum, pπ (directed along the z axis, for definiteness), the muon
beam becomes partially polarized.

Indeed, some muons those longitudinal momenta in the lab. frame, pµ,z, are positive,
correspond to the muons those longitudinal momenta in the pion rest frame, p∗µ,z, were
negative. Thus, their polarization becomes opposite. This is the simplest example of
so-called kinematic depolarization.

For the πµ2 decay, it can be showna that the muon polarization in the lab. frame is
given by

Pµ± = ∓
(
m2
µ

p∗µpµ

)(
E∗
µEµ

m2
µ

− Eπ
mπ

)
,

where the starred variables are related to the pion rest frame while the other – to the
lab. frame. For multiparticle decays, like

K0
L → π− + µ+ + νµ, D0 → K− + π0 + µ+ + νµ, etc.

(not to speak of the chains of such decays), the kinematic depolarization effect is much
more complicated.

aSee, e.g., S. Hayakawa, Cosmic ray physics, John Willey & Sons, NY, 1969.
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In order to take the polarization effect into account for the case under consideration, it
is enough, instead of partially polarized beam of particles a, to take into consideration
the two beams of “particles” aχ ≡ {a, χ} with the definite helicity χ = ±1. Let
〈Pa(p, r, t)〉b be the mean polarization of particles a from decays b→ aX, averaged
over the momentum spectrum of parent particles b. By definition, we also assume an
averaging over the spins of all other particles X and consider the case when there is no
particles a among the secondaries X.

Then the production of “particles” aχ [µ in the abovementioned examples] is described
by the following macroscopic cross section of decay:a

Σd
baχ

(p0,p, r, t) =
mb

2τbp0

∑

X

[1 + χ 〈Pa(p, r, t)〉b]WX
ba(p0,p), (19)

while generation of particles c from decays aχ → cY [c = e+, νe or νµ for the
mentioned case of µ+

e3 decay] is defined by the cross section

Σd
aχc(p0,p) =

ma

τap0

∑

Y

WY
aχc(p0,p). (20)

All other interactions of particles a are assumed to be independent of their polarization.

aGenerally, it is a function of r and t, since the mean polarization, 〈Pa〉b is defined through the flux
of the parent particles b.
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1.1.4 Transport Equations (3D case)

For the moment we will neglect external fields and convection. Then the transport
(or kinetic) equation (TE) can be derived from the following condition of balance for
particles a with energy E and direction of motion Ω:

Number of particles
at the moment  t+∆t

Number of particles
at the moment  t

Number of particles
escaped from ∆V
during time ∆t

Number of particles
absorbed or scattered
in ∆V during time ∆t

Number of particles
entered into ∆V
during time ∆t

Number of particles
produced in ∆V 
during  time ∆t due to
interactions of other
particles with matter

Number of particles
produced in ∆V
during time ∆t due to
decay of other
particles

Number of particles
died during time ∆t
due to decay

= -

+ - -

++
Number of particles
produced in ∆V
during time ∆t by
internal sources

+
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Number of particles escaped from ∆V during time ∆t:

∆t

∫

Ωn>0

(Ωn)Fa (p, r, t)dS. (21)

Number of particles entered into ∆V during time ∆t:

−∆t

∫

Ωn<0

(Ωn)Fa (p, r, t)dS. (22)

Number of particles absorbed or scattered in ∆V during time ∆t:

Σtot
a (E, r)Fa (p, r, t)∆V∆t. (23)

Number of particles died during time ∆t due to decay:
(

∆t

τa

)(ma

E

)
na (p, r, t)∆V. (24)

Number of particles produced in ∆V during time ∆t by internal sources:a

Sa (p, r, t)∆V∆t. (25)

aThis is just the definition of the source function Sa.
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Number of particles produced in ∆V during time ∆t due to interactions of other
particle with matter:a

∑

b

∫
dΩ0

∫
dE0 Σs

ba (p0,p, r)Fb (p0, r, t)∆V∆t. (26)

Number of particles produced in ∆V during time ∆t due to decay of other particles:b

∑

b

∫
dΩ0

∫
dE0 Σd

ba (p0,p, r, t)Fb (p0, r, t)∆V∆t. (27)

In the above equations, na (p, r, t) denotes the concentration of particles a and n is the
unit vector normal to the boundary surface of the volume ∆V directed outwards the
volume. Substituting contributions (21)-(27) into the balance equation and taking into
account that
∫

Ωn>0

(Ωn)Fa (p, r, t) dS +

∫

Ωn<0

(Ωn)Fa (p, r, t) dS =

∮
(Ωn)Fa (p, r, t) dS,

we have

aOf course the sum in Eq. (26) includes also the case b = a.
bOf course the sum Eq. (27) does not include the case b = a but we can take this fact into account

assuming that Σd
aa = 0.
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na (p, r, t+ ∆t)∆V = na (p, r, t)∆V −∆t

∮
(Ωn)Fa (p, r, t) dS

− Σtot
a (E, r)Fa (p, r, t)∆V∆t−

(
ma

τaE

)
na (p, r, t)∆V∆t

+
∑

b

∫
dΩ0

∫
dE0 Σs

ba (p0,p, r)Fb (p0, r, t)∆V∆t

+
∑

b

∫
dΩ0

∫
dE0 Σd

ba (p0,p, r, t)Fb (p0, r, t)∆V∆t

+ Sa (p, r, t)∆V∆t. (28)

Next, we take into account that

lim
∆t→0

1

∆t
[na (p, r, t+ ∆t)− na (p, r, t)] =

∂

∂t
na (p, r, t) ,

lim
∆V→0

1

∆V

∮
(Ωn)Fa (p, r, t) dS = (Ω∇)Fa (p, r, t) ,

na (p, r, t) =
1

v
Fa (p, r, t) .
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We are ready now to write out the transport equation. Let us introduce notation:

Σba (p0,p, r, t) = Σs
ba (p0,p, r) + Σd

ba (p0,p, r, t) .

Then the nonstationary TE can be written as

[
1

v
∂t + Ω∇

]
Fa(p, r, t) = −

[
Σtot
a (E, r) +

ma

τap

]
Fa(p, r, t)

+
∑

b

∫
dX0 Σba (p0,p, r, t)Fb (p0, r, t) + Sa (p, r, t) . (29)

Here Fa(p, r, t) is the differential flux of particles a in the space-time point (r, t),
v = |v|, v = p/E is the particle velocity and

dX0 ≡ dE0dΩ0.

The right of Eq. (29) is exactly the collision integral, Iba, mentioned in Sec. 1.1.1 .

Corresponding stationary TE can be obtained from Eq. (29) by a formal passage to the
limit as t→∞ under assumption that

lim
t→∞

[∂tFa(p, r, t)] = 0 and Fa(p0, r, t)→ Fa(p0, r).
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This yields
[
Ω∇ + Σtot

a (E, r) +
ma

τap

]
Fa(p, r) =

∑

b

∫
dX0 Σba(p0,p, r)Fb(p0, r) + Sa(p, r).

(30)

Notes:

In a sense, Eqs. (29) and (30) are symbolic as yet.

1. We must take into account that the equations for polarized particles (with spin of
1/2) are included in pairs. For such particles, the index a must be replaced with
the multi-index {a, χ}. In all other equations, the corresponding quantities must be
included in combinations

∑

χ

∫
dX0

[
Σs
ac (p0,p, r) + Σd

aχc (p0,p)
]
Faχ

(p0, r, {t}) . (31)

2. The integration limits on the rights of Eqs. (29) and (30) as well as in Eq. (31) are
not defined explicitly. In fact these must be determined from the relativistic
kinematics of the reactions and decays involved which is, generally, very
complicated. To avoid (formally) this indetermination, we may arrange that the
cross sections contain the appropriate characteristic functions, θ (G (p0,p, r)),
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defined as

θ(G) =

{
1 for kinematically allowed domains,

0 for kinematically forbidden domains.

The argument r in the characteristic function is the reflection of the fact that, in
inhomogeneous media, the kinematic boundaries are functions of the masses of
scatterers.

3. We must add initial and boundary conditions.

For the boundary conditions in the steady case we adopt

lim
r→∞

Fa(p, r) = φa(n,p), (32)

where n = r/r. The simplest examples are

φa(n,p) ∝ p−(γ+1), φa(n,p) ∝ δ(p− k).

Of course not every function φa is nonzero. It seems natural to put φa ≡ 0 for all
shortlived particles. Anyway all stable or quasistable particles for which φa ≡/ 0 will
be called “primaries”.

Preparatory to consider the 1D case, it is necessary to consider one more important
conception.
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1.1.5 Column depth

We define the column depth h(r, r′) between the two points r and r′ to be the mass of
matter inside the cylinder of unit cross section whose axis connects these points:

L

Ω

dM = h(r,r')dSx

y

z

r

r '

dS

Figure 15: On definition of column depth.

h (r, r′) = |r− r′|
∫ 1

0

ρ ((1− ξ)r + ξr′) dξ.

(33)
Thus, h(r, r′)dS is the mass of matter
inside a cylinder with cross section dS.

Equivalent definition:

h (r, r−ΩL) is the mass inside the cylinder
of unit cross section with the axis of length
L, directed from the point r opposite to
the unit vector Ω (or the particle velocity):

h (r, r−ΩL) =

∫ L

0

ρ (r−ΩL′) dL′. (34)
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Typically, the density of any astrophysical object with fuzzy boundary (like a gas or dust
cloud, atmospheres of stars and planets, etc.) exponentially decays to the periphery.
Therefore we will assume that for any r and Ω there exists the finite limita

lim
L→∞

h (r, r−ΩL) =

∫ ∞

0

ρ (r−ΩL) dL = hΩ(r). (35)

From Eqs. (34) and (35) it in particular follows the existence of the integral
∫ ∞

−∞
ρ (r−ΩL) dL = hΩ(r) + h−Ω(r)

which is the total depth along the Ω-directed chord through the point r.

One can prove the following useful identities:

h (r, r−ΩL) = hΩ(r)− hΩ (r−ΩL) , [∂/∂L+ Ω∇] f(r−ΩL) = 0.

[The later is valid for any differentiable function f(r).] These in particular yield

Ω∇h (r, r−ΩL) = ρ (r)− ρ (r−ΩL)

and thus
Ω∇hΩ(r) = ρ (r) . (36)

aIn fact the limit (35) exists for sure even if, at large distances r, the density decays faster than 1/r.
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Spherically symmetric medium

The most important case is a spherically symmetric medium,

ρ = ρ(r).

Clearly in such a medium the depth hΩ(r) is uniquely defined by only two parameters,
e.g., r and the zenith angle which we can define as

ϑ = − arccos(nΩ), where n = r/r.

One can prove that

hΩ(r) =






∫ ∞

r

ρ(R)RdR√
R2 − r2 sin2 ϑ

≡ h (r, ϑ) , if cosϑ ≥ 0,

2h (r sinϑ, π/2)− h (r, ϑ) , if cosϑ < 0.

(37)

Taking into account that

∂h (r, ϑ) /∂r ≤ 0,

it is easy to understand that the density distribution ρ = ρ(r) can be reconstructed
unambiguously from the known depth h = hΩ(r) and zenith angle ϑ. In other words,
one can reconstruct the function ρ = ρ(h, ϑ).

VN Sesto Fiorentino, April–May, 2005



1.1.6 Transport Equations (1D case)

At high energies relevant to CR physics, the three-dimensional effects of the cascade
process in matter (in particular, elastic scattering) may usually be disregarded or
considered as small corrections. The one-dimensional (1D) approximation [or,
equivalently, collimated beam approximation] is based on a sharp anisotropy of the
angular distribution of secondary particles formed in inelastic interactions of hadrons
and nuclei. This is justified at hadron momenta much greater than mean transverse
momentum, 〈p⊥〉 ≈ 0.4 GeV/c.

There are at least two more reasons in favor of applicability of the 1D approximation to
a large number of problems of CR physics.

✦ The energy spectrum of primary cosmic rays decreases fast with energy. As a
consequence, the predominant role in the development of the cascade is played by
the secondary particles with p‖ � p⊥. Just these particles carry an essential
fraction of energy of the projectile particle. In other words, the main contribution is
from the beam fragmentation range.

✦ The high degree isotropy of primary radiation provides a mechanism for partial
compensation of escape of secondary particles with p⊥ 6= 0 from the beam by the
particles coming from the nearby directions. The effectiveness of this compensatory
mechanism is very dependent of the geometry of the medium. In the atmosphere,
the range of applicability of the 1D approximation broadens considerably for the
circumvertical directions.
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Similar arguments are valid also for particle decay. Needless to say the range of
applicability of the 1D approximation expands with increase of energies.

We perform the 3D-to-1D transformation in several steps.

1. Reduction of differential cross sections and widths.

d 3σbA→aX

dEdΩ
7→ dσ̂bA→aX

dE
δ2 (ΩΩ0) .

Here δ2 (ΩΩ0) is the surface δ function and

dσ̂bA→aX

dE
= 2π

∫ p
max

⊥

0

θ
(
p‖

)
(
p⊥
p‖

)
fAba(p0,p)dp⊥. (38)

The factor p⊥/p‖ (the tangent of scattering angle) arises in the integrand due to the

Jacobian of mapping d 3p 7→ dEdΩ, while the step function θ
(
p‖

)
was introduced

artificially, in order to cut the contribution from the inclusive particles ejected to
backward semisphere in the lab frame.

Similar way we transform the differential widths for particle decays:

d 3Γb→aX

dEdΩ
7→ dΓ̂b→aX

dE
δ2 (ΩΩ0) ,

Below, for notational simplicity, we will drop the “hat” over the σs and Γs.
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2. Cancellating the elastic contributions.

Let us remind ourselves that, at high energies, one can neglect the energy loss in elastic
scattering that is

d 3σaA→aA

dEdΩ
=
d 2σaA→aA

dΩ
δ (E0 − E) .

Therefore, within the 1D approximation,

d 3σaA→aA

dEdΩ
7→ σel

aA(E)δ (E0 − E) δ2 (ΩΩ0)

and
∫
dX0

d 3σaA→aA

d 3p
Fa (p0, r, t) =

∫
dE0dΩ0

d 3σaA→aA

dEdΩ
Fa (p0, r, t)

7→ σel
aA(E)Fa(p, r, t).

This exactly cancels the elastic contribution from the absorption part of the collision
integral. As a result we must put fA,elaa = 0 in the TE and transform

σtot
aA(E) 7→ σin

aA(E) or, equivalently, λtot
a (E, r) 7→ λin

a (E, r)
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3. Transforming variables.

Below, we will limit ourselves with the stationary TE and with spherically symmetric
and chemically homogeneous media (like the Earth’s atmosphere). For such media we
had proved that

✦ the spacial variable r is involved into the macroscopic cross sections through the
density ρ (r) only;

✦ the function ρ (r) can uniquely be reconstructed from the known values of the
column depth h and zenith angle ϑ (which therefore may be taken as new
variables);

✦ the functions h and ρ (r) obey the relation Ω∇h(r) = ρ (r) [see Eq. (36)].

Besides, we will assume that the fluxes of primary cosmic rays are isotropic.

Finally, after taking account for all the above notes, we arrive at the following system of
1D transport equations:

[
∂

∂h
+

1

λin
a (E)

+
1

λd
a (E, h, ϑ)

]
Fa(E, h, ϑ) =

∑

b

∫
dE0

[W s
ba(E0, E)

λin
b (E0)

+
W d
ba(E0, E)

λd
b (E0, h, ϑ)

]
Fb(E0, h, ϑ) + Sa(E, h, ϑ). (39)
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Here W s,d
ba (E0, E) are the inclusive spectra defined like in the 3D case but through the

single-differential microscopic cross sections and decay widths and

λd
a(E, h, ϑ) =

ρ(h, ϑ)τap

ma

is the decay length of particle a. Remember that a and b are in general multi-indices:

a ≡ {a, χa} , b ≡ {a, χb} ,

and thus ∑

b

≡
∑

b

∑

χb

.

VN Sesto Fiorentino, April–May, 2005



1.1.7 Continuous energy loss

Here we discuss one more modification of the TE – customary in the CR transport
theory – based on the concept of continuous energy loss. In the general case, the
collision integral includes contributions from both nuclear and electromagnetic
interactions, in particular, the contribution caused by ionization and excitation of the
atoms of the matter background by the charged particles of the beam. The energy
scale of these interactions (some tens or hundreds of eVs) is very different from the
typical CR energies (some GeVs and much higher). It is therefore natural to consider
the energy loss by these interactions as continuous.

Formally, the necessary transformation of the TE can be obtained through an expansion
of the “quasielastic” contribution into the integrand of the collision integral in powers
of parameter ∆ = E0 −E which is assumed to be small comparing to E.

Let us rewrite the macroscopic quasielastic differential cross section in terms of
variables E and ∆ with the following notation:

W qel
aa (E0, E)/λin

a (E0) ≡ Σqel
a (E0, E0 − E) = Σqel

a (E + ∆,∆).

Then the corresponding contribution into the collision integral can be written as

Iqel
aa =

∫ ∆max

0

d∆
[
−Σqel

a (E,∆)Fa(E, h, ϑ) + Σqel
a (E + ∆,∆)Fa(E + ∆, h, ϑ)

]
.

Therefore
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Iqel
aa =

∫ ∆max

0

d∆

[
−Σqel

a (E,∆)Fa(E, h, ϑ) +
∞∑

k=0

∆k

k!

∂k

∂Ek
Σqel
a (E,∆)Fa(E, h, ϑ)

]

=

∞∑

k=1

1

k!

∂k

∂Ek

∫ ∆max

0

d∆∆kΣqel
a (E,∆)Fa(E, h, ϑ)

=
∞∑

k=1

1

k!

∂k

∂Ek
[
〈∆k〉a Fa(E, h, ϑ)

]
,

where we defined

〈∆k〉a =

∫ ∆max

0

d∆∆k Σqel
a (E,∆). (40)

The quantity

〈∆〉a ≡
〈
−dE
dh

〉

a

≡ βa(E) (41)

is known as the mean energy loss rate or stopping power; in the particular case of
ionization and atomic excitation, it is given by the famous Bethe-Bloch-Sternheimer
(BBS) formula.a

aH.A. Bethe, Ann. Phys. (Leipzig) 5 (1930) 325; F. Bloch, Z. Phys. 81 (1933) 363; R.M. Sternheimer,
M. J. Berger, and S.M. Seltzer, Atom. Data and Nucl. Data Tabl. 30 (1984) 261 [see also Phys. Rev. B
26, Nu. 11 (1982) 6067]. We will discuss this formula later on.
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The quantity

〈∆2〉a ≡ κa(E) (42)

is the mean squared energy loss rate, etc.

Finally we arrive at the following equation

[
∂

∂h
+

1

λin
a (E)

+
1

λd
a (E, h, ϑ)

]
Fa(E, h, ϑ)

=
∂

∂E
[βa(E)Fa(E, h, ϑ)] +

1

2

∂2

∂E2
[κa(E)Fa(E, h, ϑ)] + . . .

+
∑

b

∫
dE0

[W s
ba(E0, E)

λin
b (E0)

+
W d
ba(E0, E)

λd
b (E0, h, ϑ)

]
Fb(E0, h, ϑ) + Sa(E, h, ϑ), (43)

where it is assumed that the “quasielastic” contributions are already excluded from
λin
a (E) and W s

aa(E0, E).

Note:

In a sense, Eq. (43) is more general in comparison with Eq. (39) since one can
informally incorporate into the stopping power some incoherent effects, like the
so-called “density effect correction” which is usually included into the BBS formula.
In contrast, such effects cannot be incorporated directly into the collision integral.
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Figure 16: Stopping power and range of heavy particles vs p/mc in liquid hydrogen,
gaseous helium, carbon, aluminum, iron, tin, and lead. Radiative effects, relevant for
muons and pions, are not included. These become significant for muons in iron for
p/mc > 1000, and at lower momenta, for muons in higher-Z absorbers. [From the Review of

Particle Physics by K.Hagiwara et al., Phys. Rev. D 66 (2002) 010001.]
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Continuous loss approximation

Let us now consider the simplest particular case of Eq. (43) by neglecting the inelastic
nuclear interaction and particle’s decay, the continuous loss approximation (CLA):

∂

∂h
F (E, h) =

∂

∂E
[β(E)F (E, h)] . (44)

We can introduce the new variable R by dR = dE/β(E) or

R(E) =

∫ E

m

dE′

β(E′)
=

∫ Ekin

0

dE′
kin

β(E′
kin +m)

.

This is the mean range of a particle with initial energy E and mass m.

It is useful to change variable E to R(E) and define the function

F̃ (R(E), h) = β(E)F (E, h) =
dE

dR
F (E, h).

Taking into account Eq. (44) and obvious relations

∂

∂h
F̃ (R, h) = β(E)

∂

∂h
F (E, h),

∂

∂R
F̃ (R, h) = β(E)

∂

∂E
[β(E)F (E, h)] ,
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function F̃ (R, h) obeys the equation

∂

∂h
F̃ (R, h) =

∂

∂R
F̃ (R, h), (45)

which is equivalent to Eq. (44) but much simpler. It is obvious that the solution to
Eq. (45) is given by arbitrary function f(h+ R) whose explicit form can be fixed from
the boundary condition. Let, for example,

F (E, h = 0) = Cδ(E −E1),

where C is a constant (monochromatic primary spectrum). Then taking into account
the well-known rule

δ [f(x)] =
∑

k

δ(xk)

|f ′(xk)|
, f(xk) = 0, (46)

and definition of the function F̃ , we have

F̃ (R, 0) = (dE/dR)Cδ(E −E1) = Cδ(R−R1),

where R1 ≡ R(E1). Therefore

F̃ (R, h) = Cδ(h+ R−R1)
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and the solution to Eq. (44) is given by

F (E, h) =
Cδ [h+ R(E)−R(E1)]

β(E)
. (47)

Since this solution is proportional to the Green function of Eq. (44), we can
immediately find out the solution for the boundary condition of the form

F (E, h = 0) = F0(E),

where F0(E) is an arbitrary function. The solution is

F (E, h) =
1

β(E)

∫ ∞

E

dE′F0(E
′)δ [h+ R(E)−R(E′)] . (48)

Let ε = ε(E, h) be the energy lost by the particle after passage through the depth
h ≤ R(E). It can be found from the equation

R(E,E − ε) = h, (49)

with the function R defined by

R(E1, E2) = R(E1)−R(E2) =

∫ E1

E2

dE′

β(E′)
.
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Differentiating Eq. (49) over E and h then gives:

∂ε(E, h)

∂E
=
β (E − ε(E, h))

β(E)
+ 1,

∂ε(E, h)

∂h
= β (E − ε(E, h)) .

Therefore the function ε(E, h) obeys the differential equation

∂ε(E, h)

∂h
= β(E)

[
∂ε(E, h)

∂E
− 1

]

with the boundary condition ε(E, 0) = 0.

One more definition will be useful in prospect. Let us define the function E(E, h) as
(the only) root of the equation

R(E , E) = h. (50)

This function is a bit simpler than the ε(E, h) and has the obvious physical meaning: it
is the energy which a particle must have at the boundary of the medium in order to
reach depth h having energy E. This definition relates the two functions E and ε:

E(E, h)− ε (E(E, h), h) = E.

Differentiating Eq. (50) over E and h then gives:

∂E(E, h)
∂E

=
β (E(E, h))
β(E)

,
∂E(E, h)

∂h
= β (E(E, h)) .
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Therefore E(E, h) is the solution to the following equation

∂E(E, h)
∂h

= β(E)
∂E(E, h)
∂E

with the boundary condition E(E, 0) = E.

Now we return to the solution (48) of Eq. (44). By using the rule (46), we can write

δ [h+ R(E)−R(E′)] = δ [h−R(E,E′)] = β(E(E, h))δ [E′ − E(E, h)] .
Hence the integral in Eq. (48) can be solved and the solution can be rewritten in terms
of the function E(E, h):

F (E, h) =
β (E(E, h))
β(E)

F0 (E(E, h)) . (51)

Some useful relations

1. One can prove that for h′ ≤ h and E′ ≥ E the following useful identities take place:

E (E(E, h′), h− h′) = E (E′, h−R(E′, E)) = E(E, h),
∫ h

0

f (E(E, h− h′), h′) dh′ =

∫ E(E,h)

E

f (E′, h−R(E′, E))
dE′

β(E′)

[the later is valid for arbitrary integrable function f(E, h)].
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2. For small depths, h, the following expansion of E(E, h) in series in powers of h may
be of some utility:

E(E, h) = E +

∞∑

k=1

βk(E)
hk

k!
.

It it easy to prove that βk(E) = β(E)β′
k−1(E) for k > 0 with β0(E) ≡ E.

3. (A toy model.) Let us consider a simple but useful model in which the stopping
power is a linear function of energy, β = a+ bE. As it is seen from Fig. 17, such a
formula roughly represents the real energy dependence of the muon stopping power
for energies above some hundreds of MeV. In this model, one can find the exact
formulas for both ε(E, h) and E(E, h):

ε(E, h) =
(
E +

a

b

) (
1− e−bh

)
, E(E, h) = Eebh +

a

b

(
ebh − 1

)
.

From these equations it in particular follows that for small depths, bh� 1,

ε ≈ ah and E ≈ E + ah ≈ E + ε.

In the case of large depths, bh� 1,

ε ≈ E +
a

b
while E ≈

(
E +

a

b

)
ebh≫ ε.
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Fokker-Plank equation

Some more accurate approximation of Eq. (43) which accounts for fluctuations of
energy loss is given by

∂

∂h
F (E, h) =

∂

∂E
[β(E)F (E, h)] +

1

2

∂2

∂E2
[κ(E)F (E, h, ϑ)] . (52)

This is the so-called Fokker-Planck (FP) or diffusion equation. In the general case, this
equation cannot be solved analytically.

Let us consider here (without derivation) the simplest particular case of Eq. (43), when

β(E) = β(E1) = const and κ(E) = κ(E1) = const.

If the boundary condition is given by

F (E, h = 0) = C δ (E −E1),

the exact solution is

F (E, h) =
C√
2πκh

exp

[
− (E1 − E − βh)2

2κh

]
. (53)

This is the (shifted) Gaussian distribution.

VN Sesto Fiorentino, April–May, 2005



In fact this result is only valid for nonrelativistic particles when a

h� ∆max

κ(E1)
, E1 −m� m,

where ∆max is the maximum possible energy loss of the particle with initial energy E1.

Later on, we will consider some applications of the FP equation for particle acceleration
by inhomogeneities of cosmic magnetic fields when its applicability is justified by the
astrophysical conditions.

aP.V. Vavilov, JETP 32 (1957) 920–923.
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1.1.8 The atmosphere of the Earth

Figure 18: Schematic thermal structure of
the Earth’s atmosphere.

The thermal structure of the at-
mosphere is subject to seasonal varia-
tions with the magnitude dependent of
the geographical location.
However, at the altitudes of effective
generation of EAS (troposphere and
stratosphere) these variations are rela-
tively small and faintly affect the fluxes
of secondary CR. The chemical com-
position of the air also remains virtu-
ally unchanged from sea level up to 85–
90 km. Sometimes this part of the at-
mosphere is called the “homosphere”.
It includes the troposphere, stratosphere
and mesosphere. The upper regions of
the atmosphere – the thermosphere and
the exosphere – are then referred to as
the “heterosphere”. They are not very
important for CR physics.
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Structure of the atmosphere

The atmosphere is a very thin (relative
to the earth’s radius) layer of gases:
✦ ∼ 90% within 10 km of surface,
✦ ∼ 99% within 20 km of surface,
✦ ∼ 99.9% within 30 km of surface.

Horizontal motion much greater than
vertical motion.

1. Troposphere:a

lowest atmospheric layer, zone of intense ver-
tical mixing and turbulence. Most weather
and climate phenomena occur in this layer.
The troposphere is heated by
✦ the ground surface through conduction,
✦ convection (sensible heat transfer),
✦ evaporation (latent heat transfer),
✦ direct absorption of shortwave and long-

wave radiation.

aFrom Greek tropos - “turn”.
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On the average, the top of the troposphere (in-
cluding the tropopause) is about 18 km above
see level at the equator and 7 − 9 km over the
poles (Fig. 19).
Depth of the troposphere depends on
✦ latitude (deepest at the equator, shallowest

at the poles),
✦ season (deepest in summer, thinnest in win-

ter),
✦ changes with the passage of warm and cold

air masses.
Temperature decreases with altitude at an aver-
age rate of about 6.4◦ C per km – this is known
as normal (environmental) lapse rate.
2. Stratosphere:a

layered, stratified zone of atmosphere without
much vertical mixing (18 − 48 km). Contains
ozone layer. Heat in the stratopause comes from
UV absorption by ozone.

aFrom Latin stratum – “a cover”.

Figure 19: Atmospheric environ-
mental lapse rates.

VN Sesto Fiorentino, April–May, 2005



3. Mesosphere:a

layer in between stratopause and thermosphere
(50 − 80 km). The mesopause, the top of the
mesosphere, is the coldest portion of the at-
mosphere. The mesosphere may contain noctilu-
cent clouds that form from ice nucliating around
cosmic (meteor) dust and glowing at night.
4. Thermosphere:
layer of increasing temperature (in terms of mole-
cular vibration). Heat comes from reactions of
UV rays with atoms and molecules. (80 to
480 km). Thickness changes in response to so-
lar radiation (thicker during periods of active
sunspots). Thermopause at boundary with ex-
osphere.
5. Exosphere:
outer layer, which in turn, gradually thins out
into interplanetary space.
The last 3 layers are not very interesting for CR
physics.

aMeso – “middle”.

Figure 20: Atmospheric pressure
variations caused by altitude.
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Chemical composition of the atmosphere.

In the homosphere, the air is an atomic mixture of (mostly) nitrogen, oxygen and
argon. The concentration of other elements is about 10−4.

Table 3: The main components of the homosphere.

Atom Molecule Atomic Concentration σin
pA(10− 100 GeV)

weight (%) (barn)

Nitrogen N2 14.00674 0.7847 0.265
Oxygen O2, H2O 15.99940 0.2105 0.292
Argon Ar 39.94800 0.0047 0.566
Carbon in CO2 12.01100 0.0001 0.231

The average chemical composition of the heterosphere is given by

Mean molecular weight 〈µ〉 ' 28.966
Mean atomic weight 〈A〉 ' 14.555 (' 0.502〈µ〉)
Mean atomic number 〈Z〉 ' 7.265 (' 0.499〈A〉)

In the heterosphere, the gases are unevenly mixed and sorted by gravity by atomic
weight; the 〈µ〉, 〈A〉 and 〈Z〉 diminish upward progressively with altitude (Fig. 21, left).

VN Sesto Fiorentino, April–May, 2005



16

20

24

28

32

0.1 1 10 100

<
µ

>
 (

g
/m

o
l)

28.966 g/mol

H
e
te

ro
s
p
h
e
re

Homosphere

H (km)

10

10

10

0.1 1 10 100
H (km)

3

0

-3

r 
(g

/c
m

 )3

US standard atmosphere
Linsley's model
Isothermal atmosphere

Figure 21: The 1976 US standard atmosphere (USSA) mean molecular weight (left panel)
and density of the air for 3 models of the atmosphere right panel) vs altitude. The dashed
line on the left is to guide the eye. [The data are borrowed from S. J. Sciutto, “AIRES. A system for air

shower simulations. User’s guide and reference manual.”, astro–ph/9911331. The full description of the USSA can be

found in the CRC Handbook of Chemistry and Physics, 83rd edition, edited by D.R. Lide et al., CRC Press LLC, 2003.]

In dry air (20◦ C, 1 atm.),

λtot
p ' λtot

n ' 62 g/cm2 and λin
p ' λin

n ' 90 g/cm2,

within the energy range from about 10 GeV to about 100 GeV.
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Column depth in the spherical atmosphere.

Here we adopt the model of static, spher-
ically symmetric and chemically homoge-
neous atmosphere. Let ρ(H) be the den-
sity of air at the altitude H above s.l., R⊕ –
the mean radius of the Earth, ϑ – the zenith
angle, and

H∗ = (R⊕ +H) sinϑ−R⊕

– the “target altitude” (the minimum dis-
tance apart the particle trajectory and the
Earth’s surface).
Then we have to take into account the gen-
eral formula (34) [or Eq. (37) for the col-
umn depth valid for any spherically symmet-
ric medium], the obvious relations

dL = − dH ′

cosϑ′
,

R⊕ +H ′

R⊕ +H
=

sinϑ

sinϑ′
,

and the condition H∗ ≥ 0 (for H∗ < 0 the
particle crosses the Earth’s surface).

H H'

ϑ

ϑ'

R

H*ϑ

ϑ'

L

Figure 22: Definition of variables to
derive the depth h = h(H,ϑ) for the
spherical atmosphere. L is the semi-
infinite length of the particle trajectory.
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As a result we arrive at the equation

h =





ha (H,ϑ) , for ϑ ≤ π

2
,

2ha

(
H∗,

π

2

)
− ha (H,ϑ) , for ϑlim ≥ ϑ >

π

2
,

(54)

where

ha(H,ϑ) =

∫ ∞

H

ρ(H ′)dH ′

cosϑ′
=

∫ ∞

H

ρ(H ′)dH ′
√

1− sin2 ϑ

(
R⊕ +H

R⊕ +H ′

)2
, (55)

ϑlim = π − arcsin

(
R⊕

R⊕ +H

)
, (56)

and, that is a onefold task to provea,

ha

(
H∗,

π

2

)
=

∫ ∞

H∗

ρ(H ′)dH ′
√

1− sin2 ϑ

(
R⊕ +H

R⊕ +H ′

)2
. (57)

Clearly, at ϑ > ϑlim the particle trajectories cross the Earth’s surface. If you are
interested in just this case (when, for example, you are looking for the air showers

aYes, the integrand in Eq. (57) is the same as one in the right of Eq. (55).
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induced by neutrinos from the lower semisphere) then you have to reconstruct Eq. (54)
by taking into account the corresponding contribution from the particle path inside the
Earth.

For small zenith angles and for H � R⊕ (the later is always true) Eq. (54) becomes

h(H,ϑ) ' h(H, 0)

cosϑ
, h(H, 0) =

∫ ∞

H

ρ(H ′)dH ′. (58)

This is the so-called “plane Earth” or “plane atmosphere” approximation. In practice,
this approximation works well for ϑ . 70◦.

In the general case, the integral (55) cannot be solved analytically (even within the
simplest models of the atmosphere) and the H and ϑ dependencies of h cannot be
factorized.

Evidently the vertical depth, h(H, 0), is nothing else than the atmospheric pressure

(expressed in g/cm2) at the altitude H. It would be practical to commit to memory (or

to paper) that

1 atmosphere = 1013.2001 mb = 1033.18 g/cm2

1 millibar = 100 pascal = 1.0197 g/cm2
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Isothermal atmosphere

This simple model follows from hydrostatic balance after neglecting the temperature
variations with altitude. This approximation is not quantitatively satisfactory but
reasonable since T varies by no more than about 30%. In the isothermal atmosphere,
both the density and pressure decrease upward exponentially with altitude:

ρ(H) = ρ0 exp

(
− H

H0

)
, h(H, 0) = ρ0H0 exp

(
− H

H0

)
. (59)

Here

H0 = RT/(µg) is the scale height,
R = 8.31441 J/(mol K) is the universal gas constant,
g = 9.80665 m/s2 is the gravitational acceleration,
T is the effective temperature of the air (assumed to be a constant) and
ρ0 = ρ(0) is the density of the air at s.l.

Choosing T = 288 K through the homosphere and ρ0 = 1.225 kg/m3 then givesa

H0 ' 8.43 km, h0 = ρ0H0 ' 1032.6 g/cm2.

Evidently h0 is the total vertical depth of the atmosphere (or total pressure) according
to the isothermal atmosphere model.

aFor the troposphere, if we choose a representative value T = 250 K, then we get H0 = 7.31 km.
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After the obvious change of variables in Eq. (55), the function ha becomes

ha(H,ϑ) = H0ρ(H) secϑ∗

(
R⊕ +H

H0
, ϑ

)
, (60)

where the “effective zenith angle”, ϑ∗ = ϑ∗(ξ, ϑ), is defined by

secϑ∗(ξ, ϑ) = ξ

∫ ∞

0

e−ξx(1 + x)dx√
(1 + x)2 − sin2 ϑ

. (61)

The plane Earth approximation is then ϑ∗ = ϑ [valid for H � R⊕ and ϑ < (70− 75)◦].

For zenith angles close to 90◦, the integral (61) has to be evaluated numerically while
for not-too-large angles one can use its asymptotic expansion

secϑ∗(ξ, ϑ) = secϑ

[
1− 1

ξ

(
sin2 ϑ

cos2 ϑ

)
+

3

ξ2

(
sin2 ϑ

cos4 ϑ

)
+ . . .

]
(62)

over the small parameterb

1

ξ
=

H0

(R⊕ +H)
≤ H0

R⊕
' 1.32× 10−3.

This expansion remains valid for sec2 ϑ� ξ that is for (π/2− ϑ)2 � 1/ξ.

bHere we adopt R⊕ = 6371 km.
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Mathematical excursuses:

1. In the special case ϑ = π/2 the expansion is quite different from Eq. (62):

sec ϑ∗

�

ξ,
π

2

�

=

r

πξ

2

�

1 +
3

8ξ
− 15

256ξ2
+ . . .

�
.

This is in fact the asymptotics of the exact (and sheerly useless) formula

sec ϑ∗

�

ξ,
π

2

�

= ξ exp(ξ)K1(ξ), ξ =
R⊕ + H

H0
.

where K1 is the modified Bessel function.

2. To estimate the effective angle ϑ∗ as a function of variables ϑ and h for not-too-large
zenith angles, one can apply the perturbation theory to Eq. (59) and (62):

✦ 0th approximation: ϑ
(0)
∗ = ϑ, =⇒ H(0) = H0 ln

�
ρ0H0

h cos ϑ

�
,

✦ 1st approximation:
sec ϑ

(1)
∗

sec ϑ
= 1 − H0 tg2 ϑ

R⊕ + H(0)
= 1 − tg2 ϑ

�
R⊕

H0
+ ln

�

ρ0H0

h cos ϑ

��−1

,

=⇒ H(1) = H(0) + H0 ln

�
1 − H0 tg2 ϑ

R⊕ + H(0)

�

,

✦ 2nd approximation:
sec ϑ

(2)
∗

sec ϑ
= 1 − H0 tg2 ϑ

R⊕ + H(1)
+

3

cos2 ϑ

�

H0 tg ϑ

R⊕ + H(0)

�2

,

et cetera. The second approximation formula actually works well for ϑ . 80◦.
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Figure 23: Vertical atmospheric depth, h(H, 0), vs vertical altitude over sea level, H,
according to the Linsley’s model.
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1.2 Z factor method for 1D TE

Basically, the idea of this simple but rather universal method consists in reducing the
single integro-differential transport equation to a nonlinear integral equation for a
so-called Z factor, a dimensionless quantity that is directly related to the effective
attenuation range. After that, the equation for the equation for the Z factor can be
solved by a suitable iteration or perturbation technique. By invoking some natural
physical assumptions, the method can be modified to render it appropriate for solving
the 1D and 3D transport problems for high-energy nucleons, nuclei, mesons, muons and
neutrinos in the atmosphere and in dense media. Within this method, even the lowest
approximation usually has a rather high accuracy to be used in practice.

The most serious limitation of the method is that it cannot be straightforwardly (that is
without some simplifications or tricks) extended to an unsplittable system of transport
equations. This is conditioned by the fact that the general set of coupled linear
differential equations of first order cannot be solved analytically.

Below we will consider both 1D and 3D theory as well as the practical implementation
of the 1D theory to several problems of CR physics. But let us start with a simple
nuclear cascade model put forward more than half a century ago.
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1.2.1 Zatsepin’s model for CR protons

In this, probably very first, hadronic cascade model it is assumed that

(1) primary particles are protons with a power-law energy spectrum,

Fp(E, h = 0) ≡ F 0
p (E) = N0

(
E1

E

)γ+1

(N0, E1, γ = const);

(2) total inelastic cross sections for pA interaction, σin
pA, is energy independent and

therefore λin
p = const;

(3) inclusive spectrum of secondary protons generated in pA collisions is a function of
the only scaling variable x = E/E0, the ratio of the final to initial proton energies,

W s
pp(E0, E) ≡ 1

σin
pA

[
dσpA→pX(E0, E)

dE

]
=
wpp(x)

E

[the hypothesis on the scaling in HE hadronic interactions; put forward by Heitler
and Janossy (1949) anticipating Feynman (1969)];

(4) generation of protons by other particles, proton energy loss, geomagnetic effects,
etc. are negligible.

In fact all these assumptions are violated in a varying degree but the model is useful for
the first insight into the problem.
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The TE now reads
(
∂

∂h
+

1

λin
p

)
Fp(E, h) =

1

λin
p

∫ ∞

E

dE0

E
wpp

(
E

E0

)
Fp(E0, h) (63a)

or, after the natural change of variable of integration,
(
∂

∂h
+

1

λin
p

)
Fp(E, h) =

1

λin
p

∫ 1

0

dx

x2
wpp(x)Fp

(
E

x
, h

)
. (63b)

This equation can easily be solved through the expansion of Fp(E, h) into a series in
powers of the ratio h/λin

p (the so-called “series of successive generations”),

Fp(E, h) = F 0
p (E)

∞∑

k=0

(−1)k

k!

(
h

λin
p

)k
gk(E). (64)

Substituting Eq. (64) into Eq. (63b) yields the recursive sequence of equations

gk(E) = gk−1(E)−
∫ 1

0

dxxγ−1wpp(x)gk−1 (E/x) , (65)

with g0(E) = 1. Here we took into account that

F 0
p (E/x) = xγ+1F 0

p (E).
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From Eqs. (65), one can check by induction that the coefficient functions gk(E) are in
fact constants defined by

gk = (1− Zpp)k ,
where

Zpp =

∫ 1

0

dxxγ−1wpp(x) (66)

is the primary spectrum weighted moment of the normalized inclusive cross section
wpp(x). Sometimes it is called “partial moment” or simply “Z factor”.

Let us now introduce

Λp =
λin
p

1− Zpp
,

the attenuation (or absorption) length for CR protons. Then the classic Zatsepin’s
formula for the proton differential energy spectrum at depth h reads

Fp(E, h) = F 0
p (E) exp

(
− h

Λp

)
.

The main lessons from this simple mathematical exercise are that, within the
assumptions of the Zatsepin model,

✦ the energy distribution of the CR proton flux is independent of the atmospheric
depth (as well as of the altitude and zenith angle), while
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✦ the absolute intensity decreases exponentially with depth, with e-folding factor Λp
(attenuation length) greater than the λin

p (interaction length).

Let us also note that for γ > 1 the contribution to the partial moment (66) from small
x (that is in the “central” or “pionization” region) vanishes. For the real, rather steep
primary spectrum with γ ≈ 1.7, the secondary proton flux depends on the behavior of
the inclusive cross section only in the forward fragmentation region. It is why the
assumption (3) satisfactory works in practice, because the Feynman scaling is more
nearly valid in the fragmentational regions that elsewhere.
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1.2.2 Simple generalization and adjustment

Superposition model

Today it is well known that proton are not the only primary particles. Therefore an
important ingredient of any CR cascade calculations is a model for nucleus-nucleus
collisions.

Overwhelming majority of the current calculations is based on the simplest superposition
model (SM) in which the collision of a nucleus with atomic weight A and total energy
EA against a target nucleus is treated as the superposition of A independent collisions
of nucleons with the target nucleus, each nucleon having an energy E = EA/A.

This approximation is based on the hypothesis that, when the energy per nucleon of the
projectile is much larger than the single nucleon binding energy, the A nucleons will
interact incoherently.

Another reason in favor of applicability of SM is as follows. Since the interaction length
of a nucleus decreases fast with increasing atomic weight A, one can assume that the
A > 1 nuclei of primary cosmic rays fragment completely in upper layers of the
atmosphere; therefore, the integrated spectrum of nuclei with energies in excess of EA
can be approximated by an equivalent summary spectrum of Z protons and A− Z
neutrons with average energies E ∼ EA/A.

Generally speaking, this approach is rather far from reality and its range of applicability
is not apparent. A some more accurate treatment of nucleus-nucleus collisions becomes
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especially important at low energies and for the regions or directions with high
geomagnetic cutoffs.

Indeed, the magnetic rigidity of a proton bounded in a nucleus is a factor A/Z ≈ 2
larger than that for a free proton of the same energy and therefore (considering the
steepness of the primary spectrum) mainly nuclei are responsible for production of the
low-energy secondaries. However, at high energies, the applicability of the SM is
eventually justified by the smallness of the relevant contribution to the total flux of
secondary nucleons.

Anyway, by applying the SM in this stage and using the simplest assumption that

〈A/Z〉 = 2,

we also have to apply the following boundary conditions

Fp(E, h = 0) ≡ F eff
p (E) = F 0

p (E) +
1

2

∑

A>4

F 0
A(E), (67a)

Fn(E, h = 0) ≡ F eff
n (E) =

1

2

∑

A>4

F 0
A(E), (67b)

where F 0
p (E) and F 0

A(E) are the differential energy spectra of primary protons and
nuclei with atomic weight A, respectively, and E is the total energy per nucleon.
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Isotopic symmetry

Still neglecting the electromagnetic interactions, we can apply the approximate isotopic
symmetry of strong interactions. For the case of NA interactions it provides us with
the following relations

σin
pA(E) = σin

nA(E), =⇒ λin
p (E) = λin

n(E), (68a)

W s
pp(E0, E) =W s

nn(E0, E), (68b)

W s
np(E0, E) =W s

pn(E0, E). (68c)

A note on kinematics

In fact for the real calculations of the differential cross sections

dσNA→N ′X(E0, E)

dE
= 2π

∫ p
max

⊥

0

p⊥
p‖

(
E
d3σANN ′

d3p

)
dp⊥,

we need of two more simplifications. Namely, we will disregard the cumulative
kinematical region, p‖ < 0, which does not play a significant role in development of the
nuclear cascade, and we will use the so-called “NN kinematics” instead of the exact
kinematics for the NA collisions. Within this approximation, the quantity p

max

⊥ is
determined by the condition
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E∗ ≤ E∗
max =

s− smin
X +m2

N

2
√
s

,

where E∗ is the energy of the inclusive nucleon in the c.m. frame of colliding nucleons,
mN is the nucleon mass (mp = mn within the isotopic symmetry approximation) and
smin
X is the minimum value of the square of the invariant mass of the X system.

Clearly, smin
X = m2

N and one can prove that

p
max

⊥ =

√
2mNE(E −mN )(1− x)

E −mNx
.

In the particular case of (quasi)elastic scattering, NA→ N ′A, variables E0, E and p⊥
are related through the following formula

E0 = E

[
1−

p
2

⊥
2E(E −mN )

][
1−

p
2

⊥
2mN (E −mN )

]−1

.

Since ∂E0/∂p
2

⊥ > 0, the minimum initial energy necessary to produce a nucleon of

energy E is Emin
0 = E0(E, p⊥ = 0) = E. The maximum initial energy for the inclusive

reaction is unlimited. This yields the limits for variable x:

0 ≤ x ≤ 1

which were used in the above formulas.
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Generalized Zatsepin’s model for CR nucleons

The set of assumptions is given by

F eff
p (E) ∝ F eff

n (E) ∝ (E1/E)
γ+1

, (69a)

λin
p = λin

n ≡ λin
N = const, (69b)

W s
pp =W s

nn = wpp(x)/E, (69c)

W s
np =W s

pn = wnp(x)/E. (69d)

The corresponding TE therefore are
(
∂

∂h
+

1

λin
N

)
Fp(E, h) =

1

λin
N

∫ 1

0

dx

x2

[
wpp(x)Fp

(
E

x
, h

)
+ wnp(x)Fn

(
E

x
, h

)]
,

(
∂

∂h
+

1

λin
N

)
Fn(E, h) =

1

λin
N

∫ 1

0

dx

x2

[
wpp(x)Fn

(
E

x
, h

)
+ wnp(x)Fp

(
E

x
, h

)]
.

By using the notation
Fp(E, h)± Fn(E, h) ≡ F±(E, h)

and
wpp(x)± wnp(x) ≡ w±(x),

the set of coupled TE is reduced to the pair of separate equations for functions
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F±(E, h), (
∂

∂h
+

1

λin
N

)
F±(E, h) =

1

λin
N

∫ 1

0

dx

x2
w±(x)F±

(
E

x
, h

)
,

whose solution is obvious:

F±(E, h) = F±(E, 0) exp

(
− h

Λ±

)
,

where

Λ± =
λin
N

1− Z±
and Z± =

∫ 1

0

dxxγ−1w±(x).

Finally, the proton and neutron fluxes are given by

Fp(E, h) =
1

2
[F+(E, h) + F−(E, h)] ,

Fn(E, h) =
1

2
[F+(E, h)− F−(E, h)] ,

and the neutron-to-proton ratio is

r(E, h) =
Fn(E, h)

Fp(E, h)
=

1− δ0 exp(−h/Λr)
1 + δ0 exp(−h/Λr)

,
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where

δ0 =
F eff
p (E)− F eff

n (E)

F eff
p (E) + F eff

n (E)
=

F 0
p (E)∑
F 0
A(E)

= const

is the relative proton excess at the top of the atmosphere [the sum in the denominator
is over all primary nuclei]a and

1

Λr
=

1

Λ−
− 1

Λ+
=
Z+ − Z−
λin
N

=
2

λin
N

∫ 1

0

dxxγ−1wnp(x).

Thus, the numerical value of the ratio r(E, h) in the atmosphere is only sensitive to the
value of the inclusive cross section for the process pA→ nX (or nA→ pX). It
increases exponentially, approaching one at large slant depths, h� Λr as
1− 2δ0 exp(−h/Λr). So, deep in the atmosphere, the nucleons “forget” the primary
neutron-to-proton ratio.

Of course, these conclusions have to be corrected for many effects neglected owing to
the model assumptions (69). Below, we will discuss these corrections particularly within
a rather general approach.

aThe excess is energy independent owing to assumption (69a). For the real primary spectrum, it is a
slowly varying function of energy.
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1.2.3 Z factor method for homogeneous TE with a smooth initial spectrum

Let us start with the single TE
[
∂

∂h
+

1

λ(E)

]
F (E, h) =

1

λ(E)

∫ 1

0

dx

x2
W (x,E)F

(
E

x
, h

)
. (70)

with the boundary condition F (E, h = 0) = F0(E), where λ(E), W (x,E) are now any
functions and F0(E) is a sufficiently smooth and nonvanishing function for any finite
value of energy E. Now we define

F (E, h) = F0(E) exp

[
− h

Λ(E, h)

]
, (71a)

Λ(E, h) =
λ(E)

1− Z(E, h)
. (71b)

In just the same way as the effective attenuation length, Λ(E, h), the Z factor contains
full information about the kinetics of the particles in a medium. From the TE (70) and
from the definitions (71) it immediately follows that 0 < Z(E, h) < 1.

Substituting (70) into the TE (70), we find that the Z factor obeys the equation
(
∂

∂h
+

1

h

)
Z(E, h) =

1

h

∫ 1

0

η(x,E)W (x,E) exp

[
h

Λ(E, h)
− h

Λ(E/x, h)

]
dx, (72)
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where

η(x,E) =
F0(E/x)

x2F0(E)
. (73)

Since the actual primary spectrum decreases much faster than E2 over the entire
energy range of our interest, we have

0 < η(x,E) < 1 and η(0, E) = 0.

In particular, for a purely power-law boundary spectrum, F0(E) ∝ E−(γ+1), we have

η(x,E) = xγ−1.

Integrating Eq. (70) by parts, we find that the Z factor obeys the integral equation

Z(E, h) =
1

h

∫ h

0

dh′
∫ 1

0

η(x,E)W (x,E) exp [−h′D(x,E, h′)] dx, (74)

where

D(x,E, h) =
1− Z(E/x, h)

λ(E/x)
− 1− Z(E, h)

λ(E)
.

Although this equation is nonlinear, it is much more convenient to solve it by an
iterative process than the original TE (70). The rate at which the iterative process
converges depends on the choice of the zero-order approximation. The simplest choice is

Z(0)(E, h) = 0
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in which case

D(0)(x,E, h) ≡ D(x,E) =
1

λ(E/x)
− 1

λ(E)
(75)

is independent of h and, in the first approximation, we have

Z(1)(E, h) =

∫ 1

0

η(x,E)W (x,E)

{
1− exp [−hD(x,E)]

hD(x,E)

}
dx. (76)

Let us first address the case of small depths. Considering that, in the integrand on the
right-hand side of Eq. (76), the small-x region is cut off by the η(x,E), we can formally
expand the braced expression in powers of h. This yields

Z(1)(E, h) =

∫ 1

0

η(x,E)W (x,E)

[
1− 1

2
hD(x,E) + . . .

]
dx. (77)

The leading term of the expansion in Eq. (77)

Z(E, 0) =

∫ 1

0

η(x,E)W (x,E)dx

represents an obvious generalization of the Zatsepin formula.

Let us now consider the opposite limiting case of large h. Taking into account the
known growth of σin

pA(E) with energy and using Eqs. (75) and (77), we can easily show
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that

lim
h→∞

Z(0)(E, h) = 0.

Under quite general assumptions, it can also be proven that

lim
h→∞

Z(E, h) = 0.

Therefore, the effective attenuation length Λ(E, h) coincides with the interaction
length, λ(E) at sufficiently large depths. We will not present here the proof of this
statement because it is of purely academic interest for the several reasons (disregard of
3D effects, of energy losses, and of the contribution of nucleons from meson-nucleus
interactions).

What only counts is that, with increasing depth, Z decreases, which means that the
relative contribution of regeneration processes is reduced. As a consequence, the energy
spectrum becomes steeper with increasing depth.

Thus, even the first-approximation expression (76) for the Z factor has a correct
asymptotic behavior both at small and at large values of h. With the aid of expression
(77), one can reproduce approximate analytic results of many studies that took into
account (within one model or another) the growth of the total inelastic cross section
with energy.
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A numerical example:

A simple model for the energy dependence of the interaction length is given by

1

λ(E)
=

1

λ0

[
1 + α ln

(
E

E∗

)]
,

with constant λ0, α and E∗ [numerically, for nucleons, λ0 ≈ 90 g/cm2, α ≈ 0.07 and
E∗ is of the order of 100 to 1000 GeV]. Then, for a power-law primary spectrum,

Z(1)(E, h) =
λ0

αh

∫ 1

0

xγ−1W (x,E)

[
1− xαh/λ0

ln(1/x)

]
dx

=

∫ 1

0

xγ−1W (x,E)

(
1 +

αh

2λ0
lnx+ . . .

)
dx.

By taking xeff ≈ 0.1, one can estimate that the α correction becomes comparable with
the Zatsepin’s approximation at h ∼ λ0/α ∼ 103 g/cm2 that is just for the vertical
depth of the atmosphere. We will see below that the growth of the inelastic cross
section essentially affects the nucleon flux even at h = (400− 500) g/cm2.

Problem: Study the second order approximation for the above example

and for the model of the form λ(E) = λ0 (E/E∗)
−α

.
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Obviously, the recursion relations for the nth approximation (n > 0) are given by

Z(n)(E, h) =
1

h

∫ h

0

dh′
∫ 1

0

η(x,E)W (x,E) exp
[
−h′D(n−1)(x,E, h′)

]
dx, (78a)

D(n)(x,E, h) =
1− Z(n)(E/x, h)

λ(E/x)
− 1− Z(n)(E, h)

λ(E)
. (78b)

A numerical analysis reveals that, even in the case of the simplest choice for the
zero-order approximation, Z(0) = 0, the rate of convergence of the iterative algorithm
specified by Eqs. (78) is quite sufficient for practical uses. However, it can be improved
(on average or locally that is for some preset intervals of E and h values) by choosing
the zero-order approximation more appropriately. To illustrate, we note that, in view of
the inequalities

0 < Z(E, h) ≤ Z(E, 0),

it is reasonable to set

Z(0)(E, h) =
1

2
Z(E, 0).

Such a choice considerably improves convergence in the mean.

Now we can apply the method to some concrete problems. In the next Section we
consider the nucleon propagation through the atmosphere and in Sect. 3.1 – the
high-energy neutrino propagation through dense media.
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1.2.4 Application to CR nucleon transport

The basic TE are
[
∂

∂h
+

1

λin
N (E)

]
Fp(E, h) =

1

λin
N (E)

∫ 1

0

dx

x2

[
wpp(x,E)Fp

(
E

x
, h

)
+ wnp(x,E)Fn

(
E

x
, h

)]
,

[
∂

∂h
+

1

λin
N (E)

]
Fn(E, h) =

1

λin
N (E)

∫ 1

0

dx

x2

[
wpp(x,E)Fn

(
E

x
, h

)
+ wnp(x,E)Fp

(
E

x
, h

)]
.

Here we will impose no special model restrictions to the energy dependencies of λin
N (E),

wpp(x,E), wnp(x,E) and the primary spectra Fp(E, 0) and Fn(E, 0). Exactly the
same way as in the Zatsepin’s model, this system of equations can be uncoupled by
using the isotopic symmetry. With the notation

wpp(x,E)± wnp(x,E) ≡ w±(x,E)
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it is reduced to the pair of separate equations
[
∂

∂h
+

1

λin
N (E)

]
F±(E, h) =

1

λin
N (E)

∫ 1

0

dx

x2
w±(x,E)F±

(
E

x
, h

)

for the two functions

F±(E, h) = Fp(E, h)± Fn(E, h).

Therefore, the proton and neutron fluxes are given by

Fp(E, h) =
1

2
[F+(E, h) + F−(E, h)] ,

Fn(E, h) =
1

2
[F+(E, h)− F−(E, h)] ,

where

F±(E, h) = F±(E, 0) exp

[
− h

Λ±(E, h)

]
, (79a)

Λ±(E, h) =
λin
N (E)

1− Z±(E, h)
, (79b)

and the Z factors, Z±(E, h), have to be calculated by the iteration algorithm described
in Sect. 1.2.3 .
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Models for primary CR spectrum and composition

We consider two simple models: by Nikolsky et al. (NSU)a and Erlykin et al. (EKS)b

F (> E) = F0

( E
E1

)−γ∑

A

BA

( E
E100

)κA
(

1 +
δAE
AE1

)−κ
. (80)

Here E is the energy of the primary nucleus, E1 = 1 GeV, E100 = 100 GeV, κ = 0.4;

for NSU :

8>>>><>>>>:

F0 = 1.16 cm−2s−1ster−1, γ = 1.62,

δ1 = 3 × 10−7, δA≥4 = 6 × 10−6,

κA = 0

B1 = 0.40, B4 = 0.21, B15 = 0.14, B26 = 0.13, B51 = 0.12;

for EKS :

8>>>><>>>>:

F0 = 2.02 cm−2s−1ster−1, γ = 1.70,

δ1 = 6 × 10−7 δA≥4 = 10−5,

κ1 = κ4 = 0, κ15 = κ27 = κ56 = 0.04

B1 = 0.41, B4 = 0.22, B15 = 0.13, B27 = 0.14, B56 = 0.10;

aS. I. Nikolsky, I. N. Stamenov, and S. Z. Ushev, “Composition of cosmic radiation at energies approx-
imately 1015 eV and above,” Zh. Eksp. Teor. Fiz. 87 (1984) 18–36 [Sov. Phys. JETP 60 (1984) 10–21];

bA.D. Erlykin, N. P. Krutikova, and Y.M. Shabelski, “Passage of cosmic rays through the atmosphere
in the quark-gluon string model,” Yad. Fiz. 45 (1987) 1075–1084 [Sov. J. Nucl. Phys. 45 (1987) 668].
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From Eq. (80), by applying the superposition mode and taking into account that

F (E) = −∂F (> E)/∂E,

we can derive the equivalent differential energy spectra of protons and neutrons at the
top of the atmosphere:

F 0
p (E) = F1(E) +

1

2

∑

A≥4

FA(E), F 0
n(E) =

1

2

∑

A≥4

FA(E),

where

FA(E) =
(γ − κA)F0BA
Aγ−1−κAE1

(
E

E1

)−(γ+1)(
E

E100

)κA
(

1 +
δAE

E1

)−κ

×
[
1 +

κδAE

(γ − κA)E1

(
1 +

δAE

E1

)−1
]
, for A = 1, 4, . . .

The NSU and EKS models do not provide a quantitative description of the primary
spectrum at energies above 108 − 109 GeV/nucleon. However, the contribution from
the very high-energy tail to the total number of events that are of interest for
experiments aimed at measuring individual components of secondary cosmic rays
(including experiments devoted to deep-underwater detection of leptons) is insignificant.
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A model for differential cross sections

In the numerical calculations, we will use a semiempirical model for inclusive nucleon
collisions of nucleons with nuclei, proposed by Kimel’ and Mokhova (let us call it the
“KM model” from here).

In essence the KM model is a comprehensive parametrization of the relevant accelerator
data. It is valid for projectile nucleon momenta p0 & 4 GeV/c and for the secondary
nucleon momenta p & 450 MeV/c. The KM formulas for the invariant inclusive cross
section are

fApp = a1σ
in
pAx

′
F

[
(1− xF )

−p
2

⊥
/k2

1−1
+ b1 (1− xF )

p
2

⊥
/k2

2

]
e
−p

2

⊥
/k2

3 , (81a)

fAnp = a2σ
in
pAx0

[(
1 +

b2
1 + p

+
b3

1 + p2

)
+ b4|p∗‖ |

]
e
−p

2

⊥
/k2

4 , (81b)

Here all energies (momenta) are expressed in GeV (GeV/c);

x′F =
2E∗
√
s
, xF =

2p
∗
‖√
s
, x0 =

E∗

p0
;

aL. R. Kimel’ and N.V. Mokhov, Izv. Vuz. Fiz. 10 (1974) 17; in Problems of Dosimetry and Radiation
Protection, 14 (1975) 41. For the most recent version and for more details, see A.N.Kalinovsky,
N. V.Mokhov and Yu. P.Nikitin, Transport of high-energy particles through matter (“Energoatomizdat”,
Moscow, 1985). [Note: all these references are in Russian.]
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E∗ and p
∗
‖ are the total energy and longitudinal momentum in the c.m. frame of

colliding nucleons; a1,2 are the normalization factors dependent of the choice for the
σin
pA model, while the parameters k1,2,3,4 and b1,2,3,4 are some constants weakly

dependent of the atomic weight of the target nucleus (see Tables 4 and 5).

Remember that kinematics of the KM model is the NN kinematics (see Sect. 1.2.2 ).

Table 4: Parameters ki [in GeV/c] for Be and “Air nucleus”.

Target k1 k2 k3 k4

Be 1.270 0.690 0.707 0.483

Air 1.270 0.690 0.707 0.488

Table 5: Parameters bi [dimensionless] for Be and “Air nucleus”.

Target b1 b2 b3 b4
Be 45.0 0.200 0.300 0.378

Air 45.0 0.320 0.490 0.509

Some outputs of the KM model are shown in Figs. 24, 25 and 26.
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Figure 24: Normalized differential cross sections calculated for the reactions p+Air →
p+X and p+Air → n+X using the KM model. The numbers near the curves indicate
the kinetic energies of the secondary nucleon (in GeV).
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Figure 25: Invariant inclusive cross sections calculated for the reactions p+C → p+X
(solid curves) and p+p→ p+X (dashed curves) using the KM model at p0 = 100 GeV/c
and the p⊥ values of 0.3 GeV/c (a) and 0.5 GeV/c (b). The experimental data points
are from D.S. Barton et al., Phys. Rev. D 27, (1983) 2580.
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Figure 26: Inclusive differential cross section dσpp→pX/dxF vs xF calculated by using
the KM model at

√
s = 62 GeV. The data of two CERN ISR experiments are borrowed

from M. Basile et al. (ISR Collaboration), Nuovo Cim. 41A (1984) 298.
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From Fig. 24, we can see that, for Ekin & 100 GeV, the differential cross sections come
to be virtually independent of energy everywhere, with the exception of a narrow
diffraction region for the reaction pA→ pX, where the cross section grows with energy.
In other words, the KM model leads to Feynman scaling at high energies everywhere
but the region around x ∼ 1.

Because of a descending character of the primary spectrum, the contribution from this
region to the Z factors is far from negligible. In order to avoid an unphysically fast
growth of dσpA→pX/dx in the diffraction region at ultra-high energies, we assume that,
for E0 > 106 GeV, the cross section becomes scaling-invariant over the entire kinematic
region. However, it is rather difficult to validate this assumption because there are no
reliable experimental data above 106 GeV.

As can be seen from the Figs. 25 and 26, the KM model describes accelerator data
fairly well. It should also be noted that, over a broad kinematic region, the predictions
of this model for the cross sections describing pp and pA interactions are numerically
close to the results obtained on the basis of the two-component dual parton model as
implemented within a recent version of the DPMJET II.5 code [see e.g. J. Ranft,
hep–ph/9911213 and hep–ph/9911232].
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Figure 27: Compilation of p-air production cross section and several model predictions.
[From R. Engel, astro-ph/0504358.]
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√
s with the accelerator data and

CR data from Akeno Observatory and Fly’s Eye Collaboration. Solid line corresponds
to QCD-inspired model by Arkhipov. Upper and lower dashed lines show error band
corresponding to one deviation in a fitting parameter which controls the high-energy
asymptotic in the total cross section. [From A.A. Arkhipov, hep-ph/0108118.]

VN Sesto Fiorentino, April–May, 2005



An empirical (“KASCADE”) fit.

Available accelerator and cosmic-ray data on the total inelastic cross section σin
pA(E)

are described reasonably well by the empirical dependence

σin
pA(E) = σ0 − θ(E −E∗)

[
σ1 ln

(
E

E1

)
− σ2 ln2

(
E

E1

)]
, (82)

Figure 29: KASCADE fit of the total inelastic pA
cross section. The dashed lines indicate the 1σ
variations of the fit parameters.

where θ(. . .) is the conventional
Heaviside step function and
E1 = 1 GeV. Using the results
by the KASCADE Collaboration
[H.H. Mielke et al., J. Phys. G
20 (1994) 637], we can fix the
values of the parameters for the air
target nucleus as

E∗ = 45.4 GeV,

σ0 = (290± 5) mb,

σ1 = (8.7± 0.5) mb,

σ2 = (1.14± 0.05) mb.

VN Sesto Fiorentino, April–May, 2005



Notes on numerical implementation of the method

In order to perform a multidimensional numerical integration, which is necessary for an
implementation of the method, use was made here of the adaptive cubature algorithm
by Genz and Malik [A. C. Genz and A. A.Malik, J. Comput. Appl. Math. 6 (1980) 295].
A fast algorithm relying on standard local B splines of second degree on an equidistant
mesh was employed to approximate and interpolate intermediate functions of one and
two variables.

At all values of E and h, the iterative process converges fast: five to six iterations are
sufficient for calculating the Z factors to a precision better than 10−3 or 10−4. At
moderate depths, h . 300 g/cm2, even the first approximation ensures a precision of a
few percent, which is sufficient for many applications of the theory, in particular, for
calculating the fluxes of atmospheric muons and neutrinos.

Some numerical results and comments

Figures 30, 31 and 32, illustrate the energy dependencies of the Z factors calculated
within the two models of the primary spectrum (NSU and EKS) at seven values of h. It
is natural that the Z factors computed with the harder primary spectrum of the NSU
model prove to be systematically greater at all values of E and h. Although the
relevant relative difference does not exceed some 4% and decreases with energy, it is
significant at large slant depths since nucleon fluxes depend exponentially on the
combinations hZ±(E, h)/λN(E).
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Figure 30: Z+ vs energy, computed with the EKS (solid lines) and NSU (dashed lines)
models of the primary cosmic-ray spectrum for seven oblique atmospheric depths. Z+

decreases with increasing depth.
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models of the primary cosmic-ray spectrum for seven oblique atmospheric depths. Z+
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Both Z factors decrease with in-
creasing depth. The observed
strong dependence of Z±(E, h)
on E and h is caused by the fol-
lowing 3 effects:

✦ non-power-law dependence
of the primary spectrum,

✦ energy dependence of the
total inelastic cross section,
and

✦ Feynman scaling violation.

Local minima that appear in the
region E . E∗ = 45 GeV are
due to the beginning of growth
of the inelastic cross section.
At not overly large depths, the
shape of the energy dependen-
cies of both Z+ and Z− visibly
changes at E & 106 GeV.
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Figure 32: The same as in Figs. 30 and 31 but
plotted together.
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The latter effect is associated with the mentioned artificially introduced freezing of the
growth of the quasielastic peak in the “diagonal” reactions pA→ pX and nA→ nX
(the growth of dσpA→pX/dx in the diffraction region, predicted by the KM model,
seems to be too fast at ultra-high energies).

Finally, the vanishing of the Z factors at E = 3× 1010 GeV is due to the assumed GZK
cutoff of the primary spectrum.

Comparison with experiment

The calculated differential energy spectra of nucleons at various atmospheric depths are
displayed in Figs. 33 – 35, along with data from many experiments.a Figures 33 and 35
also show the results of some Monte Carlo calculation for sea level proton and neutron
fluxes. Note that the ata on the nucleon spectra for h ≤ 530 g/cm2 (Fig. 33) were
obtained from an analysis of photon spectra in extensive air showers and are therefore
very model-dependent. Nonetheless, the calculations relying on either model of the
primary spectrum are by and large consistent with this data sample.

aN. M. Kocharyan, G. S. Saakyan, and Z. A. Kirakosyan, Zh. Eksp. Teor. Fiz. 35 (1958) 1335 [Sov.
Phys. JETP 8 (1958) 933]; G. Brooke and A. W. Wolfendale, Proc. Phys. Soc. London 84 (1964) 843;
I. S. Diggory, J. R. Hook, I. A. Jenkins, and K. E. Turver, J. Phys. A 7 (1974) 741; M. Lumme et
al., J. Phys. G: Nucl. Phys. 10 (1984) 683. F. Ashton and R. B. Coats, J. Phys. A 1 (1968) 169;
F. Ashton, J. King, E. A. Mamidzhanyan, and N. I. Smith, Izv. Akad. Nauk SSSR, Ser. Fiz. 33 (1969)
1557; F. Ashton, N. I. Smith, J. King, and E. A. Mamidzhanian, Acta Phys. Acad. Sci. Hung. 29 (1970)
25; H. Kornmayer, H. H. Mielke, J. Engler, and J. Knapp, J. Phys. G 21 (1995) 439.
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Figure 33: Differential energy spectra of
nucleons at three atmospheric depths.
Points represent the experimental data.
Curves depict the results of the calcula-
tions employing the NSU and EKS mod-
els of the primary spectrum.

The most pronounced discrepancies have
been observed in a comparison with the re-
sults by Apanasenko and Shcherbakova. The
estimate of the nucleon energy in in this ex-
periment was done on the basis of the for-
mula EN ≈ 3Eγ which is too crude and
leads to a systematic underestimation of nu-
cleon fluxes. Direct measurements of the
proton energy spectra in mountains and at
sea level are very fragmentary (see Fig. 34),
and we can here speak only about qualita-
tive agreement with the results of the calcu-
lations. Estimates reveala that the account
for nucleon production in meson-nucleus in-
teractions can increase the vertical flux of
nucleons at sea level by no more than 10%
at E = 1 TeV and by no more than 15% at
E = 10 TeV.

aSee, e.g., A. N. Vall, V. A. Naumov, and
S. I. Sinegovsky, Yad. Fiz. 44 (1986) 1240 [Sov. J.
Nucl. Phys. 44 (1986) 806].
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Figure 34: Differential energy spec-
tra of protons and neutrons at sea
level. Points represent the experimen-
tal data and Monte Carlo calculation
by Lumme et al. Z factor calculations
employ the NSU, EKS and FNV mod-
els of the primary spectrum.

The mentioned increase due to nucleon pro-
duction in πA collisions is much smaller, in ei-
ther case, than uncertainties in the NA cross
sections and in the spectrum of primary cos-
mic rays. Experimental data on the neutron
component at sea level are vaster, but they
are contradictory.
The results of the Z factor calculations are
in good agreement with data from recent
measurements at a prototype of the KAS-
CADE facility in Karlsruhe [H. Kornmayer et
al. (1995)]. As can be seen from Figs. 33
and 35, the KASCADE data at E . 1 TeV
are described much better by the calculation
with the EKS primary spectrum than by the
calculation with the NSU primary spectrum.
It can be hoped that further experiments to
study the nucleonic component of secondary
cosmic rays will allow a more detailed test of
the method and of the models for the primary
spectrum and for nucleonnucleus interactions.
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Figure 35: Differential energy spectrum of
neutrons at sea level (see text).

Figure 35 shows the same data as the
bottom panel of Fig. 34 but in compar-
ison with two earlier calculations by Jabs
(1972)a and Liland (1987).b Both cal-
culations do not distinguish between pro-
tons and neutrons (therefore the sea-level
fluxes of protons and neutrons are equal).

aA. Jabs, Nuovo Cim. A12 (1972) 565-578.
bA. Liland, in Proc. of the 20th Interna-

tional. Cosmic Ray Conf., Moscow, August
2–15, 1987, edited by V. A. Kozyarivsky et al.
(“Nauka”, Moscow, 1987), Vol. 6, pp. 295-297.
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Figure 36: Atmospheric growth
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Figure 36 shows the atmospheric growth of the pro-
tons for the momentum bins listed in the legend
together with the scale factors (in parentheses).
The data (still preliminary) of the balloon-borne
experiment CAPRICE94a are compared with the
calculations performed for the same bins by using
the Z factor method and CORT code. In both cal-
culations the FNV model of the primary spectrum
is used. The nominal geomagnetic cutoff rigidity
in the experiment was about 0.5 GV; hence the ge-
omagnetic effect can be neglected. As one can ex-
pect, the proton fluxes calculated by the Z factor
method systematically exceed those are obtained
with CORT code, which takes into account the en-
ergy loss effect. The discrepancy is larger at large
depths but vanishes everywhere with increasing the
proton momenta. Minor differences between the
two calculations at small depths are in part due
to different treatments of nucleus-nucleus interac-
tions.

aT. Francke et al., in Proc. of the 26th ICRC, Salt Lake
City, Utah, August 17–25, Vol. 2 (1999) 80.
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1.2.5 Z factor method for homogeneous TE with a monochromatic initial
spectrum

Here we consider the homogeneous TE (70) for the initial “spectrum” of the form
δ(E −E0) with the parameter E0. We will study how this monochromatic spectrum
transforms at depth h in a medium. Let us denote the transformed spectrum by
G(E0;E, h). This function must satisfy equation

[
∂

∂h
+

1

λ(E)

]
G(E0;E, h) =

1

λ(E)

∫ 1

0

W (x,E)G

(
E0;

E

x
, h

)
dx

x2
. (83)

and simple considerations suggest the following ansatz:

G(E0;E, h) =
[
δ(E − E0) + θ(E0 − E)E−1ψ(E0;E, h)

]
e−h/λ(E0), (84)

where the term with δ function describes absorption of initial (“parent”) particles of
energy E0 and the next term – the creation and propagation of secondary particles with
energy E < E0. Initial condition for the function ψ(E0;E, h) is obvious:

ψ(E0;E, 0) = 0.

Substituting Eq. (84) into Eq. (83) yields equation for ψ(E0;E, h):
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∂ψ(E0;E, h)

∂h
=

1

λ(E)

[∫ 1

x0

W (x,E)ψ (E0;E/x, h)
dx

x
+W (x0, E)

]

+D(x0, E)ψ (E0;E, h) , (85)

where x0 ≡ E/E0 < 1 and the function D(x,E) is the same as it was defined in
Sect. 1.2.3 ,

D(x0, E) =
1

λ(E/x0)
− 1

λ(E)
=

1

λ(E0)
− 1

λ(E)
.

Let us seek the solution to Eq. (85) in the form

ψ(E0;E, h) = W (x0, E)

∫ h

0

exp

[∫ h

h′

dh′′

L(E0;E, h′′)

]
dh′

λ(E)
, (86)

1

L(E0;E, h)
=

1

λ(E0)
− 1−Z(E0;E, h)

λ(E)
, (87)

with Z(E0;E, h) an unknown positive definite function. After direct substitution of
Eqs. (86) and (87) into Eq. (85) we have

Z(E0;E, h)ψ(E0;E, h) =

∫ 1

x0

W (x,E)ψ

(
E0;

E

x
, h

)
dx

x
. (88)
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Clearly,

Z(E0;E, h)→ 0 and ψ(E0;E, h)→ hW (1, E0)/λ(E0)

as E → E0 for any h.

The new Z factor, Z(E0;E, h), can be found from Eqs. (86)–(88) by an iteration
algorithm similar to the algorithm described in Sect. 1.2.3 . Putting Z = 0 as a zero
approximation we have

ψ(0)(E0;E, h) =
W (x0, E)

λ(E)D(x0, E)

[
ehD(x0,E) − 1

]
(89)

and subsequently

Z(1)(E0;E, h) =

∫ 1

x0

W (x,E)

[
ψ(0) (E0;E/x, h)

ψ(0) (E0;E, h)

]
dx

x
,

ψ(1)(E0;E, h) = W (x0, E)

∫ h

0

exp

[∫ h

h′

dh′′

L(1)(E0;E, h′′)

]
dh′

λ(E)
.

The next steps of the algorithm are quite obvious; so there is no need to write out the
corresponding cumbersome formulas here.
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Let us briefly sketch the leading approximations for ψ and Z, since they contain the
main features of the exact solution.

✦ As is seen from Eq. (89), for every E < E0 there is a depth,

h∗(E0, E) =
1

D(x0, E)
ln

λ(E)

λ(E0)
=

[
1

λ(E0)
− 1

λ(E)

]−1

ln
λ(E)

λ(E0)
,

at which the flux of particles of energy E reaches the maximum. Function
h∗(E0, E) increases when E decreases and tends to the minimum, λ(E0), as
E → E0.

Example 1 (nucleons):

Using the simple logarithmic model

1

λ(E)
=

1

λ0

[
1 + α ln

(
E

E∗

)]
,

and assuming that α ln (E0/E∗)� 1 we can estimate

h∗(E0, E) = λ0

[
1− α

2
ln

(
EE0

E2
∗

)
+ . . .

]
.
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Example 2 (neutrinos):

At E � 1 GeV

σtot
νN (E) ∝ Eκ

with the function κ = κ(E) vary-
ing between ∼ 1 at (comparatively)
low energies and ∼ 0.4 at super-
high energies (see Fig. 37). Let
E0 � E � 106 GeV. Than κ ≈
const ≈ 0.4, λ(E0) � λ(E) and
therefore

h∗(E0, E) ≈ 0.4λ(E0) ln

(
E0

E

)
.

Substituting, e.g., E0 = 1011 GeV
and E = 107 GeV we can estimate

h∗(E0, E) ≈ 3.7λ(E0).

As is seen, h∗ is very sensitive to
the shape of the total cross section.
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Figure 37: CC and NC total cross sections for
νµN and νµN interactions at high energies.
The calculations are done with the CTEQ4-DIS
model for the next-to-leading order PDFs in the
DIS factorization scheme.
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✦ At any finite depth, secondary particles “remember” about their “parents” (the E0

dependence does not disappear with increasing depth). Due to the nontrivial shape
of the regeneration function W , the spectrum of secondary particles is rather
complex and transforms drastically with depth.

✦ For h� λ(E0), the function ψ(0) behaves as hW (x0, E)/λ(E). Therefore

Z(1)(E0;E, 0) =

∫ 1

x0

W (x,E)

[
W (x0/x,E/x)λ(E)

W (x0, E)λ(E/x)

]
dx

x
.

✦ Taking into account the experimental fact that λ(E) > λ(E0) for E < E0 (valid
for all known hadrons and (anti)neutrinos at high energies), we get the asymptotic
behavior of Z(1) for h→∞:

Z(1)(E0;E, h) ∼
∫ 1

x0

W (x,E)

[
W (x0/x,E/x)

W (x0, E)

] [
λ(E)− λ(E0)

λ(E/x)− λ(E0)

]

× exp [−hD(x,E)]
dx

x
→ 0.
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With the function ψ(E0;E, h) in hand, we can obtain the solution to the TE (70) for
any initial spectrum F0(E). Indeed, multiplying Eq. (84) by F0(E0) and integrating
over E0, we have

F (E, h) =

∫ ∞

0

F0(E0)G(E0;E, h)dE0

= F0(E)e−h/λ(E) +

∫ ∞

E

F0(E0)ψ(E0;E, h)e
−h/λ(E0)

dE0

E
. (90)

The first term on the right side of Eq. (90) describes particle absorption and the
second one – the particle regeneration due to energy loss through the reactions
aA→ aX. Eq. (90) is in fact equivalent to the solution (71a),

F (E, h) = F0(E) exp

[
− h

Λ(E, h)

]
= F0(E) exp

{
−h [1− Z(E, h)]

λ(E)

}
,

but, when the function ψ(E0;E, h) is known, Eq. (90) becomes much more convenient
for calculations because ψ is independent from the initial spectrum.

On the other hand, Eq. (90) has one evident technical drawback. In order to use it, one
must calculate 3-dimensional arrays that are hard to interpolate due to the very strong
dependence of ψ and Z from their arguments. From this point of view, the algorithm
described in Sect. 1.2.3 is of course simpler.
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Due to the mentioned equivalence, we can get a useful representation for the Z factor
in terms of the function ψ:

Z(E, h) =
λ(E)

h
ln

[
1 +

∫ 1

0

η(x,E)ψ(E/x;E, h)e−hD(x,E)dx

]
. (91)

It should be noted that the Z factor calculated in the n-th approximation using the
algorithm of Sect. 1.2.3 agrees only numerically rather than analytically with that
calculated from Eq. (91), employing the iteration algorithm for ψ. In particular,
substituting ψ = ψ(0) into Eq. (91) yields

Z(E, h) =
λ(E)

h
ln

[
1 +

hZ(1)(E, h)

λ(E)

]
≡ Z(I)(E, h),

where Z(1)(E, h) is defined by Eq. (76). Thus,

Z(I)(E, h) = Z(1)(E, h)

[
1− hZ(1)(E, h)

2λ(E)
+ . . .

]
≤ Z(1)(E, h).

However, the Z(I)(E, h) can be approximated by Z(1)(E, h) with a very good accuracy
because hZ(1)(E, h)/λ(E)� 1 in most cases of interest for CR physics.

Generally, the opposite situation is also possible: if h� λ(E)/Z(1)(E, h) (unrealistic
case) then Z(I)(E, h) becomes much larger than Z(1)(E, h).
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1.2.6 Z factor method for TE with a source function

In this section, we briefly discuss how to take into account contributions from
production of particles through reactions bA→ aX (b 6= a). The problem reduces to
the TE of the form
[
∂

∂h
+

1

L(E, h, ϑ)

]
F (E, h, ϑ) =

1

λ(E)

∫ 1

0

W (x,E)F

(
E

x
, h, ϑ

)
dx

x2
+ S(E, h, ϑ).

(92)
Here

1

L(E, h, ϑ)
=

1

λin(E)
+

1

λd (E, h, ϑ)
,

S(E, h, ϑ) =
∑

b6=a

∫
dE0

[W s
ba(E0, E)

λin
b (E0)

+
W d
ba(E0, E)

λd
b (E0, h, ϑ)

]
Fb(E0, h, ϑ)

and the index a is dropped for notational simplicity. The boundary condition is obvious:

F (E, 0, ϑ) = 0.

In line with our general approach, we will seek the solution to Eq. (92) in the form

F (E, h, ϑ) =

∫ h

0

S(E, h′, ϑ) exp

[
−
∫ h

h′

dh′′

L(E, h′′, ϑ)

]
dh′, (93a)
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1

L(E, h, ϑ)
=

1

L(E, h, ϑ)
− Z(E, h, ϑ)

λ(E)
, (93b)

with Z(E, h, ϑ) a positive definite (unknown) function satisfying the equation

Z(E, h, ϑ)F (E, h, ϑ) =

∫ 1

0

W (x,E)F

(
E

x
, h, ϑ

)
dx

x2
. (94a)

Needless to say, this new Z factor is completely different from the factors discussed in
previous sections. Let us now define the function

η(x,E, h, ϑ) =
F (E/x, h, ϑ)

x2F (E, h, ϑ)
,

which allows us to rewrite Eq. (94a) as

Z(E, h, ϑ) =

∫ 1

0

η(x,E, h, ϑ)W (x,E)dx. (94b)

It is easy to verify that F (E, h, ϑ) ∼ hS(E, 0, ϑ) as h→ 0. Therefore,

η(x,E, 0, ϑ) =
S(E/x, 0, ϑ)

x2S(E, 0, ϑ)
.

This function is assumed to be finite for any values of x, E and ϑ.
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The iteration algorithm of solving Eqs. (93a) and (94b) is quite obvious:

Z(0) def
= 0, ⇒ F (0)(E, h, ϑ) =

∫ h

0

S(E, h′, ϑ) exp

[
−
∫ h

h′

dh′′

L(E, h′′, ϑ)

]
dh′,

η(0)(x,E, h, ϑ) = x−2F (0)(E/x, h, ϑ)/F (0)(E, h, ϑ);

⇓

Z(1)(E, h, ϑ) =

∫ 1

0

η(0)(y, E, h, ϑ)W (x,E)dx,

1

L(1)(E, h, ϑ)
=

1

L(E, h, ϑ)
− Z

(1)(E, h, ϑ)

λ(E)
;

F (1)(E, h, ϑ) =

∫ h

0

S(E, h′, ϑ) exp

[
−
∫ h

h′

dh′′

L(1)(E, h′′, ϑ)

]
dh′,

etc.
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A technical note:

The formal question about the finiteness of the involved integrals over x is closely
related to the very difficult problem of the asymptotic behavior for the total and
inclusive cross sections as E →∞. This problem is beyond the scope of our study, but
we can avoid it introducing a cutoff xcut = E/Ecut as the lower limit of the integrals:

Z(E, h, ϑ) =

∫ 1

0

η(x,E, h, ϑ)W (x,E)dx 7−→
∫ 1

xcut

η(x,E, h, ϑ)W (x,E)dx, etc.

The reason for such a cutoff is in the fact that any physical source function, S(E, h, ϑ),
must exponentially vanish as E →∞. The concrete value of the cutoff energy, Ecut, is
determined by the energetics of the astrophysical CR sources and by interactions of the
extragalactic CR with the cosmic backgrounds, in particular, with the relict microwave
radiation (the GZK cutoff). Clearly, we must choose Ecut to be much larger than the
kinematic GZK cutoff EGZK.

The specific behavior of S(E, h, ϑ) in the vicinity of the kinematic GZK cutoff is not
important if E � EGZK and hence one can apply any one with an appropriate shape,
for example, it is technically useful to assume that all primary fluxes (and thus the
source function) are proportional to the following well-behaved “soft cutoff function”

φ(xcut) =
[
1 + tan

(πxcut

2

)]−1

.
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1.2.7 Taking account for continuous energy loss

According to Sect. 1.1.7 , the TE for a homogeneous medium may be written in the
form
[
∂

∂h
+

1

L(E, h, ϑ)

]
F (E, h, ϑ) =

∂

∂E
[β(E)F (E, h, ϑ)]

+
1

λ(E)

∫ 1

0

W (x,E)F

(
E

x
, h, ϑ

)
dx

x2
+ S(E, h, ϑ), (95)

where the notation is the same as in Eq. (92) and β(E) is the stopping power. The
standard boundary condition is

F (E, 0, ϑ) = F0(E), (96)

where F0(E) is a smooth and nonvanishing function. We can decompose the solution to

F (E, h, ϑ) = F 0(E, h, ϑ) + F 1(E, h, ϑ),

where F 0(E, h, ϑ) is the solution to Eq. (95) with S ≡ 0 and the boundary condition
(96), and F 1(E, h, ϑ) is the solution to the full nonhomogeneous equation (95) with
zero boundary condition. Next, we define the two Z factors, Z0,1(E, h, ϑ), by

Zκ(E, h, ϑ)Fκ(E, h, ϑ) =

∫ 1

0

W (x,E)Fκ
(
E

x
, h, ϑ

)
dx

x2
, κ = 0, 1. (97)
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Then, after some mathematical manipulations (similar that were used in Sect. 1.1.7 )
with taking into account the properties of the function E(E, h) described in the same
Section,a one can write out the exact expressions for the functions Fκ(E, h, ϑ):

F 0(E, h, ϑ) = exp

[
−
∫ h

0

dh′

L0 (E(E, h− h′), h′, ϑ)

]
EE(E, h)F0 (E(E, h)) , (98a)

F 1(E, h, ϑ) =

∫ h

0

dh′ exp

[
−
∫ h

h′

dh′′

L1 (E(E, h− h′′), h′′, ϑ)

]
EE(E, h− h′)

× S (E(E, h− h′), h′, ϑ) , (98b)

where
1

Lκ(E, h, ϑ)
=

1

L(E, h, ϑ)
− Z

κ(E, h, ϑ)

λ(E)

and

EE(E, h) ≡ ∂E(E, h)
∂E

=
β (E(E, h))
β(E)

.

aMemento: E(E, h) − E is the energy lost by a particle due only to quasielastic interactions, after
crossing a medium with the column depth h.
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Sometimes, it may be beneficial to rewrite the integrals involved into Eqs. (98) in terms
of the function R(E1, E2) (see Sect. 1.1.7 ).a After the trivial change of variables in
integration,

h′ 7→ E′ = E(E, h′), dE′ =
∂E(E, h′)

∂h′
dh′ = β (E(E, h′)) dh′ = β (E′) dh′,

etc., we have

F 0(E, h, ϑ) = exp

[
−
∫ E(E,h)

E

dE′

β(E′)L0 (E′, h−R(E′, E), ϑ)

]
EE(E, h)F0 (E(E, h)) ,

(99a)

F 1(E, h, ϑ) =

∫ E(E,h)

E

dE′

β(E′)
exp

[
−
∫ E′

E

dE′′

β(E′′)L1 (E′′, h−R(E′′, E), ϑ)

]

S (E′, h−R(E′, E), ϑ) . (99b)

aMemento: R(E1, E2) is the range of a particle (undergoing only quasielastic interactions) with initial
energy E1 and final energy E2 that is

R(E1, E2) = R(E1) − R(E2) =

Z E1

E2

dE

β(E)
.

By definition, R(E(E, h), E) = h.
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In spite of the obvious complications, the formalism for computing the Z factors
remains essentially the same, as that for the more simple cases discussed in the previous
sections. The expressions become more cumbersome, but their numerical evaluation
with a computer is not very difficult and the only new element consists in the necessity
of a numerical solving the transcendent equation

∫ E(E,h)

E

dE′

β(E′)
= h

or the equivalent differential equation

∂E(E, h)
∂h

= β(E)
∂E(E, h)
∂E

, E(E, 0) = E.

The first problem is, as a rule, much easier.

Note.

In a heterogeneous medium, the stopping power is a function of three variables,
β = β(E, h, ϑ). The ϑ dependence is extrinsic. But owing to the h dependence the
method under consideration fails. The reason is obvious: the linear, first order partial
differential equation of general form cannot be solved analytically and without this step
we cannot apply the iteration algorithm for evaluating the Z factors. Indeed, a
numerical solving the partial differential equation is by no means the simpler task than
a direct numerical solving the original integro-differential TE.
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However, there are several particular cases for which the Z factor method remains
useful even for heterogeneous media.

One important example is a medium with layered structure (like the Earth). If the
chemical composition is constant inside each layer, the problem reduces to the
considered case. This also provides the idea of the method for an approximate solution
to the TE in weakly inhomogeneous media. Another, a bit artificial example is a
medium for which the depth and energy dependencies of the stopping power can be
factorized:

β = β̃(E, ϑ)f(h, ϑ).

For this case, the problem can be reduced to the considered one through the following
change of variable:

h 7→ h̃ =

∫ h

0

f(h′, ϑ)dh′.

Problems: 1. Prove the above statement.
2. Investigate the particular case of the solution (98) or (99)

with F0(E) ∝ δ(E − E0) and S(E, h, ϑ) ∝ δ(E −E0)δ(h).
3. Prove that the solution (98) or (99) adds up to ones

obtained in Sect. 1.2.3 and Sect. 1.2.6 as β → 0.
4. Write out the Zκ(E, h, ϑ) in the 1st approximation.
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1.3 Z factor method for 3D TE

Here, we consider a generalization of the Z factor method to the generic 3D
nonstationary TE

[
v−1∂t + Ω∇+ Σ(p, r)

]
F (p, r, t) =

∫
dX0 Σs(p0,p, r)F (p0, r, t) + S(p, r, t).

(100)
Here Σ(p, r) includes contributions from both absorption and decay,

Σ(p, r) = Σtot(E, r) +
m

pτ
= Σtot(E, r) +

√
1− v2

vτ
,

while possible contributions from decay of particles of other types are included into the
source function S(p, r, t) [defined in the whole phase space Rr ⊗ Rp for 0 ≤ t < t1].
The kinematic restrictions are supposed to be included into the differential macroscopic
cross section Σs(p0,p, r). Note that for essentially relativistic energies, when one can
neglect the bonding strengths, Fermi momenta, etc., the condition |p0| ≥ |p| is fulfilled.

We impose the following initial condition

F (p, r, 0) = φ(p, r),

with the function φ defined in the whole phase space. With such a choice, there is no
need in some boundary conditions.
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For the sake of simplicity, we will assume that the functions S(p, r, t) and φ(p, r), are
both sufficiently smooth and nonvanishing for any finite values of r = |r| and p = |p|.
While such a statement of problem is quite typical in astrophysics and CR physics, it
seems to be a bit artificial from a standpoint of the general transport theory. However,
imposition of some more complicated conditions to the topology of the supports of
functions S(p, r, t) and φ(p, r) would result in substantial loss of simplicity of the
formalism for the nonstationary case.

Let us start with the standard decomposition

F (p, r, t) = F 0(p, r, t) + F 1(p, r, t),

where F 0(p, r, t) is the solution to Eq. (100) with no source function in the right
(homogeneous TE) which obeys the initial condition

F 0(p, r, 0) = φ(p, r),

while F 1(p, r, t) is the solution to the nonhomogeneous equation (100) but with the
zero initial condition,

F 1(p, r, 0) = 0.
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1.3.1 Effective macroscopic attenuation cross sections

Let us now define the two functions Σκ(p, r, t), κ = 0, 1, through the equations

Σκ(p, r, t)Fκ(p, r, t) =

∫
dX0 Σs(p0,p, r)F (p0, r, t). (101)

From Eqs. (101) and (100) we arrive at the following two independent and formally
differential equations:

[
v−1∂t + Ω∇+ Σκeff (p, r, t)

]
Fκ(p, r, t) = δκ1S(p, r, t), (102)

which involve the two functions

Σκeff(p, r, t) = Σ(p, r)− Σκ(p, r, t). (103)

It is natural to interpret these (unknown as yet) functions as effective macroscopic
attenuation cross sections. Besides the properly absorption term, Σtot, and the decay
term,

√
1− v2/(vτ), they involve the time-dependent contributions from the

regeneration processes, Σκ. Since Σκ > 0 in the domain of their definition, these
contributions may be considered as “negative absorption”.
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Clearly, the functions

Λκeff(p, r, t) =
ρ(r)

Σκ(p, r, t)
(104)

may be explained as the effective attenuation lengths.

Our task now is

✦ to handle analytically the fluxes Fκ(p, r, t) through the effective macroscopic
attenuation cross sections, Σκeff(p, r, t),

✦ to derive the explicit (integral) equations for Σκeff(p, r, t), and then

✦ to solve these equations one way or the other, in order to find the Σκeff(p, r, t).

This piece of work is not very hard but the intermediate formulas are pretty cumbrous.

By changing variable

t 7→ t′ = t, r 7→ r′ = r− vt,

and taking into account the identity

(∂t + v∇) f(r, t) = ∂t′f(r′ + vt′, t′),

we can rewrite Eq. (102) as

[∂t′ + vΣκeff (p, r′ + vt′, t′)]Fκ(p, r′ + vt′, t′) = δκ1vS(p, r′ + vt′, t′). (105)
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To simplify integration of Eq. (105) it is convenient to use the integrating multiplier of
the form

Iκ (p, r′, t′) = exp

[∫ t′

0

vΣκeff (p, r′ + vt′′, t′′) dt′′
]
.

One can verify that Eq. (102) is equivalent to the following total differential equation

∂t′ [Iκ (p, r′, t′)Fκ(p, r′ + vt′, t′)] = δκ1v Iκ (p, r′, t′)S(p, r′ + vt′, t′). (106)

Then, integrating Eq. (106) over t′ within the limits 0 to t and reverting to the old
variable r = r′ + vt, we arrive at the formal solution:

F 0(p, r, t) = exp

[
−
∫ t

0

vΣ0
eff (p, r− v(t− t′), t′) dt′

]
φ (p, r− vt) , (107a)

F 1(p, r, t) = exp

[
−
∫ t

0

vΣ1
eff (p, r− v(t− t′), t′) dt′

]
ψ (p, r− vt, t) , (107b)

where

ψ(p, r, t) =

∫ t

0

exp

[∫ t′

0

vΣ1
eff (p, r + vt′′, t′′) dt′′

]
vS (p, r + vt′, t′) dt′. (107c)
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Let us now introduce the notation

Dκ(p0,p, r, t
′, t) = v0Σ

κ
eff (p0, r− v0(t− t′), t′)− vΣκeff (p, r− v(t− t′), t′) , (108)

where

v0 = |v0| and v0 =
p0

E0
=

p0√
|p0|2 +m2

.

Then, substituting Eqs. (107) into the definition of the functions Σκ(p, r, t), (101), and
using Eqs. (103), we obtain the required integral equations for the functions Σκ:

Σ0(p, r, t)φ (p, r− vt) =
∫
dX0 Σs(p0,p, r) exp

[
−
∫ t

0

D0(p0,p, r, t
′, t)dt′

]
φ (p0, r− v0t) , (109a)

Σ1(p, r, t)ψ (p, r− vt, t) =
∫
dX0 Σs(p0,p, r) exp

[
−
∫ t

0

D1(p0,p, r, t
′, t)dt′

]
ψ (p0, r− v0t, t) . (109b)
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1.3.2 Behavior of Σκ(p, r, t) at small t

By using Eqs. (109) and taking into account the postulated properties of the functions
φ(p, r) and S(p, r, t), one can derive the asymptotic expansion

Σκ(p, r, t) = Σκ(p, r, 0) + [∂tΣ
κ(p, r, t)]t=0 t+

[
∂2
tΣ

κ(p, r, t)
]
t=0

(
t2

2

)
+ . . . .

(110)
This expansion may be useful as the framework of a numerical algorithm for a
step-by-step solution to Eqs. (109) as well as for understanding heuristic criteria of
applicability for the iterative procedure discussed below.

A 1D analog of Eq. (110) was used earlier for evaluating the geomagnetic corrections to
the spectra of secondary CR nucleons and nuclei at p & 1 GeV/c.a The results were
applied to calculations of atmospheric muons and neutrinos.b

As an example, let us write down the first and second coefficients of Eq. (110). By
differentiating Eq. (109) several times over t, making a passage to the limit as t→ 0,
and using the definitions (103), (107c) and (108), we find

aV.N., Investig. Geomagnetism, Aeronomy and Solar Physics 69 (1984) 82; see also E. V. Bugaev
and V.N., INR Reports Π-0385 and Π-0401), Moscow, 1985.

bSee E. V. Bugaev and V. N., Phys. Lett. B 232 (1989) 391–397; T. K.Gaisser et al., Phys. Rev. D
54 (1996) 5578–5584 and references therein.

VN Sesto Fiorentino, April–May, 2005



Σκ(p, r, 0) =

Z

dX0 ηκ(p0,p, r)Σs(p0,p, r), (111a)�

∂tΣ
0(p, r, t)

�

t=0
=

Z

dX0 η0(p0,p, r)Σs(p0,p, r)

�

v0Σ
0(p0, r, 0) − vΣ0(p, r, 0)

−v0∇ log φ (p0, r) + v∇ log φ (p, r) −D (p0,p, r, 0)] , (111b)�

∂tΣ
1(p, r, t)

�

t=0
=

1

2

Z

dX0 η1(p0,p, r)Σs(p0,p, r)

�
v0Σ

1(p0, r, 0) − vΣ1(p, r, 0)

−v0∇ log S (p0, r, 0) + v∇ log S (p, r, 0) −D (p0,p, r, 0)

+ [∂t log S (p0, r, t) − ∂t log S (p, r, t)]t=0

	
. (111c)

The notation is

η0(p0,p, r) =
φ (p0, r)

φ (p, r)
, η1(p0,p, r) =

v0S (p0, r, 0)

vS (p, r, 0)
,

D (p0,p, r, t) = v0Σ (p0, r− v0t)− vΣ (p, r− vt)

= v0Σ
tot (p0, r− v0t)− vΣtot (p, r− vt) +

1

τ

(
m

E0
− m

E

)
.
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The most important property of the above formulas is that the similar structures in the
integrands of Eqs. (111) only occur in the form of differences, like

v0Σ (p0, r)− vΣ (p, r) , v0Σ
κ(p0, r, 0)− vΣκ(p, r, 0), etc.

As is clear from Eqs. (109), this remains true also for higher order terms in the
expansion (111). This property leads to several obvious conclusions.

✦ At small t, the functions Σκ(p, r, t) are small in comparison with Σ(p, r), if the
initial phase density, φ (p, r), and the source distribution function, S (p, r, t) at
initial point t = 0, are both rapidly decreasing functions of momentum and weakly
dependent functions of the arrival direction [just the case for cosmic rays].

✦ The spacial (r) dependencies of the functions φ (p, r) and S (p, r, 0) play no
essential role (from the viewpoint of usefulness of the asymptotic expansion).

✦ If the differential cross section, Σs(p0,p, r), has a sharp maximum in the
quasielastic region, p ∼ p0 [just the case for high-energy hadronic reactions
a+ A→ a+X], the linear (over t) corrections for Σκ(p, r, t) are small in
comparison with the leading terms Σκ(p, r, 0).
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1.3.3 Iteration procedure

It is easy to find out an approximate solution to Eqs. (109) for the case when particle
scattering and production are small. Indeed, if the macroscopic cross section of
scattering, Σs(p,r) =

∫
dX0 Σs (p0,p, r) is small in comparison with Σtot(p, r), then,

we can put Σκ(0) = 0 as a zero approximation. Therefore

Dκ
(0) (p0,p, r, t

′, t) = D (p0,p, r, t− t′) .

Then, from Eq. (109) we immediately obtain the first approximation for Σκ(p, r, t):

Σ0
(1)(p, r, t) =

∫
dX0 Σs(p0,p, r) exp

[
−
∫ t

0

D (p0,p, r, t
′) dt′

]
φ (p0, r− v0t)

φ (p, r− vt)
,

Σ1
(1)(p, r, t) =

∫
dX0 Σs(p0,p, r) exp

[
−
∫ t

0

D (p0,p, r, t
′) dt′

]
ψ(0) (p0, r− v0t, t)

ψ(0) (p, r− vt, t)
,

ψ(0)(p, r, t) =

∫ t

0

exp

[∫ t′

0

vΣ (p, r + vt′′) dt′′
]
vS (p, r + vt′, t′) dt′.

The next approximation corrections (n = 2, 3, . . .) are then obtained through the
following recursion relations:
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Σ0
(n)(p, r, t)φ (p, r− vt) =
∫
dX0 Σs(p0,p, r) exp

[
−
∫ t

0

D0
(n−1)(p0,p, r, t

′, t)dt′
]
φ (p0, r− v0t) , (112a)

Σ1
(n)(p, r, t)ψ(n−1) (p, r− vt, t) =
∫
dX0 Σs(p0,p, r) exp

[
−
∫ t

0

D1
(n−1)(p0,p, r, t

′, t)dt′
]
ψ(n−1) (p0, r− v0t, t) ,

(112b)

where (for n = 1, 2, . . .)

ψ(n)(p, r, t) =

∫ t

0

dt′ exp

{∫ t′

0

v
[
Σ (p, r + vt′′)− Σ1

(n) (p, r + vt′′, t′′)
]
dt′′
}

× vS (p, r + vt′, t′) , (113a)

Dκ
(n) (p0,p, r, t

′, t) =vΣκ(n) (p, r− v(t− t′), t′)− v0Σκ(n) (p0, r− v0(t− t′), t′)
+D (p0,p, r, t− t′) . (113b)
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An analysis of Eqs. (112) and (113) shows that the rate of convergence of the recursion
algorithm is defined mainly by the degree of anisotropy of scattering rather than the
relationship between the absorption and scattering.

Assume that the differential cross section Σs(p0,p, r) has a sharp quasielastic peak.
Then the main contribution into the integrals (112) comes from the momenta p0, for
which the difference

v0Σ
κ
(n) (r− v0(t− t′),p0, t

′)− vΣκ(n) (r− v(t− t′),p, t′) ,

is small. Hence, in this case, one can expect a rapid convergence of the recursion
algorithm.

1.3.4 Stationary limit

Here we consider the stationary case. It would be a simple job to apply the method
straightforwardly to the stationary TE (29). But it is even more easy and more
instructive to find out the stationary solution through the passage to the limit in the
formulas, describing the general nonstationary solution as t→∞.

Of course, we have to assume that there exist the limits

lim
t→∞

S (p, r, t) = S (p, r) , lim
t→∞

F (p, r, t) = F (p, r) , etc.
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To avoid technical complications related to the spatial dependence of the boundary
spectrum, let us simplify it to the following

φ(p, r) = F0(p), (114)

where F0(p) is a sufficiently smooth function. Its dependence from the momentum
direction may be interpreted as the anisotropy of the primary spectrum. On the same
ground as in the 1D case, we assume that F0(p) is nonvanishing at p < pcut but

F0(p) = 0 at p > pcut. (115)

The analogous assumption we adopt also to the source function:

S(p, r) = 0 at p > pcut. (116)

Both these assumptions are unprincipled from the mathematical standpoint but quite
natural in CR physics. Let us recall that the value of pcut may be treated as a real
physical cutoff of the primary CR spectrum determined by the energetics of the
astrophysical CR sources and by interactions of the extragalactic CR with the cosmic
backgrounds. The specific behavior of F0(p) and S(p, r) in the neighborhood of the
kinematic cutoff is not important on this stage.

In fact, we will not use the assumptions (115) and (116) explicitly for obtaining the
stationary solution. However, these conditions become very useful technically, in a
numerical implementation of the solution since they permit us to take no care about
the asymptotic behavior of the corresponding integrands as p→∞.
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After the passage to the limit as t→∞ in the formulas from previous sections and
after some transformations, we arrived at the stationary solution

F (p, r) = F 0(p, r) + F 1(p, r), (117a)

F 0(p, r) = δτ∞ exp

[
−
∫ ∞

0

Σ0
eff (p, r−ΩL) dL

]
F0(p), (117b)

F 1(p, r) =

∫ ∞

0

exp

[
−
∫ L

0

Σ1
eff (p, r−ΩL′) dL′

]
S (p, r−ΩL) dL, (117c)

Σκeff(p, r) = Σ(p, r)− Σκ(p, r) = Σtot(p, r) +m(pτ)−1 − Σκ(p, r), (118a)

Σκ(p, r)Fκ(p, r) =

∫
dX0 Σs(p0,p, r)F

κ(p0, r) (κ = 0, 1). (118b)

The Kronecker symbol δτ∞ in the right of Eq. (117b) indicates that the nontrivial
solution to the homogeneous stationary equation is only possible for stable primaries.
Formally this follows from the identity (valid for any finite τ)

lim
L→∞

exp

(
−
∫ L

0

mdL′

pτ

)
= 0.
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By direct substituting and taking into account the identity

[∂/∂L+ Ω∇] f(r−ΩL) = 0

derived in Sect. 1.1.5 , one can prove that the obtained formulas actually satisfy the
stationary TE (30).

From Eqs. (117), (118b) and conditions

lim
r→∞

Σtot(p, r) = 0, lim
r→∞

Σs(p0,p, r) = 0.

it follows that the functions Σκ(p, r) also vanish as r →∞.

The explicit integral equations for the functions Σκ(p, r) may be obtained by
substituting Eqs. (117) and (118a) into Eq. (118b). However there is no need to write
down these equations since the algorithm for evaluating the functions Σκ(p, r) is given
by the following recursive sequence of equations:

F 0
(n)(p, r) = δτ∞ exp

{
−
∫ ∞

0

[
Σ (p, r−ΩL)− Σ0

(n) (p, r−ΩL)
]
dL

}
F0(p),

(119a)

F 1
(n)(p, r) =

∫ ∞

0

exp

{
−
∫ L

0

[
Σ (p, r−ΩL′)− Σ1

(n) (p, r−ΩL′)
]
dL′
}

× S (p, r−ΩL) dL, (119b)
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Σκ(n)(p, r)F
κ
(n)(p, r) =

∫
dX0 Σs(p0,p, r)F

κ
(n)(p0, r), n = 0, 1, . . . (120)

with Σκ(0) = 0 (by definition).

The 0th approximation for Fκ is an obvious generalization of the well-known solution
to the stationary TE for neutrons in a purely absorbing medium. Let us rewrite it in the
following form

F 0
(0)(p, r) = δτ∞F0(p) exp [−q(p, r)] , (121a)

F 1
(0)(p, r) = ψ(0)(p, r) exp [−q(p, r)] . (121b)

Here

ψ(0)(p, r) =

∫ ∞

0

exp

[
q (p, r−ΩL)− mL

pτ

]
S (p, r−ΩL) dL

and the quantity

q(p, r) =

∫ ∞

0

Σtot (p, r−ΩL) dL

is known as the optical thickness (or optical depth) of the medium along the trajectory
of a particle with momentum p, coming into the point r from infinity.

It is noteworthy that, for the purely absorbing medium, Eqs. (121) provide the exact
solution to the stationary TE.
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Let us consider now the particular case of a homogeneous medium for which

Σtot(p, r) =
ρ(r)

λ(E)
and Σs(p0,p, r) =

ρ(r)W (p0,p)

λ(E)
,

where λ(E) is the collision length [in g/cm2] and

W (p0,p) =W (p0,p)
λ(E)

λ(E0)
=

1

σtot(E)

[
d 3σ (p0,p)

d 3p

]

is the (renormalized) inclusive spectrum defined in Sect. 1.1.2 .

In the homogeneous medium, the optical thickness is simply proportional to the column
depth, hΩ(r), defined by

hΩ(r) =

∫ ∞

0

ρ (r−ΩL) dL

[see Eq. (35) in Sect. 1.1.5 ]. Namely,

q(p, r) =
hΩ(r)

λ(E)
.

Like for the 1D case, we can define the Z factors

Zκ(p, r) =
Σκ(p, r)

Σtot(p, r)
=
λ(E)Σκ(p, r)

ρ(r)
. (122)
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and, by using Eq. (120), find out their explicit form in the 1st approximation:

Z0
(1)(p, r) =

∫
dX0W (p0,p) exp [−D (p0,p, r)]

F0(p0)

F0(p)
,

Z1
(1)(p, r) =

∫
dX0W (p0,p) exp [−D (p0,p, r)]

ψ(0)(p0, r)

ψ(0)(p, r)
.

Here

D (p0,p, r) = q(p0, r)− q(p, r) =
hΩ0

(r)

λ(E0)
− hΩ (r)

λ(E)

is the difference between the optical depths in directions given by the momenta p0 and
p of initial and final particles.
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2 Atmospheric Muons and Neutrinos
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2.1 Why are the atmospheric neutrinos important for
astroparticle physics?

The mechanism of muon and neu-
trino production in the atmosphere
is well understood. They come into
being from the decay of unstable
particles, generated in the collisions
of primary and secondary cosmic
rays with air nuclei.
However the chain of processes
which lead to lepton generation is
rather intricate seeing that the pri-
maries and secondaries (both stable
and unstable) can repeatedly inter-
act in the atmosphere with absorp-
tion, regeneration or overcharging,
and dissipation of energy through
electromagnetic interactions.

and neutrinos
muonic component

component
hadronic

component
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Figure 38: Schematic view of atmospheric cas-
cade initiated by a primary CR particle.
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✦ Geomagnetic effects. At low energies, the Earth’s magnetic field gives rise to the
spatial (longitudinal and latitudinal) and angular (zenithal and azimuthal)
asymmetries in the lepton fluxes. Complicated structure of the real geomagnetic
field, the Earth’s penumbra, and re-entrant albedo embarrass the analysis of the
geomagnetic effects.

✦ Solar activity. Quasi-periodical variations of solar activity modify the low-energy
part of the primary cosmic-ray spectrum and therefore affect the muon and
neutrino intensities (below some hundreds of MeV), making them time-dependent.

✦ 3D effects. At very low energies (Eµ,ν . 500 MeV), the 3-dimensionality of
nuclear reactions and decays is important.

✦ Meteorological effects. These are essential at all energies of interest.

✦ Muon polarization and depolarization effects. Muons whose decay is an
important source of neutrinos up to the multi-TeV energy range, change their
polarization due to energy loss and multiply scattering, affecting the neutrino
spectra.

✦ Branchy chains. With increasing energy, life-times of light mesons grow and the
production and decay chains become branchy: “anything produce everything”.
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Consequently, an accurate calculation of the muon and neutrino fluxes presents a hard
multi-factor problem complicated by uncertainties in the primary cosmic-ray spectrum
and composition, inclusive and total inelastic cross sections for particle interactions and
by pure computational difficulties. But solution of this problem is a prime necessity for
the study of many fundamental issues of particle physics, astrophysics, and cosmology.

✦ Annoying background. The AN flux represents an unavoidable background for
some key low-energy experiments with underground detectors, e. g.,

● search for proton decay and n→ n transitions in nuclei, and also for

● most of experiments on high-energy neutrino astrophysics with present-day and
future large full-size underwater or underice neutrino telescopes.
Among the astrophysical experiments are

- detection of neutrinos from the (quasi)diffuse neutrino backgrounds, like
pregalactic neutrinos, neutrinos from the bright phase of galaxy evolution, from
active galactic nuclei (AGN), and other astrophysical sources,

- indirect detection of non-relativistic dark matter (presumably composed of
neutralinos) through neutrinos produced in the annihilation of the dark-matter
particles captured in the Earth and the Sun, or

- direct detection of relativistic WIMPs (weakly-interacting massive particles) of
astrophysical or cosmological origin.

VN Sesto Fiorentino, April–May, 2005



These experiments will be an effect of the AN flux of energies from about 1 TeV
to some tens of PeV. However, in the absence of a generally recognized and tried
model for charm hadroproduction (see below), the current estimates of the νµ and
(most notably) νe backgrounds have inadmissibly wide scatter even at multi-TeV
neutrino energies, which shoots up with energy. At Eν ∼ 100 TeV, different
estimates of the νµ and νe spectra vary within a few orders of magnitude.

✦ Neutrino oscillations and all that. At the same time, the AN flux is a natural
instrument for studying neutrino oscillations, neutrino decay and neutrino
interactions with matter at energies beyond the reach of accelerator experiments.
Search for neutrino oscillations with underground detectors is the main issue of
several lectures. Here, let us only sketch some problems of neutrino interactions at
very high energies.

✦ HE neutrino interactions. Measurements of the cross sections for ν`N and ν`N
charged-current interactions at

√
s ∼ mW (Eν ∼ 3.4TeV) provide an important

test for the Standard Model of electroweak interactions. With modern accelerators,
the interactions of neutrinos are studied at energies up to several hundreds of GeV
(besides the single very high energy HERA data point extracted from the ep→ νX
cross section), whereas deep underwater experiments with AN will enable to
enlarge the region of neutrino energies up to a few tens of TeV.
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Figure 40: A tentative representation of atmospheric and extraterrestrial neutrino fluxes
on the Earth (left) and cross sections for neutrino interactions with nuclei, nucleons and
electrons (right). [From A.M. Bakich, “Aspects of neutrino astronomy,” Space Sci. Rev. 49 (1989) 259-310.]
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Figure 41: Comparison of theoretical estimation of the CC total cross sections for νµN
and νµN interactions with world survey experimental data. Uncertainties of the three
main contributions and their sum are shown by the bands.
[From K. S. Kuzmin, V. V. Lyubushkin & V. N. (paper in preparation).]
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✦ Future “KM3” (cubic-kilometer-size) deep-underwater/ice neutrino telescopes will
be able to study the production of the standard vector qq resonances (ρ, D∗

s and
possibly tb) and the resonant W− production (Eres

ν = m2
W /(2me) ' 6.3 PeV) in

νee
− annihilation as well as hypothetical nonstandard interactions of neutrinos like

interactions induced by off-diagonal neutral currents or the charged-current
processes with production of supersymmetric particles or with an exchange of light
leptoquarks and so forth.a

In any event, – to correct for the neutrino background and to use the AN flux as the
subject of investigations or as a tool for particle physics, – there is a need to employ
accurate, detailed, and reliable calculations for the energy spectra, spatial and angular
distributions of AN over a wide range of neutrino energies (from ∼ 100 MeV up to the
multi-PeV energy range) as well as calculations of the transport of neutrinos through
the Earth with taking account for their absorption due to charged currents and
regeneration via neutral currents. The latter effects become essential for Eν & 1 TeV
and will be discussed in Sect. 3.1 ).

Admittedly, we are as yet far from that goal, despite of a considerable progress made in
the past years.

aConsiderable attention has been focused on a possible nonperturbative behavior in the electroweak
sector of the Standard Model, at energies above a threshold

√
ŝ0 � mW , responsible for multiple

production of gauge and Highs bosons in νN interactions with a sizeable cross section. The AN flux of
the appropriate energies (above ∼ 10 PeV) proves to be too small. Hopefully, neutrinos from AGN or
gamma-ray bursts (GRB) may provide a possibility for studying this phenomenon with future large-scale
neutrino telescopes.

VN Sesto Fiorentino, April–May, 2005



Figure 42: Water Cherenkov detectors. Figure 43: Tracking calorimeter detectors.

Figure 44: Liquid scintillator detectors.

Figures 42–44a show the park of under-
ground detectors (as it was on 1989)
capable to catch atmospheric neutrinos.
Only the Baksan telescope remains in op-
eration till now (2005).

aBorrowed from A. M. Bakich, “Aspects of
neutrino astronomy,” Space Sci. Rev. 49 (1989)
259-310

VN Sesto Fiorentino, April–May, 2005



2.2 Why are the atmospheric muons important for astroparticle
physics?

The flux of cosmic-ray muons in the atmosphere, underground, and underwater
provides a way of testing the inputs of nuclear cascade models, that is, parameters of
the primary cosmic rays (energy spectrum, chemical composition) and particle
interactions at high energies. In particular, measurements of the muon energy spectra,
angular distributions and the depth-intensity relation (DIR) have much potential for
yielding information about the mechanism of charm production in hadron-nucleus
collisions at energies beyond the reach of accelerator experiments. This information is a
subject of great current interest for particle physics and yet is a prime necessity in
high-energy and very high-energy neutrino astronomy.

The present state of the art of predicting the AN flux seems to be more satisfactory at
energies below a few TeV. However, the theory meets more rigid requirements on
accuracy of the calculations here: for an unambiguous treatment of the current data on
the AN induced events in the underground detectors, it would be good to calculate the
AN flux with a 10 % accuracy at least, whereas the uncertainties in the required input
data (primary spectrum, cross sections for light meson production, etc.) hinder to gain
these ends. Because of this, a vital question is a “normalization” (or adjustment) of the
calculated model-dependent atmospheric neutrino flux and the muon flux is perhaps the
only tool for such a normalization.
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The point is that atmospheric muons and neutrinos are generated in just the same
processes. Therefore the accuracy of the neutrino flux calculation can be improved by
forcing the poorly known input parameters of the cascade model (including the
parameters of the primary CR spectrum and composition) in order to fit the
experimental data on the muon energy spectra, angular distributions, charge ratio, and
depth-intensity relation.
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2.3 Main sources of atmospheric lepton production

2.3.1 Conventional (“π,K”) leptons

Low-energy leptons (Eµ,ν < 10− 15 GeV) are produced mainly in the two-particle
leptonic decays of charged pions and kaons, πµ2 and Kµ2 (Table 6).

Table 6: Main sources of conventional atmospheric leptons. [The data are from K.Hagiwara et al.,

Phys. Rev. D 66 (2002) 010001.]

Particle Exclusive decay mode Branching ratio

µ± e± + νe(νe) + νµ(νµ) ' 100% a

π± µ± + νµ(νµ) ' 100%

K± µ± + νµ(νµ) (63.43± 0.17)%
π0 + e± + νe(νe) (4.87± 0.06)%
π0 + µ± + νµ(νµ) (3.27± 0.06)%

K0
L π± + e∓ + νe(νe) (38.79± 0.27)% b,c

π± + µ∓ + νµ(νµ) (27.18± 0.25)% c

a Including the radiative mode e± + νe(νe) + νµ(νµ) + γ whose fraction is (1.4 ± 0.4)%

for Eγ > 10MeV. The two modes cannot be clearly separated.

b Including most of the radiative mode π± + e∓ + νe(νe) + γ with low-momentum γ part.

c The value is for the sum of the particle/antiparticle states.
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Muon decays is the basic source of νe and νe in this energy range and the muon
polarization is an essential factor affecting the neutrino flavor ratio
(νµ + νµ) / (νe + νe) as well as the neutrino to antineutrino ratios, νe/νe and νµ/νµ.

At higher energies, above 10–15 GeV, the semileptonic decays of charged and neutral
longlived kaons (Ke3 and Kµ3) become important (last four lines in Table 6) and hence
the differential cross sections for kaon production in NA, πA and KA interactions are
required for the calculations.

Table 7: Most important pionic decays which contribute to the atmospheric lepton pro-
duction. [The data are from K. Hagiwara et al., Phys. Rev. D 66 (2002) 010001.]

Particle Exclusive decay mode Branching ratio

K0
S π+ + π− (68.60± 0.27)%

K0
L π+ + π− + π0 (12.58± 0.19)%

K± π± + π0 (21.13± 0.14)%
π± + π± + π∓ (5.576± 0.031)%
π± + π0 + π0 (1.73± 0.04)%

Λ p+ π− (63.9± 0.5)%

With increasing energy, muon decays become ineffective for neutrino production and,
since the kaon production cross sections are small compared to the pion production
ones, the high-energy AN flux consists mainly of νµ and νµ. For instance, within the
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energy range 1 to 100 TeV, the flavor ratio for the conventional AN flux is a
monotonically increasing function of energy varying from about 28 to 34 at ϑ = 0◦ and
from about 13 to 34 at ϑ = 90◦. However, the contribution from decay of charmed
particles results in a decrease of the AN flavor ratio (see below).

Contributions from the decay chains K,Λ→ π → µ→ ν are usually small while not
negligible. The most important pionic decays which contribute to the atmospheric
lepton production are listed in Table 7.

At very high energies there are a few more significant decay modes. These are listed in
Table 8.

Table 8: Decays which become significant at very high lepton energies. [The data are from

K. Hagiwara et al., Phys. Rev. D 66 (2002) 010001.]

Particle Exclusive decay mode Branching ratio

K0
S π± + e∓ + νe(νe) (7.2± 1.4)× 10−4 a

π± + µ∓ + νµ(νµ) –

Λ p+ e− + νe (8.32± 0.14)× 10−4

p+ µ− + νµ (1.57± 0.35)× 10−4

a The value is for the sum of the particle/antiparticle states.
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πµ2, Kµ2, and µe2 decays

The total rate of the P`k decay (P = π,K, µ, . . ., k = 2, 3) in the lab. frame is defined
by

Γ(P`k) =

∫ [
dΓνP`k

(EP , Eν)

dEν

]
dEν =

B (P`k)mP

τPEP
,

where mP and τP are the mass and life time of the particle P , respectively, and
B (P`k) is the P`k decay branching ratio. Let us introduce the “spectral function”

F νP`k
=

EP
Γ (P`k)

[
dΓνP`k

(EP , Eν)

dEν

]
.

It can be shown that, in the ultrarelativistic limit, the F νP`k
is a function of the only

dimensionless variable x = Eν/EP (0 < x < M2
P`k
/m2

P ).

The spectral function for any two-body decay is merely constant. In particular,

F νµ(νµ)
πµ2

=
1

1−m2
µ/m

2
π

, F
νµ(νµ)
Kµ2

=
1

1−m2
µ/m

2
K

.

The spectral functions for the three-particle decay of a polarized muon in the
ultrarelativistic limit are of the form

F νe(νe)
µe3

(x) = 2(1− x)2 [1 + 2x±Pµ(1− 4x)] ,

F νµ(νµ)
µe3

(x) =
1

3
(1− x)

[
5 + 5x− 4x2 ± Pµ(1 + x− 8x2)

]
,
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where Pµ is the muon polarization dependent on the muon and parent meson
momenta. These dependencies are different for the different meson decay modes. The
µ-decay contribution into the νµ + νµ flux is very small at high energies but in contrast,
it dominates in the νe + νe flux up to about 100 GeV for vertical and to several
hundreds of GeVs for horizontal directions. The muon polarization is therefore an
essential factor affecting the neutrino flavor ratio and the neutrino to antineutrino ratio.
However, at Eν > 1 TeV one can greatly simplify matter treating the Pµ as an
effective constant, 〈Pµ〉. In our calculations we adopt 〈Pµ〉 = 0.33. Besides, as is
customary in all AN flux calculations, we take no account of a small change of the
shape of neutrino distributions which result from the radiative mode µ→ eνeνµγ (with
branching ratio of (1.4± 0.4)%) but simply increase the B (µe3) to 100 %.

K`3 decays

As in the case of µ-decay we will neglect the radiative mode K0
L → πeνeγ (branching

ratio is (1.3± 0.8)%) but increase the B
(
K0
e3

)
to 40%. This approximation yields a

completely negligible change in the atmospheric lepton spectra.

In the standard theory of weak interactions, the K`3 decay matrix element can be
written in the form

GF√
2

sin θC
[
f+(q2)(pK + pπ)

µ + f−(q2)(pK − pπ)µ
]
`γµ(1 + γ5)ν`. (123)

Here GF and θC are the Fermi constant and Cabibbo angle, pK,π are the 4-momenta
of the kaon and pion, and f±(q2) are dimensionless form factors which are real
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functions of q2 = (pK − pπ)2, the square of the 4-momentum carried by leptons.
Experimental investigations of K`3 decays suggest that the form factors f±(q2) are
smooth functions of q2 which are normally written in the linear approximation as

f±(q2) = f±(0)

(
1 + λ±

q2

m2
π

)
. (124)

In the limit of unbroken SU(3) symmetry,

f+(0) =

{
1 for K0

`3,

1/
√

2 for K±
`3,

(125)

while f−(0) reduces to zero. As a consequence, the parameter ξ = f−(0)/f+(0) should
be small for Ke3 decays (the Ademollo-Gatto theorem). In the Kµ3 case, the
Ademollo-Gatto theorem is not valid and so, it is not forbidden that ξ ∼ 1. The
absolute normalization of the K`3 decay rates is not warranted for our purposes, as we
use the experimental values for B(K`3) and τK . This being so, we adopt Eqs. (124)
and (125) from here on, considering λ± and ξ as input parameters.

The details for calculations of the differential and total width of these decays can be
found in Appendix 473 . Here we only consider several numerical illustrations.
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Figure 45: Spread in measured values of the K`3 form factor parameters λ+ and ξ and
ranges of values which provide the best agreement with the PDG data fit (see Table 9).

Table 9: K`3 decay widths [106 c−1] evaluated with and without form factors in compar-
ison with the data from PDG.

Decay mode calculated calculated PDG best fit
with f± = f±(0) with f± = f±(q2)

K0
e3 6.76 7.49 7.50 ± 0.08

K0
µ3 4.38 5.25 5.25 ± 0.07

K±
e3 3.34 3.70 3.89 ± 0.05

K±
µ3 2.07 2.49 2.57 ± 0.06

VN Sesto Fiorentino, April–May, 2005



1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

2.0

1.5

1.0

0.5

0

2.0

1.5

1.0

0.5

0

4.0

3.0

2.0

1.0

0

6.0

5.0

0

0 0.25 0.50 0.75 1

0 0.25 0.50 0.75 1

0 0.25 0.50 0.75 1

0 0.25 0.50 0.75 1

0 0.25 0.50 0.75 1

0 0.25 0.50 0.75 1

x  = 2E  /(E  + P  )ν K Kν x  = 2E  /(E  + P  )ν K Kν

x  = 2E  /(E  + P  )µ K Kµx  = 2E  /(E  + P  )K Kee

x  = 2E  /(E  + P  )π K Kπx  = 2E  /(E  + P  )π K Kπ

0
0.1

0.2

1
10

0

0.1

1
10

0.2

0
0.1

0.2

1
10

0

0.1

0.2

1
10

0

0.1

0.2

1
10

0

0.1

0.2

1
10

(E
  

/Γ
) 

d
Γ

/d
E

π
π

(E
  

/Γ
) 

d
Γ

/d
E

l
l

(E
  

/Γ
) 

d
Γ

/d
E

ν
ν

a) b)

c) d)

e) f)π   from Ke3
–

decay

o
π   from Kµ3

–

decay

o

µ   from Kµ3
–

decay

o
e   from  Ke3

–

decay

o

ν   from Kµ3µ

decay

o
ν   from Ke3e

decay

o

4.0

3.0

2.0

1.0

6.0

5.0

0.2 0.4 0.6 0.8 1
0

4

1

2

3

0

4

1

2

3

5

6

7

K
l3

–

(K   )e3

–
π

(K   )µ3

–
π

µ–

νµ

K
l3

–π

–π
e ,νe

µ–

νµ

– (    )-

e ,νe
– (    )-

(    )-

(    )-

E
 d

Γ
/d

E
  
(1

0
  
c
  
)

6
-1

x = 2E/(E  + P  )
K K

E
 d

Γ
/d

E
  
(1

0
  
c
  
)

6
-1

o (K   )e3

o

(K   )µ3

o

o

o

0

Figure 46: Normalized and absolute distributions of secondary particles from K`3 decays
evaluated with (solid lines) and without (dashed lines) form factors. The numbers near
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2.3.2 Light meson production

A model for differential cross sections

Like in the case of nucleon production (Sect. 1.2.4 we will use the KM model for
inclusive nucleon collisions of nucleons with nuclei. According to the KM model, the
invariant cross section for the light meson production in inclusive reactions
N + A→M +X (N = p, n,M = π±,K±) is given by

fAMN = F1F2F3, (126)

F1 = C1σ
in
NA (1− x)C2 exp

(
− p∗

C5
√
s

)
,

F2 = 1− exp

(
−sp

∗2

C3
− p2

T

C4

)
,

F3 = (1− C6) exp
(
−C7p

2
T

)
+ C6 exp

(
−C8p

2
T

)
,

where x = p∗/p∗max, p
∗ is the meson momentum in c.m.f. and

p∗max =

√
1

4s

(
s+m2

M − smin
X

)
−m2

M

is the kinematic limit. The parameters Cn are given in Tables 11 and 10 for beryllium
and air target, respectively.
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Table 10: Parameters Cn for pBe interactions.

reactions C1 C2 C3 C4 C5 C6 C7 C8

p → π+, n → π− 2.320 1.890 2.600 0.0100 0.1650 0.300 12.50 2.650

p → π−, n → π+ 1.620 2.520 0.700 0.0080 0.1600 0.320 11.00 2.700

p → K+, n → K− 0.110 1.280 2.600 0.0100 0.1650 0.510 4.300 2.650

p → K−, n → K+ 0.090 3.800 0.700 0.0080 0.1600 0.520 5.500 2.700

Table 11: Parameters Cn for pAir interactions.

reactions C1 C2 C3 C4 C5 C6 C7 C8

p → π+, n → π− 2.280 1.925 2.375 0.0096 0.1615 0.304 12.34 2.650

p → π−, n → π+ 1.618 2.538 0.523 0.0071 0.1550 0.332 10.70 2.700

p → K+, n → K− 0.110 1.290 2.370 0.0955 0.1600 0.514 4.345 2.661

p → K−, n → K+ 0.090 3.810 0.535 0.0070 0.1550 0.520 5.560 2.710
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Below we consider a comparison with two other models used in the several calculations
of the AM & AN fluxes. In the following we will use the abbreviations: BGS for the
American groupa BN for the Russian groupb HKKM for the Japanese groupc LK for the
Korean group.d

The pion production in the interaction models used by BGS (and LK), BN and HKHM
is compared with data on beryllium target in Fig. 47. The data are for beam momenta
in the range 19 to 24 GeV/c, which is the median energy for production of ∼ GeV
neutrinos. All three models fit the data well for x & 0.2. At smaller x BN has much
lower pion yield than the other two models, which leads to a correspondingly low result
for the calculated neutrino flux below 1 GeV. The difference becomes progressively less
with increasing neutrino energy because the representations of pion production agree
with each other rather well at higher pion energy.

Figures 48 – 51 show a more detailed comparison of the KM model used in the BN
calculations with the data on π± and K± production for different proton beam
momenta, from about 4.5 to 100GeV/c.

aG.Barr, T. K. Gaisser, and T. Stanev, Phys. Rev. D 39 (1989) 3532.
bE.V. Bugaev and V. A. Naumov, Phys. Lett. B 232 (1989) 391.
cM. Honda, T.Kajita, K. Kasahara and S.Midorikawa, Phys. Rev. D 52 (1995) 4985.
dH. Lee and Y. S. Koh, Nuovo Cim. 105 B (1990) 883.
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2.3.3 Prompt leptons

The dominant contribution to the AN flux at very high energiesa is due to semileptonic

decays of charmed hadrons (mainly D±, D0, D
0

and Λ+
c ). The leptons from this

source are called prompt leptons.

There are numerous exclusive decay modes of charmed particles with a lepton pair and
one or more hadrons in the final state; the inclusive semileptonic decays of D, Ds, and
Λ+
c are shown in Table 12. The dashes indicate the absence of direct data but, owing

to the µ− e universality, one can expect that the branching ratios for electron and
muon inclusive modes are close to each other. Branching ratios for pure leptonic modes
(with `ν` in final state) are very small except the case of D±

s → τ± + ντ (ντ ). The
latter mode is however very important, being the main source of atmospheric tau
leptons and tau neutrinos.

Calculations of the prompt lepton fluxes (and even the energy ranges in which these
contributions dominate) are very model-dependent. As yet, these fluxes cannot be
unambiguously predicted for lack of a generally accepted model for charm production at
high energies.

aFor muons and muon (anti)neutrinos, at Eµ,ν > 10 − 100TeV for vertical flux and at Eµ,ν >
100−1000 TeV for horizontal flux; for electron (anti)neutrinos at energies which are an order of magnitude
less (see below).
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Table 12: The most important (semi)leptonic decays of charmed hadrons. [The data are

from K. Hagiwara et al., Phys. Rev. D 66 (2002) 010001.]

Particle Decay mode Branching ratio

D± e± + νe(νe) + hadrons (17.2± 1.9)%
µ± + νµ(νµ) + hadrons –

D0 e+ + νe + hadrons (6.87± 0.28)%
µ+ + νµ + hadrons (6.5± 0.8)%

D±
s e± + νe(νe) + hadrons

(
8+6
−5

)
%

µ± + νµ(νµ) + hadrons –
τ± + ντ (ντ ) + hadrons –
τ± + ντ (ντ ) (6.4± 1.5)%

Λ+
c e+ + νe + hadrons (4.5± 1.7)%

µ+ + νµ + hadrons –
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The salient and almost model-independent features of the prompt neutrino flux are that
it is practically isotropic within a wide energy range (namely, at
1 TeV. Eν . 3× 103 TeV, the maximal anisotropy is about 3–4%) and the neutrino to
antineutrino ratios and the flavor ratio are close to 1. These features provide a way to
discriminate the prompt neutrino contribution through the analysis of the angular
distribution and the relationship between “muonless” and “muonfull” neutrino events in
a neutrino telescope. Moreover, the anisotropy of the flux of prompt muons (Sect. 2.5 )
for the same energy range is also very small (. 20%). This fact can be a help in
deciding the problem.
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Figure 52 displays a comparison of the calculated momentum spectra of µ+ and µ− for
10 atmospheric depth ranges ∆hi with the data of two balloon-borne experiments
CAPRICE94 [Boezio et al. (2000)] and CAPRICE98 [Hansen et al. (2001)]. (the latter
experimental data are preliminary). The nominal geomagnetic cutoff rigidity Rc is
about 0.5 GV (4.5 GV) and the detection cone is about 20◦ (14◦) around the vertical
direction with the average incident angle of about 9◦ (8◦) for CAPRICE94
(CAPRICE98). The data points in Fig. 52 are the muon intensities at the
Flux-weighted Average Depths (FADs), while the filled areas display the calculated
variations of the muon spectra inside the ranges ∆hi (i = 1, . . . , 10). Namely, they are
obtained by considering the minimal and maximal muon fluxes within each range ∆hi.
The calculations are performed for the conditions of the experiment. The parameter ξ
is taken to be 0.685 (the best value). In fact, the indetermination of ξ is only
significant for h < (15− 20) g/cm2. Note that the thickness of the bands is relatively
small just for the region of effective muon and neutrino production that is in the
neighborhood of the broad maxima of the muon flux (100− 300 g/cm2). By this is
meant that, in this region, an error in evaluation of the FADs does not introduce
essential uncertainty. Outside the region of effective production of leptons, the
amplitude of the muon flux variations increases with decreasing muon momenta on
account for the strong dependence of the meson production rate upon the depth and
the growing role of the muon energy loss and decay at h & 300 g/cm2.
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Figure 52: Differential momentum spectra of µ+ and µ− for 10 depth ranges ∆hi. The
data points are from the CAPRICE94 [Boezio et al. (2000)] and CAPRICE98 [Hansen
et al. (2001)] (preliminary). The filled areas display the expected flux variations within
the ranges ∆hi. The data are scaled with the factors indicated on the left panel.
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Figure 53 shows the atmospheric growth of muon fluxes for six momentum bins for µ+

and nine bins for µ−. The CAPRICE94 data [Boezio et al. (2000)] are compared with
the calculations performed for the same bins. The legend in the left panel shows the
muon momentum bins and scale factors (in parentheses) for both panels.

Figure 54 displays a comparison between the muon spectra calculated for 12
atmospheric depths (FADs) with CORT and with a 3D Monte Carlo code FLUKA
[Battistoni et al. (2001)]. The data of the CAPRICE94 experiment (a subset of the
data from Fig. 52) are also shown. The numbers over the curves indicate the FADs (in
g/cm2). All the data are scaled with the factors indicated and in parentheses.

In Fig. 55, the solid curves represent the results of calculations with CORT for each
FAD. They are obtained with the default interaction model of CORT and with ξ
varying between 0.517 (the BBC value) to 0.710 (an experimental upper limit derived
from the data on interactions of α particles with light nuclei), that is within ±15%.
The thickness of the curves reflects the indetermination in the parameter ξ. For obvious
reasons, the muon flux uncertainty due to this indetermination is maximal at the top of
the atmosphere (it is about 15% at h = 3.9 g/cm2 and p = 100 MeV/c) and becomes
almost negligible for h & 100 g/cm2. The wide filled areas display the variations of the
muon fluxes inside the depth ranges ∆hi as in Fig. 52. The dashed curves show the
results obtained using the Bartol’s code and the dotted curves are the results of the
CORT+TARGET model. The numbers indicate the FADs (in g/cm2) and scale factors
(in parentheses).
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Figure 61: Differential momentum
spectra of muons at sea level mea-
sured with the AMH magnetic spec-
trometer.

Figure 61 shows a comparison with the data
obtained for several zenith angles and angular
bins, ∆ϑ, with the AMH magnetic spectrometer
(Texas A& M and University of Houston Collab-
oration).a The data are scaled with the factors
shown in parentheses at the right. The fluxes
for average zenith angles and expected flux vari-
ations inside the bins are shown by solid lines and
filed areas, respectively.
One can see a good or at least qualitative agree-
ment with the data for p . 100 GeV/c and
ϑ . 80◦. At higher momenta and at large
zenith angles, the situation is spoiled. However, a
comparison with the world survey muon data for
ϑ = 0◦ (see Fig. 59) suggests that there is some
systematic bias in the AMH experiment above
∼ 100 GeV/c. The abnormal scatter of points
in the near-horizontal bin seems to be indicative
of a certain flaw in the measurements at large
zenith angles.

aP. J. Green et al., Phys. Rev. D 20 (1979) 1598–1607.
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2.4.1 Attempt to adjust the primary spectrum.

Recently published precision measurements of the sea-level muon spectrum by the
L3+C and BESS-TeV Collaborationsa provide a way for adjusting the poorly known
primary spectrum in the region from about 100 GeV to about 10 TeV.

The PS model used in CORT-2001b cannot describe these new data satisfactory. Let us
consider the model (parametrization) suggested in the recent review by Gaisser and
Honda.c Note that the results under discussion are very preliminary.

The Gaisser-Honda models for the primary hydrogen and helium spectra are shown in
Figs. 62 and 63, respectively. Since the data of different measurements of the helium
spectrum are very contradictory, Gaisser and Honda consider two versions of the model:
“High Helium” and “Low Helium”. We shall probe both. Contribution of the other
primary nuclei is comparatively small (but not negligible) and, to simplify, we use the
CORT-2001 parametrizations for their spectra.

The result are shown in Figs. 64 and 65.
aP. Achard et al. (L3 Collaboration), “Measurement of the atmospheric muon spectrum from 20 to

3000 GeV,” Phys. Lett. B 598 (2004) 15–32 [arXiv:hep-ex/0408114];
S. Haino et al. (BESS-TeV Collaboration), “Measurements of primary and atmospheric cosmic-ray spectra
with the BESS-TeV spectrometer,” Phys. Lett. B 594 (2004) 35–46 [arXiv:astro-ph/0403704].

bG. Fiorentini, V. A. Naumov, and F. L. Villante, “Atmospheric neutrino flux supported by recent
muon experiments,” Phys. Lett. B 510 (2001) 173–188 [arXiv:hep-ph/0103322].

cT. K. Gaisser and M. Honda, “Flux of atmospheric neutrinos,” Ann. Rev. Nucl. Part. Sci. 52 (2002)
153–199 [arXiv:hep-ph/0203272].
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Figure 62: Gaisser-Honda model for primary hydrogen.
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Figure 63: Gaisser-Honda models for primary helium.

VN Sesto Fiorentino, April–May, 2005



0.2

0.4

0.6

0.8

1

10
2

10
3

Momentum  (GeV/c)

p 
3  ×

 F
lu

x 
 (

cm
 -2

 s
 -1

 s
r 

-1
 (

G
eV

/c
) 

2 )

L3+C (2004)

cos θ

0.525-0.600

0.600-0.675

0.675-0.750

0.750-0.825

0.825-0.900

0.900-0.938

0.938-0.975

0.975-1.000

offset

+0.7

+0.6

+0.5

+0.4

+0.3

+0.2

+0.1

0.2

0.4

0.6

0.8

1

10
2

10
3

Momentum  (GeV/c)

p 
3  ×

 F
lu

x 
 (

cm
 -2

 s
 -1

 s
r 

-1
 (

G
eV

/c
) 

2 )

L3+C (2004)

cos θ

0.525-0.600

0.600-0.675

0.675-0.750

0.750-0.825

0.825-0.900

0.900-0.938

0.938-0.975

0.975-1.000

offset

+0.7

+0.6

+0.5

+0.4

+0.3

+0.2

+0.1

Figure 64: Comparison with the most recent result by L3+C. Calculations are done with
the Gaisser-Honda primary spectra: “High Helium” (left) and “Low Helium” (right).
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Figure 65: Comparison with the most recent result by BESS-TEV. Calculations are done
with the Gaisser-Honda primary spectra: “High Helium” (left) and “Low Helium” (right).
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2.4.2 Muon charge ratio.

Muon charge ratio defined as the ratio
of the µ+ and µ− fluxes is a character-
istics sensitive to the composition of
primaries. The results calculated with
CORT-2001 are shown in Figs. 66–70.
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Figure 66: Muon charge ratio, µ+/µ−, at s.l.
as a function of momentum calculated with
CORT for several geomagnetic cutoffs Rc.
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Figure 67: Muon charge ratio near the top of the atmosphere for 〈ϑ〉 = 9◦. The points
and shaded rectangles represent the data from many experiments. The curves and filled
areas are the results of calculations with CORT, TARGET-1 and “CORT+TARGET”.
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Figure 68: Muon charge ratio at ground level for 〈ϑ〉 = 9◦. The points and shaded
rectangles represent the data from many experiments. The curves and filled areas are the
results of calculations with CORT, TARGET-1 and “CORT+TARGET”, and the best fit
obtained by Hebbeker and Timmermans (2001) from many data at p ≥ 10 GeV/c.
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Figure 70: Near-vertical muon charge ratio, µ+/µ− at ground level.
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2.5 Muon flux above 1 TeV
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Figure 71: Separate contributions from different meson decay modes and chains into the
total muon flux at ϑ = 0◦ and ϑ = 90◦ for energies above 1 TeV.
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2.5.1 Comparison of different calculations
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Figure 72: Comparison of the vertical mo-
mentum spectra of conventional muons at
s.l. predicted by different workers.
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2.5.2 Comparison with experiment

A comparison of the calculated differential and integral muon spectra above 1 TeV/c at
sea level with direct data from magnetic spectrometers and indirect data extracted from
underground measurements is shown in Figs. 74, 75 and 76. The ground-based
measurements those results are presented in the figures can be classified as absolute
and non-absolute (normalized to other experiments). In line with this arrangement the
experiments can be divided into the following three groups.

✦ Absolute ground-based measurements:

● Durham magnetic spectrograph [Aurela et al. (1963), Ayre et al. (1975)];

● Nottingham magnetic spectrograph [Baber et al. (1968), Rastin (1984)];

● magnetic spectrometer located near the College Station, Texas [Bateman et al.
(1971)];

● magnetic spectrometer of the Brookhaven National Laboratory [Kellog et al.
(1978)];

● magnetic spectrometer MUTRON at the Institute for Cosmic Ray Research
(ICRR), University of Tokyo [Matsuno et al. (1984)];

● magnetic spectrometer DEIS of Kiel – Tel-Aviv Collaboration at the Tel-Aviv
University Campus [Allkofer et al. (1985)];

● electromagnetic calorimeters of the Karlsruhe University [Gettert et al. (1993)];

● EAS-TOP array at Campo Imperatore, Gran Sasso [Aglietta et al. (1995)].
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✦ Non-absolute ground-based measurements:

● Durgapur magnetic spectrograph [Nandi and Sinha, 1972] (the data were
normalized to the Nottingham spectrum at p = 20 GeV/c);

● Durham magnetic spectrograph MARS [Thompson et al. (1977)] (the data were
normalized to the previous Durham results [Ayre et al. (1975)] at 261 GeV/c);

● L3 detector at CERNa [Bruscoli and Pieri, 1993] (the absolute intensity in the
momentum range 40–70 GeV/c and its error were taken from the result obtained
with the Kiel spectrographs [Allkofer et al. (1971)]).

✦ Indirect data from underground measurements:

● several detectors in the Kolar Gold Fields (KGF), Mysore State, South India
[Miyake et al. (1964), Adarkar et al. (1990), Ito (1990)];

● X-ray emulsion chambers of the Moscow State University (MSU) situated in the
Moscow Metrob [Ivanova et al. (1979), Zatsepin et al. (1994)];

● unimodular scintillation detector “Collapse” of the Institute for Nuclear Research
(INR) at the Artyomovsk Scientific Station, Ukraine [Khalchukov et al. (1985)];

● Baksan underground scintillation telescope (BUST) of INR situated in North
Caucasus [Andreyev et al. (1987, 1990), Bakatanov et al. (1992)];

● proton decay detector Fréjus under the Alps [Rhode, 1994];
aDo not muddle with the current “L3+Cosmics” CERN experiment. In fact, the L3 detector is located

at 30 m underground, but such a matter overburden is comparatively small to classify the detector as
ground-level.

bOptionally, like the L3, this experiment may also be classified as ground-level.
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● underground detector MACRO at the Gran Sasso National Laboratory (LNGS),
INFN [Ambrosio et al. (1995)];

● underground detector LVD at the LNGS [Aglietta et al. (1998)].

At energies above a few TeV we only have indirect data at our disposal and the
uncertainties (both statistical and systematic) are vastly greater here. The data of the
BUST, KGF, Fréjus, MACRO and LVD experiments have been deduced from the muon
Depth-Intensity Relation (DIR) measured in different rocks (Baksan, Kolar, Alpine,
Gran Sasso). We will dwell on the initial underground data late. Here, it should be
pointed out that in all underground experiments, among the systematic uncertainties
related to inhomogeneities in density and chemical composition of the matter
overburden, topographical map resolution, muon range-energy relation, muon range
fluctuations, effective differential aperture of the array, etc., another uncertainty is
essential. It results from the necessity to assign some model for the energy spectrum
and zenith-angle distribution of muons at sea level which are functions of the PM
fraction in the muon flux or, to be more specific, the ratio X of the PM spectrum to
the π +K production one. Hence one is forced to assume some value of the ratio X
(as a function of energy and direction) when reconstructing the muon spectrum on
surface. But the greater the adopted value of X, the harder the resultant spectrum.
For this reason alone the conversion procedure is fairly ambiguous.

As an illustration, let us consider the KGF results. The KGF muon spectrum in the
energy range (200− 7500) GeV was deduced using the underground data and assuming
X = 0, what is quite reasonable for this range. But the data at higher energies demand
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a nonzero X. To estimate the ratio X, the authors have assumed a pion production
spectrum of the form Fπ(Eπ) ∝ E−γ

π and a K/π ratio of 0.15. The X ratio was
assumed to be a constant. Then a χ2 analysis indicated that with γ = 2.7 for muon
energy of 8 to 250 TeV, there is PM production at the level of X = (9± 2)× 10−4.

This result is shown in the left panel of Fig. 74 (the corresponding data points are
represented by diamonds) together with the spectrum deduced on the assumption that
X = 0 (the data points are represented by symbols ×). As would be expected, the
spectrum reconstructed with X = 0 is softer. It is not difficult to understand that the
final result is subject to variation also in response to variation of the adopted K/π ratio
and γ. It should also be recognized that the real spectra of muons and mesons are far
short of being power-law ones.

The marked curves in Fig. 74 refer to the differential and integral muon spectra
calculated without the Prompt Muon (PM) contribution (that is the conventional or
“π,K” muons only are taken into account) and with the PM contribution according to
the three charm hadroproduction models, the Recombination Quark-Parton Model
(RQPM), the Quark-Gluon String Model (QGSM) and the model by Volkova et al.
(VFGS).

As seen from the Figure, the PM contribution to the sea-level muon flux calculated
with the QGSM is very small: up to p = 100 TeV/c it does not exceed 16% for the
differential spectrum and 22% for the integral spectrum.
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Figure 74: Differential (left panel) and integral (right panel) momentum spectra of muons
at sea level for ϑ = 0◦ and p > 1 TeV. The prompt muon contributions are evaluated
with the three models for charm hadroproduction: recombination quark-parton model
(RQPM), quark-gluon string model (QGSM) and a semiempirical, QGSM inspired model
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Figure 75: Differential energy spectra of
muons at s.l. for vertical and horizontal
directions above 1 TeV.

Figure 75 shows the sea-level muon
fluxes for ϑ = 0◦ and 89◦ at muon ener-
gies from 1 TeV to 100 PeV. The exper-
imental data for ϑ = 0◦ are the same as
in Fig. reff:MuSLabove1TeV while the
data for ϑ = 89◦ are from the MSU
[Zatsepin et al. (1994)] and MUTRON
[Matsuno et al. (1984)] experiments.
Solid lines represent the conventional
muon fluxes while dashed and dotted
lines are for the total fluxes which in-
clude the PM contributions estimated
with different charm production mod-
els: VFGS, QGSM, RQPM, and a per-
turbative QCD-inspired (pQCD) model
[L. Pasquali, M. H. Reno, and I. Sarcevic,
Phys. Rev. D 59 (1999) 034020]. The
VFGS and pQCD predictions are shown
for ϑ = 0◦ only. Different versions of
the pQCD-inspired model are indicated
by the numbers 1, 2, 3.
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The differences between the three versions of the pQCD model are due to different sets
of the quark and gluon densities in the proton which were used in the calculations and
also due to the adopted values for several poorly known input parameters, such as the
factorization and renormalization scales, µF and µR, the QCD scale factor in the

minimal subtraction scheme (MS) for four flavors, Λ
[4]
QCD, etc.a As is seen from Fig. 75,

the pQCD based predictions for the PM contribution is rather uncertain.

Figures 74 and 75 suggest that the crossover energy (the energy around which the
fluxes of conventional and prompt muons become equal) covers the range of about two
orders of magnitude. The uncertainty in the total flux increases fast with energy.

Above ∼ 20 TeV, the Baksan, MSU and Fréjus data clearly indicate a significant
flattening of the vertical muon spectrum. None of the above models but the VFGS is
consistent with these data. Even the maximum VFGS flux is not sufficiently large to
explain the effect. On the other hand, none of the models but the VFGS contradict to
the LVD data. Anyway, an extrapolation of the VFGS model to the energies above
200− 300 TeV would be hare-brained.

Figures 76 and 77 seem to be selfexplanatory.

aSee L. Pasquali, M.H. Reno, and I. Sarcevic, Phys. Rev. D 59 (1999) 034020 and also A. Misaki
et al., J. Phys. G: Nucl. Part. Phys. 59 (2003) 387 for the full description of the pQCD model and
further details and references.
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All the curves represent the conventional (π,K) muon contribution only.
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2.6 Muons underground

A representative set of data on cosmic-ray muon DIR in rock and, to a lesser extent, in
water has been accumulated. Underground muon experiments may number in the tens
in a span of more than sixty years. It should be noted that the results of many early
measurements, specifically those performed at shallow depths, have not lost their
significance today, considering that modern experiments principally aim at greater
depths. Underwater muon experiments have over 30 years of history and it is believed
that they will gain in importance with the progress of high-energy neutrino telescopes.

It may be somewhat unexpected but the underground data are more self-consistent in
comparison with ground-level data, at least for depths less than about 6 km w.e.
(corresponding roughly to 3–4 TeV of muon energy at sea level) and hence they provide
a useful check on nuclear cascade models as well as a useful tool for the high-energy
atmospheric neutrino flux normalization.

Figure 78 shows the World survey data on the muon depth–intensity relation (DIR)
measured in the underground experiments and Fig. 79 zooms the fragments of Fig. 78
for shallow and intermediate depths. The curves are calculated with no account for the
PM contribution. The data on the figures are from many underground experimentsa

performed in very different conditions (different rock densities, compositions, etc.).

aSee E. V. Bugaev et al., Phys. Rev. D 58 (1998) 054001 for the full list of references and detailed
description.

VN Sesto Fiorentino, April–May, 2005



10 -9

10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

100

101

0 2 4 6 8 10 12 14 16 18

�from Crouch World Survey, 1987
Crookes and Rastin, 1973
Bergamasco et al., 1971
Stockel, 1969
Castagnoli et al., 1965
Avan and Avan, 1955
Randall and Hazen, 1951
Bollinger, 1950
Clay and Van Gemert, 1939
Wilson, 1938

Baksan (50  - 70  ), 1987oo

Baksan (70  - 85  ), 1990oo

Frejus, 1989

LVD, 1998
MACRO, 1995

NUSEX, 1990
SCE, 1986

SOUDAN 1, 1990
SOUDAN 2, 1995

World Survey

’

Slant Depth (km.w.e.)

V
er

tic
al

 In
te

ns
ity

  (
m

-2
s

-1
sr

-1  )

I µ

I      + I

π,Κ

π,Κ
µ µ

ν

Figure 78: Muon DIR from underground data.

The measurements by Wilson and by
Clay and Van Gemert carried out in
the late 1930s are not absolute since
the techniques available in that times
were unable to estimate the effects of
showers, scattering, δ-electrons, etc.
Thus, these data are normalized to
the theoretical curve. All the other
data points in Figs. 78 and 79 are ab-
solute. The Crouch’s World Survey
dataa comprises the results of different
experiments, in particular, the early
KGF data and extensive data from the
East Rand Proprietary Mine (ERPM)
near Johannesburg, South Africa at
great slant depths.

aM. F. Crouch, in Proc. of the 20th Inter-
national. Cosmic Ray Conf., Moscow, Au-
gust 2–15, 1987, edited by V. A.Kozyarivsky
et al. (“Nauka”, Moscow, 1987), Vol. 6,
p. 165.
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All these data were converted by Crouch to standard rock (Z = 11, A = 22,

ρ = 2.65 g/cm
3
) with correction for the slant depths. The measurements actually made

at large zenith angles were also corrected for the Earth’s curvature.

According to Crouch, the DIR at h & 1 km w.e. can be approximated by the following
empirical function:a

Iµ(h) = exp(A1 +A2h) + exp(A3 +A4h) + Iνµ (127)

with A1 = −11.22± 0.17, A2 = −0.00262± 0.00013, A3 = −14.10± 0.14,
A4 = −0.001213± 0.000021 and Iνµ = (2.17± 0.21)× 10−13 cm−2 s−1 sr−1. Here

Iµ(h) is in cm−2s−1sr−1 and h (the slant depth for the standard rock) is in hg/cm2

(1 hg/cm2 = 100 g/cm2 = 1 m.w.e.). In fact, the value of Iνµ can significantly vary from
one experiment to another due to different registration thresholds, the topology of the
matter overburden, and so on. The measured fluxes closest to horizon are tabulated in
Table 13 [borrowed from D. Demuth et al. (2003)] along with the estimate of the muon
energy threshold, Emin

µ , used for each analysis.

aThe fit (127) is in good agreement with the result of deep underground measurements of the Utah
group [G. L. Cassiday, J.W.Keuffel, and J. A. Thompson, Phys. Rev. D 7 (1973) 2022; G.W. Carlson,
Ph. D. Thesis, University of Utah, 1972 (unpublished)] and with the results of the French–American
muon experiment with a GM telescope in the Mont Blanc Tunnel [W. R. Sheldon et al., Phys. Rev. D 17
(1978) 114] which are not included into the compilations of Figs. 78–80.
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Table 13: Comparison of near-horizontal neutrino-induced muon fluxes measured by
several experiments. Zenith angle ranges and energy thresholds are approximate. Several
experiments report fluxes for restricted portions of azimuth angle to reduce backgrounds.
The reported depths are minimum overburdens, except for Frèjus and Baksan which
report effective depths. [From D. Demuth et al., hep–ex/0304016.]

Experiment Muon flux Emin
µ Zenith angle Depth

(10−13cm−2sr−1s−1) (GeV) range (m.w.e.)

Baksan, 1991 4.04± 2.01 1.0 -0.1 to 0.0 850

Frèjus, 1995 3.67± 0.66 0.3 -0.18 to 0.18 4710

LVD, 1995 8.3± 2.6 1.0 -0.1 to 0.1 3000

IMB, 1987 5.66± 0.95 1.8 -0.14 to 0.0 1570

Kamiokande, 1991 2.84± 0.53 1.7 -0.1 to 0.0 2700

Super-Kamiokande, 1999 3.45± 0.33 1.6 -0.1 to 0.0 2700

MACRO, 1998 7.4± 2.8 0.4 -0.1 to 0.0 3150

Soudan 2, 2003 4.01± 0.58 1.8 -0.14 to 0.14 2090
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Figure 80: Yet another view of the
muon DIR. Arrows indicate the average
depth at different zenith angles at the
SOUDAN2 detector. The curve rep-
resents the fitting formula by Crouch
(127). [From D. Demuth et al., hep–ex/0304016.]

One more useful presentation of the muon
DIR is given in Fig. 80 [borrowed from
D. Demuth et al. (2003)]. The closed cir-
cles are from the Crouch’s Survey while the
data of Baksan, LVD, MACRO, and Fréjus
are added according to the Particle Data
Group. The slant depth, h, increases ap-
proximately as secϑ, but depends in detail
on both the surface terrain and the distri-
butions of the rock density and composi-
tion. Two distinct components are apparent
in the Crouch’s curve (127), which consists
of a double exponential plus a constant term.
The atmospheric muon rate is observed to
fall sharply with slant depth, so that the flat-
ter spectrum of neutrino-induced muons only
becomes visible for h & 14 km w.e. (this
corresponds to ϑ & 82◦ for the SOUDAN2
detector). However the ν-induced contri-
bution has to be taken into account from
h ≈ 11 km w.e.
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Figure 81: Muon DIR from the KGF and Baksan experiments.
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VN Sesto Fiorentino, April–May, 2005



2.7 Muons underwater and underice

Some problems of the underground muon experiments can be overcome by
measurements underwater (and “underice”) owing to unlimited (in principle) detection
volume, uniformity and well known composition of the matter overburden. The list of
the current and future underwater detectors is given in Table 14.

Figure 85 shows the total collection of the muon underwater data. The measurements
with compact closed installations were performed in Suruga-bay, West Pacific [Higashi
et al. (1966)], in Lake Geneva [Rogers and Tristam (1984)], in the Atlantic Ocean,
Black, Mediterranean, and Caribbean Seas during several expeditions of research ships
[Davitaev et al. (1970, 1973), Fyodorov et al. (1985)]. The measurements with open
detectors (strings with phototubes), the prototypes of a future large-scale neutrino
telescopes, were performed in the Pacific Ocean off the West coast of the island of
Hawaii in 1987 (the DUMAND Short Prototype String) [Babson et al. (1990)], in the
Mediterranean Sea a short way off Pylos, during three expeditions in 1989, 1991 and
1992 (the NESTOR prototypes) [Anassontzis et al. (1993)], in Lake Baikal during two
expeditions in 1992 and 1993 (the stationary prototypes of the underwater neutrino
telescope NT-200) [Belolaptikov et al. (1993, 1995)], and at South Pole with the
AMANDA neutrino telescope [Hundertmark (1999), Spiering (1999)].

Note that there are two curves in Fig. 85 which correspond to the muon threshold
energy of 1 GeV (relevant to all experiments but AMANDA) and of 20 GeV
(corresponds to the AMANDA-B4 threshold).
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Table 14: Past, present and future underwater/ice neutrino telescopes.

Lab/Location/Stage Year(s) Sensitive
area

(10  m  )3 2

*
Status
(fall, 2003)

DUMAND I, II
Pacific near Hawaii Big Island; at a depth of ~4.5 km

Historically first underwater project.

Closed down...**

BAIKAL NT
Lake Baikal, East Siberia; at a depth of about 1.1. km

NT-36

NT-72

NT-96

NT-144

NT-200

1993-95

1995-96

1996-97

1997-98

1998 

0.15-0.20 

0.4-3.0 

0.8-6.0 

1.0-8.0 

2.0-10.0 Operates

AMANDA
South Pole; at a depth of 0.8 to 2 km

AMANDA A

AMANDA A

AMANDA B4

AMANDA II

AMANDA KM3 or IceCube

1994 

1996 

1998 

2000 

2005 

Small

1.0 

5-6 

30-50 

1000 Under construction

NESTOR
Ionian Sea near Pylos, Peloponnesos, Greece;
at a depth of about 3.8 km

2004 ? st1   phase: 20 

KM   in prospect3
& test

ANTARES
Mediterranean near Toulon, France; at a depth from
2.4 to 2.7 km (the most appropriate site is identified)

2004 ? to 100-200 

NEMO
Capo Passero (Sicily), Italy; at a depth of about 3.4 km

?  to 3500 

Stepwise
deployment &
going into
operation

Stepwise
deployment &
going into
operation

Operates

R & D 

R & D

Under construction

KM   in prospect3

KM   in prospect3

}

}
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Notes to ∗) The sensitive (effective) area is an increasing function of muon
Table 14: energy. For example, the estimated effective area of the

Baikal NT-200 is about 2300m2 and 8500m2 for 1-TeV and
100-TeV muons, respectively.

∗∗) Some 1-string prototypes of the DUMAND array were deployed
and several useful results were obtained.

The calculation for the π,K-muon DIR presented in Fig. 85 is done for sea water with
〈Z〉 = 7.468, 〈A〉 = 14.87, 〈Z/A〉 = 0.5525, 〈Z2/A〉 = 3.770 and 〈ρ〉 = 1.027 g/cm3.
At h . 7 km, the difference with the DIR for pure H2O is less than 1% and can be
neglected as compared to the theoretical and experimental uncertainties.

At shallow depths (to 175 m) there are two measurements with very good statistics
[Higashi et al. (1966), Rogers and Tristam (1984)], but the results of Higashi et al. are
(except for the inclined data points at 105 m) lower by 15 to 30% than the result of
Rogers and Tristam. One reason for the discrepancy is believed to be as follows.
Higashi et al. have normalized their data to an intensity derived from earlier
underground measurements and measurements of the sea-level muon spectrum. The
intensity chosen for the normalization is not quoted, but was almost certainly too low.
The calculation is in excellent agreement with the absolute intensity obtained by Rogers
and Tristam. This provides good support of the adopted nuclear cascade model at low
energies. Unfortunately, the absolute measurements by Davitaev et al. are
systematically lower than the theoretical prediction at h . 1 km.
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Figure 85: Muon DIR from the underwa-
ter/ice experiments.

As for the greater depths, (1 ÷ 4) km,
it can be concluded that the calculations
are in tolerable agreement with the data
from the DUMAND and NESTOR proto-
types as well as with the data of Fyodorov
et al.; the discrepancy with a few specific
data points is within (1 − 1.5)σ what is
compatible with the overall data scatter-
ing. The latest data of the AMANDA,
Baikal and NESTOR Collaborations are in
good agreement with the predicted curve.
As is evident from the foregoing, the
present-day state of the large-scale under-
water projects does not permit to compete
with the underground detectors as yet. In
particular, the (slant) depths explored by
the present-day underwater experiments
are too small to get useful information on
the PM flux. It is hoped that the situation
will change in the near future.
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[From T. S. Sinegovskaya and S. I. Sinegovsky, Phys. Rev. D 63 (2001) 096004 [hep–ph/0007234].]
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2.8 Atmospheric neutrinos I: Low and intermediate energies

Due to geomagnetic effects, the low-energy AN spectra and angular distributions are
quite different for different sites of the globe. Figure 89 displays the predictions of
CORT for ten underground neutrino laboratories listed in Table 15. Left panel shows
the νe, νe, νµ and νµ energy spectra averaged over all zenith and azimuth angles. The
ratios of the AN fluxes averaged over the lower and upper semispheres (“up-to-down”
ratios) are shown in right panel. As a result of geomagnetic effects, the spectra and
up-to-down ratios at energies below a few GeV are quite distinct for five groups of
underground labs: 1) SOUDAN + SNO + IMB, 2) HPW, NUSEX + Fréjus, 3) Gran
Sasso + Baksan, 4) Kamioka and 5) KGF.

Technical note:

The exact definition of the fluxes of upward- and downward-going neutrinos is given by
the following formulas:

F down
ν (E) =

∫ 1

0

〈Fν(E, ϑ)〉ϕ d cosϑ, (128a)

F up
ν (E) =

∫ 0

−1

〈Fν(E, ϑ)〉ϕ d cosϑ, (128b)

where
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〈Fν(E, ϑ)〉ϕ =
1

2π

∫ 2π

0

Fν (E, ϑ,Rc (Θ,Φ, ϑ, ϕ)) dϕ, for 0 ≤ ϑ ≤ π

2
, (129a)

=
1

2π

∫ 2π

0

Fν (E, ϑ∗, Rc (Θ∗, Φ∗, ϑ∗, ϕ∗)) dϕ, for
π

2
≤ ϑ ≤ π, (129b)

p

K

K

*

ν

Figure 88: “Neutrinos – antipodes”

Fν (E, ϑ,Rc) is the neutrino differential energy
spectrum on the Earth surface with the oblique
geomagnetic cutoff rigidity Rc which is a function
of the geomagnetic latitude and longitude, Θ and
Φ, and zenith and azimuthal angles, ϑ and ϕ (all
are defined in the frame of the detector).
The starred variables in Eq. (129b) are the cor-
responding angles defined in the local frame K∗

associated with the neutrino entry point.
Clearly, the azimuthal dependence of the neu-
trino flux is only due to the geomagnetic effects.
Therefore, within the framework of the 1D cas-
cade theory, it is a function of three variables E,
ϑ and Rc.
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It is a useful (and not too trivial) exercise in spherical geometry to prove that

sinΘ∗ = sin 2ϑ sinϕ cosΘ − cosϑ sinΘ, |Θ∗| < π/2,

sin (Φ∗ − Φ) = sin 2ϑ cosϕ/ cosΘ∗,

cos (Φ∗ − Φ) = − (sin 2ϑ sinϕ sinΘ + cos 2ϑ cosΘ) / cosΘ∗,

ϑ∗ = π − ϑ,
sinϕ∗ = (sin 2ϑ sinΘ + cos 2ϑ sinϕ cosΘ) / cosΘ∗,

cosϕ∗ = cosϕ cosΘ/ cosΘ∗.

For near horizontal directions (|ϑ− π/2| � 1) the above formulas yield

Θ∗ ' Θ + (π − 2ϑ) sinΦ,

Φ∗ ' Φ− (π − 2ϑ) cosΦ tanΘ,

ϕ∗ ' ϕ+ (π − 2ϑ) cosΦ secΘ.

Finally, the 4π averaged flux is

〈Fν(E)〉4π =

∫ 1

−1

〈Fν(E, ϑ)〉ϕ d cosϑ =
1

2

[
F down
ν (E) + F up

ν (E)
]
.
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Table 15: List of ten past and present underground laboratories. The last column shows
the symbols used in Fig. 89.
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νe, νµ, and νµ fluxes for ten underground laboratories (see Table 15 for the notation).
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Figure 90 depicts the zenith-angle distribu-
tions of νe, νe, νµ and νµ calculated with-
out taking account for geomagnetic effects.
Calculations with CORT are done using its
“standard” (KM+SS) model for hadronic in-
teractions and also the TARGET-1 model for
π/K meson production (including the super-
position model for collisions of nuclei) used
by Bartol group [“CORT+TARGET”]. The
distributions are averaged over azimuth an-
gle and over the eight energy bins indicated
near the curves. For comparison, the result
of the calculation by Battistoni et al. (2000)
based on the FLUKA 3D Monte Carlo simu-
lation package is also shown. It allows to
“highlight” the 3D effects which are very
dependent on neutrino energy and direction
of arrival. Note that the primary spectrum
model used in the calculation with FLUKA
is very close to the recent BESS98 data,
but it is not identical to the parametrization
adopted in CORT (“BESS+JACEE fit”).
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Figure 90: Zenithal distributions of
down-going ANs on geomagnetic poles.
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Figure 91 shows the same as Fig. 90 but for Kamioka and Gran Sasso.

Figure 92 shows the azimuth-angle averaged zenithal distributions of νe, νe, νµ and νµ
calculated with FLUKA 3D for several values of neutrino energy and normalized to the
same distributions calculated with CORT. The geomagnetic effects are neglected in
both calculations.

Figures 90–92 clearly demonstrate that the 3D effects drastically change the angular
distributions of low-energy ANs at large zenith angles (near-horizontal directions).
However, above 500− 600 MeV they become almost negligible and practically
disappear at energies above ∼ 1 GeV.

Figure 93 shows the νe, νe, νµ and νµ energy spectra averaged over both zenith and
azimuth angles. The shaded areas are the results obtained with CORT using its
standard interaction model. The widths of the areas indicate the uncertainty due to
variations of the ξ parameter between 0.517 and 0.710. One sees that this uncertainty
is at most 6% and thus it is negligible. The dashed curves correspond to the
CORT+TARGET model while the circles show the results of the FLUKA 3D calculation.

Figures 94, 95 and 96 shows some results of early calculations of the AN flux at low
and high energies.
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Figure 91: The same as Fig. 90 but for Kamioka and Gran Sasso and for 0 ≤ ϑ ≤ 180◦.
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Figure 92: Zenithal distributions of ANs calculated with FLUKA 3D for seven values of
neutrino energy and normalized to the same distributions calculated with CORT. The
geomagnetic effects are neglected.
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Figure 93: Scaled 4π averaged AN fluxes for Kamioka site.
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2.9 Data of underground neutrino experiments

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

0 2 4 6 8 10
Depth (km.w.e.)

V
e

rt
ic

a
l 

M
u

o
n

 I
n

te
n

s
it

y
  

(m
-2

s
-1

s
r

-1  )

1 3 5 7 9

B
a

k
s

a
n

S
o

u
d

a
n

,
M

IN
O

S

IM
B

K
a

m
io

k
a

H
o

m
e

s
ta

k
e

 (
C

h
l)

M
o

n
t 

B
la

n
c

F
re

ju
s

K
G

F

’

E
R

P
M

N
U

S
E

L
S

u
d

b
u

ry

G
ra

n
 S

a
s

s
o

W
IP

P

Figure 97: Depths of several underground laboratories. Solid line is the calculated vertical
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Table 16: Summary of atmospheric neutrino experiments that have observed fully con-
tained (FC), partially contained (PC), upward stopping muon (USµ) and upward through-
going muon (UTµ) events.a [From T.Kajita and Y.Totsuka, Rev. Mod. Phys. 73 (2001) 85.]

Status of Detection Type of Fiducial Total Number
Experiment experiment technique events mass (kt) exposure of events

BUST running liquid UTµ 10.55 yr 424
(Baksan) from 1978 scintillator

NUSEX finished gas counter, FC 0.13 0.74 kt·yr 50
(1982–1988) iron plate

Fréjus finished gas counter, FC 0.70 2.0 kt·yr 158
(1984–1988) iron plate PC 0.70 2.0 kt·yr 58

Kamiokande finished water FC 1.04-1.35 7.7-8.2 kt·yr 885
(1983–1995) Cherenkov PC 1.04 6.0 kt·yr 118

UTµ 6.7 yr 372

IMB finished water FC 3.30 7.7 kt·yr 935
(1982–1991) Cherenkov UTµ 3.6 yr 532

USµ 3.6 yr 85

Soudan 2 running gas counter, FC 0.77 3.9 kt·yr 371
from 1989 iron plate

MACRO finished liquid ID+US
(1991–2000) scintillator IU

+ gas counter UTµ 5.9 yrb 607

Super- running water FC 22.5 61 kt·yr 7940
Kamiokande from 1996 Cherenkov PC 22.5 61 kt·yr 563

UTµ 2.94 yr 1187
USµ 2.88 yr 265

a As of 1999. Some data in the last 3 columns have to be updated.
b Exposure with the full detector (6 supermodules) is 4.1 yr.
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Cherenkov method of particle detection

In a transparent medium with an index of refraction n > 1 the light velocity is
vc = c/n < c. When a charged particle traverses the medium with velocity v > vc, the
Cherenkov light is emitted in a cone of half angle θC = arccos(c/nv) from the direction
of the particle’s track.

This may easily be understood
from the Huygens’ principle
(Fig. 99):

AB/v = AC/vc

⇓
cos θC = AC/AB = vc/v.

The refractive index of pure wa-
ter is about 4/3 for a wavelength
region 300 to 700 nm (where the
PMTs are sensitive). Therefore
the Cherenkov light is emitted
by ultrarelativistic particles under
about 42◦.

Figure 99: Cherenkov cone construction using the
Huygens’ principle.
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The number of photons produced along a flight path dx in a wave length bin dλ for a
particle carrying charge ze is

d2Nγ
dλdx

=
2παz2 sin2 θC

λ2
,

where α ≈ 1/137 is the fine structure constant. The number of Cherenkov photons
emitted per unit path length with wavelength between λ1 and λ2 is

dNγ
dx

= 2παz2

∫ λ2

λ1

[
d2Nγ
dλdx

]
dλ

λ2
≈ 2παz2 sin2 θC

(
1

λ1
− 1

λ2

)

(neglecting the dispersion of the medium). In particular, for the optical range
(400–700 nm)

dNγ
dx

=
491.3 z2 sin2 θC

1 cm
.

A single charged particle emits about 214 (380) photons per 1 cm of the path length in
water within the optical range (the PMT sensitive range).

For v ≈ c the Cherenkov light yield is independent of the energy of the charged particle.
This means the light output of a single particle does not allow its energy to be
measured.
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The energies EC and momenta
pC of some particles with v =
vc in water (Cherenkov thresholds)
are shown in Table 17, assuming
n(H2O) = 1.33).

Table 17: Cherenkov thresholds in
total energy and momentum for wa-
ter.

Particle EC (MeV) pC (MeV/c)

e± 0.775 0.583
µ± 160.3 120.5
π± 211.7 159.2
p 1423 1070

Figure 100: Cherenkov ring.
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2.9.1 Kamiokande and Super-Kamiokande

Both Kamiokande and Super-Kamiokande are imaging water Cherenkov detectors.
They detect Cherenkov light generated by charged particles, in particular, the particles
produced by incoming neutrinos in water.
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Figure 101: Schematic view of the Kamiokande-II detector. The slantwise hatches mark
the surrounding rock. The inner detector contains 3000 tons of water of which 2140 tons
are fiducial volume (the area enclosed with dotted-dashed line). It is viewed by 948
20-inch-diameter PMT’s mounted on a 1-m grid on the inner surface. The outer (veto)
counter surrounds the inner detector and is viewed by 123 PMT’s.
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Figures 104–107 are borrowed from Tomasz Barszczak, University of California.a

Fig. 104 shows two MC simulated events. In the left panel, a 481 MeV muon neutrino
produces a 394 MeV muon which later decays at rest into 52 MeV electron. The ring
fit to the muon is outlined. Fuzzy electron ring is seen in yellow-green in lower right
corner. This is perspective projection with 110 degrees opening angle, looking from a
corner of the Super-Kamiokande detector (not from the event vertex). Color
corresponds to time PMT was hit by Cherenkov photon from the ring. Color scale is
time from 830 to 1816 ns with 15.9 ns step. The time window was widened from
default to clearly show the muon decay electron in different color. In the charge
weighted time histogram to the right two peaks are clearly seen, one from the muon,
and second one from the delayed electron from the muon decay. Size of PMT
corresponds to amount of light seen by the PMT. PMTs are drawn as a flat squares
even though in reality they look more like huge flattened golden light bulbs.

In the right panel, a 1063 MeV neutrino strikes free proton at rest and produces
1032 MeV muon. Color scale is time from 987 to 1080 ns with 2.3 ns step. PMTs close
to the vertex were hit earlier than PMTs farther away. The same event but in
cylindrical projection is shown in Fig. 105. This is a 4π view (full solid angle, 360
degrees around). Un-hit PMTs are hidden but detector grid is shown. The observer is
positioned in the event vertex.

aSee URL <http://www.ps.uci.edu/ ˜ tomba/sk/tscan/pictures.html> .
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Figure 104: SK MC events. Left panel: 481 MeV muon neutrino produces 394 MeV
muon which later decays at rest into 52 MeV electron. Right panel: 1063 MeV neutrino
strikes free proton at rest and produces 1032 MeV muon.
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Figure 105: The same event as in the right panel of Fig. 104 but in cylindrical projection.
This is a 4π view. Un-hit PMTs are hidden but detector grid is shown. The observer is
positioned in the event vertex.
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Fig. 106 shows a 600 MeV
electron (MC). Electron ring
is much more fuzzy than
muon ring. Electron pro-
duces shower of gammas, elec-
trons and positrons. Gam-
mas don’t produce Cherenkov
light. Electrons and positrons
do. In the shower each
of them flies at a little bit
different angle and each of
them makes its own weak
Cherenkov ring. All those
rings added together pro-
duce the observed fuzzy ring.
This difference in sharpness
of muon and electron rings
is used to identify muons
and electrons in the Super-
Kamiokande. The color time
scale spans 87 ns.

Figure 106: MC simulated 600 MeV electron event in
the Super-Kamiokande detector.
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Fig. 107 shows two real (not Monte Carlo) events recorded in the Super-Kamiokande.
A multiple ring event is shown in the left panel. This eventa recorded on 24/09/1997,
12:02:48 was one of the close candidates for proton decay into e+ and π0 but it did not
pass analysis cuts. The π0 would decay immediately into two gammas which make
overlapping fuzzy rings. Positron and π0 would fly in opposite directions. Time color
scale spans 80 ns. In the right panel, a through-going muon event recorded on
30/05/1996, 17:12:56 is shown. The muon entered through the flat circular part of the
detector near the bottom of the picture where purple earliest PMT hits can be seen. It
exited through the cylindrical side wall in the middle of the picture. Time color scale
spans 262 ns.

aFound by Brett Michael Viren (State University of New York at Stony Brook).
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Figure 107: SK I real events. Left panel: multiple ring event recorded on 24/09/1997,
12:02:48. Right panel: through-going muon event recorded on 30/05/1996, 17:12:56.
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To determine the identity of the fi-
nal state particles, a particle identi-
fication algorithm was applied which
exploited systematic differences in
the shape and the opening angle of
Cherenkov rings produced by elec-
trons and muons. Cherenkov rings
from electromagnetic cascades ex-
hibit a more diffuse light distribution
than those from muons (Figs. 108,
109). The opening angle of the
Cherenkov cone, which depends on
particle’s velocity, was also used to
separate e’s and µ’s at low momenta.
The validity of the method was con-
firmed by a beam test experiment at
KEK. The misidentification probabil-
ities for single-ring e-like and µ-like
events were estimated to be 0.8%
and 0.7% respectively, using simu-
lated CC quasielastic neutrino events.

muon

electron

Figure 108: Super-Kamiokande I scan for elec-
tron and muon events.
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Figure 109: Example event display of a single-ring e-like (left) and µ-like (right) events
in Super-Kamiokande I. Cherenkov rings from electromagnetic cascades exhibit a more
diffuse light distribution than those from muons.
[From Y. Ashie et al. (Super-Kamiokande Collaboration), hep-ex/0501064.]
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The allowed neutrino oscillation para-
meters were estimated by using
? FC single-ring sub-GeV below

400 MeV/c,
? FC single-ring sub-GeV above

400 MeV/c,
? FC single-ring multi-GeV, PC

events,
? FC multi-ring events and
? upward-going muon events sepa-

rately.
The results are shown in Fig. 114. In this
plot, 90% confidence interval is defined
to be χ2 = χ2

min + 4.61, where χ2
min is

the minimum χ2 value including the un-
physical parameter region.
The allowed parameter regions sug-
gested by these six sub-samples are con-
sistent.
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Figure 114: 90 % confidence level allowed
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oscillations from six sub-samples of the SK I.
[From Y. Ashie et al. (Super-Kamiokande Collaboration),

hep-ex/0501064.]
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In addition, the same oscillation analyses were repeated using different flux models (but
with the same neutrino interaction Monte Carlo program) and different neutrino
interaction Monte Carlo program (but with the same flux model).

The 90 % C.L. allowed parameter
regions are compared in Fig. 115.
Left panel shows the 90% C.L.
allowed oscillation parameter re-
gions for νµ ↔ ντ oscillations,
based on the NEUT neutrino in-
teraction model, from different
flux models Right panel shows the
90% C.L. allowed regions based on
NUANCEand NEUTneutrino inter-
action models for FC+PC events
with the flux model of Honda-2004.
In this plot, Monte Carlo events
from NEUTwere used for upward-
going muons.
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Figure 115: Allowed oscillation parameter regions
evaluated with different AN flux models (left and
interaction models (right). [From Y. Ashie et al. (Super-

Kamiokande Collaboration), hep-ex/0501064.]

The allowed regions from these analyses overlap well. However, the allowed region
obtained with the Bartol-2004 model allows for slightly higher ∆m2.
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Figure 116: K-II Zenith Angle Distributions (SK-II and SK-I results are consistent).
[From unpublished report by Ed Kearns on “Neutrino’2004”.]
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2.9.2 MACRO

The MACRO (Monopole, Astrophysics and Cosmic Ray Observatory) is a very large
rectangular modular detector (76.9× 12.3× 9.9 m3) situated in the hall B of the Gran
Sasso underground laboratory (see Figs. 117 and 118).

Figure 117: The MACRO detector in the experimental hall B of the Gran Sasso Lab.
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The detector consists of six supermodules of 12× 12× 5 m3 each. Each supermodule is
made of ten horizontal planes of limited streamer tubes interleaved with passive
materials, plus a central horizontal layer of special materials sensible to magnetic
monopoles and heavy nuclei.

Figure 118: Schematic view of the MACRO detector (dimensions are in mm).
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The entire apparatus is surrounded with liquid scintillator counters for fast timing and
lateral planes of streamer tubes for tracking. The lower half of the detector is filled with
trays of crushed rock absorber alternating with streamer tube planes, while the upper
part is open.

The MACRO has a total acceptance for an isotropic flux of downward-going

muons of about 5000 m2 sr. Thanks to its capability in tracking, timing, and particle
stopping power determination, it permits the reconstruction of single and multiple
muon events and the identification of magnetic monopoles with redundancy in the
information.

The main aims of the experiment are

✦ study of the origin and the composition of high energy cosmic rays;

✦ detection of magnetic monopoles or, alternatively, the determination of a very
stringent limit on their flux;

✦ detection of neutrinos from stellar collapses;

✦ study of the atmospheric muon and neutrino physics.

The low energy νµ flux can be studied by the detection of neutrino interactions inside
the apparatus and by the detection of upward-going muons produced in the rock
surrounding it and stopping inside the detector. (Fig. 119, left panel).
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Because of the MACRO geometry, muons induced by neutrinos with the interaction
vertex inside the apparatus can be tagged with time-of-flight measurement only for
upgoing muons. The internal down-going muons (IDµ) with vertex in MACRO and
upward going muons stopping inside the detector (USµ) can be identified through
topological constraints.

Right panel of Fig. 119 shows the Monte Carlo simulated parent neutrino energy
distributions for the three event topologies detected by MACRO. The distributions are
normalized to one year of data taking. The internal upgoing muon events (IUµ) are
produced by parent neutrinos with energy spectrum almost equal to that of the internal
down-going plus upward going stopping µ events.

VN Sesto Fiorentino, April–May, 2005



Figures 120 and 121 show a few-year’s old AN results
of the MACRO experiment.
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Figures 122 and 123 [borrowed from M. Ambrosio et al.

(MACRO Collaboration), Eur. Phys. J. C 36 (2004) 323–339 and G. Gi-

acomelli and A. Margiotta (for the MACRO Collaboration), Yad. Fiz.

67 (2004) 1165–1171 [Phys. Atom. Nucl. 67 (2004) 1139–1146] (hep-

ex/0407023)] show the most recent data.
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Figure 121: Some old results
from the MACRO experiment.

VN Sesto Fiorentino, April–May, 2005



Figure 122: Comparison of with A and B analises
of upward through-going muons in MACRO with
calculations.

Figure 122 a comparison of the
UpThrough muon fluxes mea-
sured with MACRO by means
of the different analysis pro-
cedures, A (full sample, 902
events) and B (attico [from an
upper part of the detector] sam-
ple, 870 events). The experimen-
tal points are slightly shifted hor-
izontally to distinguish the two
analyses. Statistical and system-
atic errors are displayed. The
nonoscillated Bartoland FLUKA
fluxes, assuming Eµ > 1 GeV,
are shown (the theoretical error
is not displayed). The fit to the
new CR measurements is used for
the FLUKA flux.
[Borrowed from M. Ambrosio et al.

(MACRO Collaboration), “Measurements

of atmospheric muon neutrino oscillations,

global analysis of the data collected with

MACRO detector,” Eur. Phys. J. C 36

(2004) 323–339.]
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2.9.3 SOUDAN 2

The Soudan 2 detector is located in an underground laboratory in the Tower-Soudan
Iron Mine 1/2 mile (2,090 m.w.e.) beneath Soudan, Northern Minnesota, USA.

Figure 124: The SOUDAN2 iron calorimeter modules in the experimental hall.
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The detector is a 960 ton gas ionization, time projection calorimeter surrounded by an
active shield of proportional tubes (Fig. 125). The calorimeter is comprised of 224
independent modules, each 1× 1.1× 2.7m3 (shown in the right of Fig. 125).

Drift Tubes
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Cathode
Signal
Cables

Drift HV
Connector

Gas Supply

Anode
Signal
Cables

2.7 m

1.0 m

1.1 m

SOUDAN 2SOUDAN 2
Figure 125: Schematic view of the SOUDAN2 detector and its module (zoomed).

The modules, each of which weighs about 5 tons are constructed inside gas-tight, steel
boxes. The boxes are filled with a mixture of 85% argon, 15% carbon dioxide gas. Most
of the mass in each module is located in 240 corrugated steel plates, which are layered
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horizontally giving the inside of each module the appearance of a large honeycomb.
Each module contains a tightly packed honeycomb array of 15,120 drift tubes set in a
steel absorbing medium giving an average density of 1.6 gm/cc. The drift tube array
provides 3-dimensional hit reconstruction, with an r.m.s. accuracy of 1.12 cm in the
drift direction and 3.5mm in the orthogonal plane, together with the power stopping
sampling.a The modules are close packed in an array 2 high by 8 across by 14 deep to
form a detector 5.4 m high, 8 m across and 15 m long.

The primary physics goals of the experiment:

✦ search for nucleon decay;

✦ study atmospheric neutrino physics, in particular to look for evidence of neutrino
oscillations;

✦ search for magnetic monopoles;

✦ search for neutrinos from Active Galactic Nuclei;

✦ search for astrophysical point sources of cosmic rays;

✦ study the chemical composition of primary cosmic rays.

The target exposure for the experiment of 5K̃ton-years has been achieved. Beyond this
there is a possibility of incorporating the detector into the MINOS experiment which is
designed to search for and measure neutrino oscillations and neutrino mass using a

aFor a detailed description of the calorimeter see W.W. M.Allison et al., Nucl. Instrum. Meth. A 376
(1996) 36; W. W.M. Allison et al., Nucl. Instrum. Meth. A 381 (1996) 385.
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controlled, accelerator produced neutrino beam. The neutrino beam will be generated
in the Fermilab neutrino beam line (near Chicago) and passed through the Earth to the
Soudan Mine 730 km away where the new MINOS experiment will be located. A search
for neutrino oscillations over this long baseline will cover the same region of oscillation
parameters as the atmospheric neutrino anomaly reported by the Super-Kamiokande,
MACRO and Soudan 2 experiments.

There are two energy detectors located on the Earth’s surface near the entrance to the
Soudan mine and operated in coincidence with the deep underground calorimeter to
provide air shower information.

One is a flat array of detectors called proportional tubes located in a house trailer
parked about 100m east of the mine shaft. This array, 15m long by 4 m wide,
measures the amount of energy left in the Earth’s atmosphere by a cosmic ray, while
the Soudan 2 detector measures characteristics of the muons associated with the same
cosmic ray. The correlation between surface and underground data yields information
about the properties of the original cosmic ray, as it entered the atmosphere.

A second kind of energy detector, located near the proportional tube array, is called an
atmospheric Cherenkov detector. It also measures cosmic ray energy deposition in the
atmosphere, but by a different technique. The Cherenkov detector is sensitive to very
faint light produced in the atmosphere as the cosmic ray propagates downward. This
light is so faint that the atmospheric Cherenkov detector is usable only on clear nights
when the moon is not visible. It also operates in conjunction with the Soudan 2
detector.
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Figures 126 and 127 show a 10 year’s old (but still
interesting) AN results of the SOUDAN2 experiment.
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Figure 126: Energy distributions of SOUDAN2 events.

Figures 128–130 [borrowed from M. C. Sanchez et al. (Soudan 2

Collaboration), Phys. Rev. D 68 (2003) 113004 (hep-ex/0307069) and

P. J. Litchfield (for the Soudan 2 Collaboration), Nucl. Phys. B (Proc.

Suppl.) 138 (2005) 402-404.] show the most recent data.
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Figure 127: Allowed and ex-
cluded regions of sin2 2θij and
∆m2 obtained from the old
SOUDAN2 data for two sce-
narios of neutrino mixing.
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Figure 128 shows the zenith-
angle and azimuth-angle dis-
tributions for high resolution
(HiRes) events in SOUDAN2
collected during the 7.36 kiloton-
year (5.90 fiducial kiloton-year)
exposure of the detector. The
points with error bars are the
data. The dashed histograms are
the sum of the predicted unoscil-
lated neutrino distribution (with
the Bartol 96 AN flux) plus the
fitted rock contribution. The
solid histograms are the predic-
tion of the best-fit parameters of
this analysis. The dotted his-
tograms are the contribution of
the rock background. Note the
depletion of µ-flavor events at all
but the highest value of cos θ.

cosθ

-1 -0.5 0 0.5 1

0

10

20

30

40

E
ve

n
ts

0

10

20

30

40

cosθ

-1 -0.5 0 0.5 1

azimuth
0 100 200 300

0

10

20

30

40

azimuth
0 100 200 300

E
ve

n
ts

0

10

20

30

40

(a)   e-flavor,  zenith (b)   µ
-flavor,  zenith

(c)   e-flavor,  azimuth (d)   µ
-flavor,  azimuth

ο
 ο
 ο
 ο
 ο
 ο
 ο
 ο


Figure 128: Angular distributions for high resolution
events in SOUDAN2.
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Figure 129 shows the HiRes log10(L/E)
distribution e-flavor (top) and µ-flavor
(bottom) events in SOUDAN2. The
points with error bars are the data.
The dashed histograms are the predic-
tion of the unoscillated Monte Carlo plus
the fitted qs-rock contribution. The
solid histograms are the same but with
the Monte Carlo (with the Bartol 96
AN flux) weighted by the best fit os-
cillation parameters from the analysis.
The dotted histograms are the contri-
bution of the rock background. A de-
pletion of µ-flavor events above values
of log10(L/E) of approximately 1.5 can
be seen. Below this value there is lit-
tle, if any, loss of events. This implies
an upper limit on the value of ∆m2 of
about 0.025 eV2.
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Figure 130 shows the confidence level con-
tours from the Feldman-Cousins analysis of
the SOUDAN2 events: 68% (short dashed
line), 90% (thick solid line) and 95% (long
dashed line). The dotted line is the 90% sen-
sitivity for the best-fit (sin2 2θ,∆m2) point.
The thin solid line is the contour defined by
a data likelihood rise, ∆L, of 2.3 (Fig. 131).

Figure 131: The data likelihood difference.
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2.9.4 NUSEX

References:
1. G. Battistoni et al., “Fully contained events in the Mont Blanc nucleon decay detector”, Phys. Lett. B 118

(1982) 461–465.

2. G. Battistoni et al., “Nucleon stability, magnetic monopoles and atmospheric neutrinos in the Mont Blanc
experiment”, Phys. Lett. B 133 (1983) 454–460.

3. G. Battistoni et al., “An experimental study of the neutrino background in underground experiments on nucleon
decay”, Nucl. Instrum. Meth. A 219 (1984) 300–310.

4. G. Battistoni et al., “The NUSEX detector,” Nucl. Instrum. Meth. A 245 (1986) 277–290.

5. M.Aglietta et al. (NUSEX Collaboration), “Experimental study of atmospheric neutrino flux in the NUSEX
experiment”, Europhys. Lett. 8 (1989) 611–614.

6. M.Aglietta et al. (NUSEX Collaboration), “Experimental study of upward stopping muons in NUSEX”,
Europhys. Lett. 15 (1991) 559–564.

VN Sesto Fiorentino, April–May, 2005



2.9.5 Fréjus
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Figure 132: Schematic view of the Fréjus underground Laboratory. [From C.Berger et al. (Fréjus

Collaboration), Nucl. Instrum. Meth. A 262 (1987) 463.]
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2.9.6 BUST

The Baksan Underground Scintillation Telescope (BUST) located at the Baksan
Neutrino Observatory of the Institute for Nuclear Research, RAS consists of 4
horizontal layers of thick (0.30× 200× 200 m3) liquid scintillator separated by concrete
absorber (8 radiation lengths each). It has also 4 vertical scintillator planes surrounding
the horizontal ones.

Figure 133: Schematic sectional view of the BUST (left panel) and of one of its horizontal
scintillator planes (right panel).
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The full detector dimensions are 16.7× 16.7× 11.2 m3 and the full volume is about
3000m3. Each of three lower horizontal scintillator layers consists of 400 tanks of
70× 70× 30 cm3 size, viewed by 6 inch PMTs (FEU-49). The top layer consists of 576
detectors. It is located at a depth of about 850 hg/cm2 below Andyrchi mountain.

There are also ground installations which can operate in coincidence with the BUST:
ANDYRCHI for detecting extensive atmospheric showers (it is located over the BUST
and covers an area of about 5× 104m2) and a set of ground facilities KOVYOR
comprising Large Muon Detector, Scintillation Telescope and Neutron Monitor for
studying the hard component of cosmic rays and EAS.
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2.9.7 Upward through-going muons
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Figure 134: Zenith-angle distributions of upward through-going muons measured in earlier
undrground experiments and converted to a single energy threshold of 3 GeV.
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Figure 135: Zenith-angle distributions of upward
through-going muons observed in 5 experiments.

Figure 135 shows the zenith-
angle distributions of upward
through-going muons mea-
sured in Baksan, MACRO,
IMB I+II, Kamiokande II+III
and Super-Kamiokande I.
The scale of Kamiokande
is normalized to that of
Super-Kamiokande. The
histograms are calculated
with GRV94 PDF set for
Kamiokande (dashed) and
Super-Kamiokande (solid)
and with MSR(G) PDF set
for the other experiments.
The Bartol-96 muon flux and
muon energy loss according
to Lohmann et al. (“CERN
Yellow Reoprt”) are used in
the calculations.
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Figure 136: Expected and observed total fluxes of up-
ward through-going muons for Kamiokande II+III and
Super-Kamiokande I. [From S. Hatakeyama, “Search for muon

neutrino oscillations in Kamiokande and Super-Kamiokande,” Ph.D. the-

sis (1998).]

Figure 136 shows the expected
and observed total fluxes of
upward through-going muons
for Kamiokande II+III and
Super-Kamiokande I (the data
collected before 1998). In-
side error bars of the expected
flux are the differences in the
models and the outside ones
are the same plus 20% uncer-
tainty of each model (which
comes from the uncertainty
in the atmospheric muon neu-
trino fluxes. The inside er-
rors of the observed fluxes are
combined statistical and sys-
tematic errors.
In fact the “theoretical” un-
certainty may be much larger
than 20% (see Table 18).
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Table 18: Theoretical uncertainties in the absolute flux of upgoing muons.

Primary CR energy spectrum ∼ 20%

Primary CR charge/isotopic composition (n/p ratio) to 3%

Cross sections of pion production in NA interactions
and pion regeneration (π+/π− ratio) to 5%

Cross sections of CC induced νµN and νµN interactions ∼ 10%

Cross sections of NC induced νµN and νµN interactions
(responsible for neutrino regeneration in the Earth) ∼ 1%

Nuclear effects in νµ (νµ) interactions with matter to 2%

Composition and inhomogeneity of the detector surrounding
(affect the muon energy loss) to 2%

Muon range struggling in the surrounding rock to 1%

Other uncertainties and methodical simplifications a few %

Prompt neutrino contribution ?

Omitted backgrounds ?

Total uncertainty may be as large as 25–35%
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2.10 Atmospheric neutrinos II: High energies
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Figure 137: Separate contributions from some mechanisms of neutrino production into
the total AN fluxes at ϑ = 0◦ and ϑ = 90◦ for energies 1 to 100 TeV.
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Figures 141–144 aggregate the differential energy spectra of downward going
atmospheric neutrinos calculated within a wide energy range (from 50 MeV to about 20
EeV) for 11 zenith angles. Figures show the “conventional” neutrino contribution
(originated from decay of pions, kaons and muons) and the total AN spectra which
include the “prompt” neutrino contribution originated from semileptonic decays of

charmed hadrons (mainly D±, D0, D
0

mesons and Λ+
c hyperons).

The prompt neutrino contribution must dominate at very high energies. However the
charm hadroproduction cross sections are very model-dependent and cannot be
unambiguously predicted for lack of a generally accepted model. As a result the prompt
neutrino contribution and even the energies above which the prompt muon and electron
neutrinos become dominant are very uncertain as yet

The results are shown in Figs. 141–144 are obtained by using the two phenomenological
approaches to the charm production problem: the quark-gluon string model (QGSM)
and recombination quark-parton model (RQPM). The prompt muon fluxes predicted by
QGSM and RQPM are both consistent with the current deep underground data and
may be considered as the safe lower and upper limits for the prompt muon
contributions (see Sect. 2.3.3 ).

VN Sesto Fiorentino, April–May, 2005



10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1

10

10 2

10
-1

1 10 10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

eν


E ν
 (GeV)

Conventional

Conventional + Prompt (QGSM)

Conventional + Prompt (RQPM)

E
  

 F
lu

x
  

(m
  

 s
  

 s
r 

  
G

e
V

  
)

ν
3
-2

2
-1

-1

ϑ


cos ϑ = 0, 0.1, ... , 0.9, 1

Figure 141: Energy spectra of downward going atmospheric νe for 11 zenith angles.
Low-energy range is for Kamioka site. At high energies, from smallest to largest fluxes,
cos θ varies from 0 to 1 with an increment of 0.1 for each group of curves.
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Figure 142: Energy spectra of downward going atmospheric νe for 11 zenith angles.
Low-energy range is for Kamioka site. At high energies, from smallest to largest fluxes,
cos θ varies from 0 to 1 with an increment of 0.1 for each group of curves.
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Figure 143: Energy spectra of downward going atmospheric νµ for 11 zenith angles.
Low-energy range is for Kamioka site. At high energies, from smallest to largest fluxes,
cos θ varies from 0 to 1 with an increment of 0.1 for each group of curves.
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Figure 144: Energy spectra of downward going atmospheric νµ for 11 zenith angles.
Low-energy range is for Kamioka site. At high energies, from smallest to largest fluxes,
cos θ varies from 0 to 1 with an increment of 0.1 for each group of curves.
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2.11 Detectors for high-energy neutrino astronomy

In 1960, Markova and Reinesb independently suggested to catch high-energy cosmic
neutrinos via their charged current interactions using the ocean as a detector medium
by observing the Cherenkov light of the produced muons and, simultaneously, as a
screen for the cosmic-ray and solar light backgrounds.c Up-going muons can be
identified in a background of down-going, cosmic ray muons which are more than 105

times more frequent for a depth of about 12 km. The Earth is therefore also serves as a
part of the detector, being the natural filter and “descriminator”. This makes neutrino
detection possible over the hemisphere of sky faced by the bottom of the detector.

It was thought that the ocean is a rather inexpensive target, the detector can be build
modular and enlarged when necessary. The detector can take the advantage of the
rising cross section for neutrino-nucleon interactions with energy. As the range of the

aM. A. Markov, in Proc. of 1960 Annual International Conf. on High Energy Physics at Rochester,
edited by E. C. G. Sudarshan, J. H. Tinlot and A. C. Melissinos (University of Rochester, NY, 1960),
p. 578. See also M. A. Markov and I. M. Zheleznykh, Nucl. Phys. 27 (1961) 385–394.

bF. Reines, Ann. Rev. Nucl. Sci. 10 (1960) 1. Greisen, in the same journal volume [K. Greisen, Ann.
Rev. Nucl. Sci. 10 (1960) 63] also mentioned the idea of neutrino astronomy as a “fanciful proposal”.

cProbably the idea of Reines was a natural consequence of the following note by F. Reines, C. L. Cowan
and H. W. Krusenot, “Conservation of the number of nucleons,” Phys. Rev. 109 (1958) 609–610 co-
cerning experimetal search for nucleon decay:

Higher sensitivity could be obtained both by using larger counters and by going deep

underground or in the ocean to elluminate cosmic rays.
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final state muon increases with energy, the effective detector volume is growing as well
with energy. Furthermore, it is expected that the energy spectra from many point
astrophysical sources fail off less step that that from atmospheric neutrinos.

Thus the deep underwater detectors can be used as telescopes for high-energy neutrino
astronomy.

The optical requirements on the detector medium are severe. A large absorption length
is needed because it determines the required spacing of the optical sensors and, to a
significant extent, the cost of the detector. A long scattering length is needed to
preserve the geometry of the Cerenkov pattern. Nature has been kind and offered ice
and water as the natural Cerenkov media. Their optical properties are, in fact,
complementary. Water and ice have comparable attenuation lengths, with the roles of
scattering and absorption reversed. Optics seems, at present, to drive the evolution of
ice and water detectors in predictable directions: towards very large telescope area in
ice exploiting the long absorption length, and towards lower threshold and good muon
track reconstruction in water exploiting the long scattering length.

Figure 145d shows a map of present-day underwater/ice Cherenkov neutrino telescope
projects (see also Table 14 of Sect. 2.9.7 for a summary of their status).

dBy Francis Halzen <http://icecube.wisc.edu/ ˜ halzen/> .
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Figure 145: A map of underwater/ice Cherenkov neutrino telescope projects [by Francis Halzen

<http://icecube.wisc.edu/ ˜ halzen/> ].
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2.11.1 Again Cherenkov...

The underwater/ice neutrino telescopes collect Cherenkov light from high-energy
muons, electromagnetic and hadronic showers generated by neutrinos in the detector
medium. This light can be recorded at distances up to about 100 m depending upon
the light absorption of water or ice. Light pulses from lasers, widely used in these arrays
for calibration, can be recorded over even larger distances. At such distances, the
difference between phase and group velocities of light in water or ice is essential.a

Let us discuss this difference in short.

A few facts from school physics
First of all we consider the simplest mono-
chromatic sine wave

A(r, t) = A0 cos(kr− ωt).

The speed at which the shape of this wave
is moving is given by the condition (see
Fig. 146)

k∆r− ω∆t = 0, ∆t→ 0.
Figure 146: A sine wave.

aL. A. Kuzmichev, “On the velocity of light signals in deep underwater neutrino experiments,” Nucl.
Instrum. Meth. A 482 (2002) 304-306 (hep-ex/0005036). Baikal NT experience shows that vg rather
than vp must be used for time-calibration of the detector modules with an outside laser.
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Consequently the speed

vp = ṙ = lim
∆t→0

∆r

∆t
= ∇kω

is called the phase velocity of the wave.

Let us now consider a signal consisting of two superimposed sine waves with slightly
different frequencies and wavelengths, i.e., a signal with the amplitude function

A(r, t) = A0 cos [(k−K) r− (ω − Ω)t] +A0 cos [(k + K) r− (ω + Ω)t]

Using a well-known trigonometric identity we can
express the overall signal as

A(r, t) = B(r, t) cos(kr− ωt),

where

B(r, t) = 2A0 cos (Kr− Ωt) .
Figure 147: A modulated wave.

This can be somewhat loosely interpreted as a simple sinusoidal wave with the angular
velocity ω, the wave vector k and the modulated amplitude B(r, t) (see Fig. 147).

In other words, the amplitude of the wave is itself a wave and the phase velocity of this
modulation wave is vg = ∇KΩ. The propagation of information or energy in a wave
always occurs as a change in the wave.
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An obvious example is changing the wave from being absent to being present, which
propagates at the speed of the leading edge of a wave train. More generally, some
modulation of the frequency and/or amplitude of a wave is required in order to convey
information, and it is this modulation that represents the signal content.
Hence the actual speed of content in the situation
described above is vg. This is the phase velocity of
the amplitude wave, but since each amplitude wave
contains a group of internal waves, vg is called the
group velocity.

Ergo, we have to use vg.

In the generic case the group velocity of an elec-
tromagnetic wave in a matter with the dispersion
relation ω = ω(k) is defined by

vg = ∇kω(k).

In a transparent optical medium the refractive in-
dex n = n(k) is defined as the ratio c/vp. Now,
since vp = ω/k, we have ω = ck/n. Therefore

vg =
∂ω

∂k
=
c

n
− ck

n2

dn

dk
= vp

(
1− k

n

dn

dk

)
.

Figure 148: Wavelength depen-
dences of n (curve 1) and ng =
n − λ∂n/∂λ (data points and
curve 2) for distilled Baikal water.
[From B. K. Lubsandorzhiev et al., Nucl. In-

strum. Meth. A 502 (2003) 168–171 (astro-

ph/0211079).]
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Figure 149: Light velocity vs light wavelength for several underwater neutrino telescope
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2.11.2 DUMAND

The DUMAND (Deep Underwater Muon and Neutrino Detector) proposal aimed for a
250× 250× 500 m3 array of 756 detector modules to be located at a depth of 4.5. km
in the Pacific Ocean near Hawaii Island. The expanded schematic diagram in Fig. 150
shows the underwater location of the detector, the full array of 36 strings with optical
sensores and a single PMT module. Theenclosed target mass of the detector is
30 Mtons and its effective area is about 105 m2. The angular resolution was estimated
at 15 to 45 mrads, depending on the muon energy.
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Figure 150: Proposed configuration of the DUMAND detector.
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In the middle of 90s, the DU-
MAND Collaboration intended to
deploy a prototype 9-string array
(Fig. 151) in two phases: first 3
strings (the triad) as a demonstra-
tion, and the remaining 6 strings
(complete octagon, plus center
string) after about 1 year of test-
ing and operation. The effec-
tive detection area of the full 9-
string array was estimated as ∼
2× 104 m2.
The Island of Hawaii was selected
for the deployment due to excep-
tional water clarity, proximity of
an abyssal plain (4.8 km) with
appropriate seabed characteristics
to a suitable shore site (30 km
away), pre-existing laboratory in-
frastructure at the shore site (due
to an ocean thermal energy re-
search project).

104.6 m

230 m

9 strings, 24 PMTs each,
10 m vertical spacing,
40 m horizontal spacing

4800 m depth
30 km W of Keahole Point,
Hawaii

Phase I
(3 strings)

Phase II
(6 additional strings)

Responders
(sonar modules)

Cable to shore
(32 km, 12 optical
fibers, 5 mW power)

Junction box 
(includes power control & environmental electronics)

Figure 151: A sketch of the DUMAND-II un-
derwater neutrino detector. [From R. J. Wilkes,

astro-ph/9412019.]
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2.11.3 Baikal neutrino telescope

The Lake Baikal neutrino experiment exploits the deep water of the great Siberian lake
as a detection medium for high-energy neutrinos via muons and electrons generated in
neutrino interactions.

Figure 152: Left panel: space image of wintry Baikal. Right panel: ice campus of the col-
laboration with Khamar-Daban mountain at skyline (March, 1987). [From http://nt200.da.ru/.]

The neutrino telescope NT-200, put into operation at April, 1998, is located in the
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southern part of the lake (51.50◦ N, 104.20◦ E) at a distance of 3.6 km from the nearest
shore and at a depth of about 1.1 km. The distance to the opposite shore is more than
30 km. This asymmetry allows to study the asymmetry in the azimuth distribution of
muons arriving at large zenith angles.

The absorption length of water at the site is about 20 m for wavelengths between 470
and 500 nm, and seasonal variations are less than 20%. Light scattering is subjected
strongly to seasonal variations and to variations from year to year.

Figure 153a shows the layout of the Baikal NT-200 and the preceding array NT-96 (on
the right) which took data between April 1996 and March 1997.b The NT-200 consists
of 192 optical modules (OMs) at 8 strings arranged at an umbrella-like frame. Pairs of
OMs are switched in coincidence with a 15 ns time window and define a channel. The
array is time-calibrated by two nitrogen lasers. Of these, one (fiber laser) is mounted
just above the array. Its light is guided via optical fibers to each OM pair. The other
(water laser) is arranged 20 m below the array. Its light propagates directly through
water. The expansion on the left of the figure shows two pairs of optical modules
(“svjaska”) with the electronics module, which houses parts of the readout and control
electronics. Three underwater electrical cables connect the detector with the shore
station.

aDescription of the telescope and figures 153 and 155 are borrowed from Ch. Spiering et al. (Baikal
Collaboration), Prog. Part. Nucl. Phys. 40 (1998) 391 [astro-ph/9801044]; V. A. Balkanov et al. (Baikal
Collaboration), Yad. Fiz. 63 (2000) 1027 [Phys. Atom. Nucl. 63 (2000) 951] (astro-ph/0001151).

bVarious stages of the stepwise increasing detector are NT-36 (1993–1995), NT-72 (1995–1996),
NT-96 (1996–1997) and NT-144 (1997–1998).
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Figure 153: NT-200 and NT-96 schematic view (see text for description and references).
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Overal view of the
NT-200 telescope is
shown in Fig. 154.
Here, 1, 2 and 3 are
cables to shore; 4, 5
and 6 are the string
stations for shore ca-
bles; 7 is the string
with the telecsope;
8 is the hydrometric
string; 9–14 are the
ultrasonic emitters.
The insert at the left
bottom of the figure
shows two pairs of op-
tical modules (OM)
together with the elec-
tronic module control-
ling the OMs. Shown
are two pairs of OMs
directed face to face.

1

9

7.5 m

Module

Modules

Optical

Electronics

40 cm

10

11

12

13

600 m

4
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6

1366 m 

3600  m
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Figure 154: Overal view of the NT-200 complex in Lake Baikal.
[From V. A. Balkanov et al., “In-situ measurements of optical parameters in Lake

Baikal with the help of a neutrino telescope,” Appl. Opt. 33 (1999) 6818–6825

(astro-ph/9903342).]
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Fig. 155 displays three neutrino candidates separated during 18 days of the NT-96
exposition (the time period between April 16 and May 17, 1996).

(a) A “gold plated” 19-hit neutrino event. Hit channels are in color. The thick line
gives the reconstructed muon path, thin lines pointing to the channels mark the
path of the Cherenkov photons as given by the fit to the measured times. The
areas of the elipses are proportional to the measured amplitudes. The fake
probability of this event was estimated to be smaller than 1%.

(b) An unambiguous 14-hit neutrino candidate.

(c) An ambiguous event reconstructed as a neutrino event (dashed line) but with a
second solution above the horizon (solid line). This event is assigned to the sample
of downward going muons.

The data set collected with NT-200 during 268 live days (till 1999) yields 84 upward
going muons. The MC simulation of upward muon tracks due to atmospheric neutrinos
gives 80.5 events. The skyplot of the upward muons is shown in Fig. 156. Fig. 157
shows a comparison between the measured and simulation angular distributions.

Fig. 161 shows NT-200+ – an upgrade of the NT-200 by three sparsely instrumented
distant outer strings which will increase the fiducial volume for high-energy cascades to
a few dozen Mtons. Correspondingly, the NT-200+ sensitivity will be 4 times better
than that of NT-200, with a moderate 20% increase of optical modules only. A
prototype string of 140m length with 12 optical modules was deployed in March 2003,
and electronics, data acquisition and calibration systems for NT-200+ have been tested.
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(a) (c)(b)

Figure 155: Three neutrino candidates recorded in NT-96 (see text for details).
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Figure 156: Skyplot (in equatorial coordinates) of 84 upward-going muon events recorded
in the Baikal NT-200 experiment. [From R.Wischnewski (for the Baikal Collaboration), contribution to the

28th ICRC, Tsukuda, Japan, July 31 – August 7, 2003 (astro-ph/0305302).]
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Figure 157: Zenith angle distribution of 84 upward-going reconstructed events in the
Baikal NT-200 experiment and MC simulated distribution of upward muon tracks due to
atmospheric neutrinos. Eth = 15− 20 GeV in this experiment. [From V. Aynutdinov et al., “The

BAIKAL neutrino project: Status, results and perspectives,” Nucl. Phys. B (Proc. Suppl.) 143 (2005) 335–342.]
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Figure 158: The same as in Fig. 157 but for selected neutrino candidates. Eth = 10 GeV.
[From V. Aynutdinov et al., Nucl. Phys. B (Proc. Suppl.) 143 (2005) 335–342.]
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Figure 159: Limits on the excess muon flux from the center of the Earth vs half-cone of
the search angle (left) and as a function of WIMP mass (right).
[From V. Aynutdinov et al., Nucl. Phys. B (Proc. Suppl.) 143 (2005) 335–342.]
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Figure 160: Upper limits on the flux of fast monopoles (left) and neutrino fluxes (right)
obtained in different experiments. The neutrino fluxes expected from some astrophysical
sources are also shown in th right panel.
[From V. Aynutdinov et al., Nucl. Phys. B (Proc. Suppl.) 143 (2005) 335–342.]
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Figure 161: Future NT-200+ configuration. Three additional outer (plus one possi-
ble central) strings will allow a much better vertex identification and hence a signifi-
cantly more precise measurement of cascade energy in a volume around NT-200. [From

R. Wischnewski, 2003 (see caption to Fig. 156).]
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Figure 162: Reconstructed vs simulated coordinates of cascades in NT-200+ (rectangles)
and NT-200 (crosses). [From V. Aynutdinov et al., Nucl. Phys. B (Proc. Suppl.) 143 (2005) 335–342.]
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Figure 163: Top view of a Gigaton Volume Detector (GVD) in Lake Baikal with sketch
of one of its sub-arrays. [From V. Aynutdinov et al., Nucl. Phys. B (Proc. Suppl.) 143 (2005) 335–342.]
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2.11.4 AMANDA

The AMANDA (Antarctic Muon And Neutrino Detector Array) detector is located at
the South Pole station, Antarctica. Figures 164 and 165 show the South Pole Station.

Figure 164: Construction of the new South Pole Station as of February, 2002. [From

http://www.amanda.uci.edu/.]

The detector uses the 2.8 km thick ice sheet at the South Pole as a neutrino target,
Cherenkov medium and cosmic ray flux attenuator. The detector consists of vertical

VN Sesto Fiorentino, April–May, 2005



strings of optical modules (OMs) – photomultiplier tubes sealed in glass pressure
vessels – frozen into the ice at depths of 1500–2000m below the surface.

Figure 165: The South Pole Station. The AMANDA-II telescope electronics are lo-
cated on the 2nd floor of MAPO, the blue building shown in this picture. [From

http://www.amanda.uci.edu/.]

Fine photos of the Amundsen-Scott South Pole Station are given in Figs. 166 and 167.a

aBorrowed from the Francis Halzen’s homepage <http://icecube.wisc.edu/ ˜ halzen/> .
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Figure 166: Amundsen-Scott South Pole Station.
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Figure 167: One another vie of the South Pole Station.

VN Sesto Fiorentino, April–May, 2005



Figure 168 shows the current configu-
ration of the AMANDA detector. The
shallow array, AMANDA-A, was de-
ployed at depths of 800 to 1000m
in 1993–1994 in an exploratory phase
of the project. Studies of the optical
properties of the ice carried out with
AMANDA-A showed a high concen-
tration of air bubbles at these depths,
leading to strong scattering of light
and making accurate track reconstruc-
tion impossible. Therefore, a deeper
array of 10 strings with 302 OMs was
deployed in the austral summers of
1995–1996 and 1996–1997 at depths
of 1500–2000 m. This detector is re-
ferred to as AMANDA-B10. It was
augmented by 3 additional strings in
1997–1998 and 6 in 1999–2000, form-
ing the AMANDA-II array. This de-
tector has been calibrated and in op-
eration since January 2000.
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Figure 168: Schematic view of the AMANDA-
II array at the South Pole. [From J. Ahrens et al.,

Phys. Rev. D 66 (2002) 012005 [astro-ph/0205109].]
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Figure 169 is an artistic view of a neutrino induced
event in the AMANDA detector while Fig. 170 dis-
plays three real neutrino candidates. Let us describe
these with some details.

(a) Event display of an upgoing muon event. The
gray scale indicates the flow of time, with early
hits at the bottom and the latest hits at the top
of the array. The arrival times match the speed
of light. The sizes of the ellipses correspond to
the measured amplitudes.

(b) The upgoing muon event has a smooth distrib-
ution of hits along the extended uniform track.
The track-like hit topology of this event can be
used to distinguish it from background events.

(c) A background event with a poor smoothness
value and a large deviation from a straight line.

Figure 169: Artistic view of a ν
induced event in the AMANDA
detector.

Two more neutrino candidates (both were recorded on May 11, 2000) are shown in
Fig. 171 borrowed from URL <http://amanda.physics.wisc.edu/> .a

aIn this site, there a lot of nice animated images relevant to the subject.
VN Sesto Fiorentino, April–May, 2005



(a) (c)(b)

Figure 170: Three neutrino candidates recorded in AMANDA-B10 (see text).
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Figure 171: Two more neutrino candidates in AMANDA, #910225 and #10604848 (both
were recorded on May 11, 2000). [From <http://amanda.physics.wisc.edu/> .]
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Figure 172 shows the skyplot (equatorial coordinates) of all the candidate neutrino
events found in AMANDA-B10.The distribution of the events on the skyplot is
consistent with a random distribution. The combined skyplot of the AMANDA-B10 and
Baikal NT-200 candidate neutrino events is shown in Fig. 173.

The angular distribution for the 204 events is shown in Fig. 174 and compared to that
for the simulation of atmospheric neutrinos.a In the figure the Monte Carlo events are
normalized to the number of observed events to facilitate comparison of the shapes of
the distributions. The agreement in absolute number is consistent with the systematic
uncertainties in the absolute sensitivity and the flux of high-energy atmospheric
neutrinos. The shape of the distribution of data is statistically consistent with the
prediction from atmospheric neutrinos.

Preliminary results on the neutrino energy spectra are shown in Fig. 175. For the first
time, the spectrum was measured up to 100TeV. It is compared to the high-energy
data from the Fréjus experimentb and with the horizontal and vertical AN flux
parametrizations according to Volkova.c The error bars give the statistical error from
the unfolding procedure plus an overall systematic uncertainty. The reconstructed data
are in agreement with current calculations of the AN flux and shows an overlap with
the Fréjus results.

aFor more recent data see E. Andres et al., Nature 423 (2001) 415.
bK.Daum et al. (Fréjus Collaboration), Z. Phys. C 66 (1995) 417;
W.Rhode et al. (Fréjus Collaboration), Astropart. Phys. 4 (1996) 217.

cL. V. Volkova, Yad. Fiz. 31 (1980) 1510 [Sov. J. Nucl. Phys. 31 (1980) 784].
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Figure 172: Skyplot of upward-going events as seen with AMANDA-B10 in 1997 in
equatorial coordinates. The background of non-neutrino events is estimated to be less
than 10%. [From J. Ahrens et al. (2002); see caption to Fig. 168.]
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Figure 173: Merged skyplot of upward-going events recorded in both Baikal NT-200 and
AMANDA-B10 experiments. The data are the same as in Figs. 156 and 172.
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Figure 174: Zenith angle distribution of 204 upward-going reconstructed events in the
AMANDA-B10 experiment and MC simulated distribution of upward muon tracks due to
atmospheric neutrinos. The size of the hatched boxes indicates the statistical precision
of the atmospheric neutrino simulation. The Monte Carlo prediction is normalized to the
data. [From J. Ahrens et al. (2002); see caption to Fig. 168.]
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2.11.5 KM3 projects

Figure 176: Future KM3 neutrino telescope geometries. Left panel: schematic view of
a homogeneous detector with 8000 PMTs (not quite optimal to be built); middle panel:
the layout of a NESTOR-like detector with 8750 PMTs; right panel: the layout of a
NEMO-like detector with 4096 PMTs. These three designs have very different degrees of
homogeneity. One more difference may be due to various numbers of downward-looking
and upward-looking PMTs (down-down, up-down, etc.).
[From D. Zaborov, “Comparison of different KM3 designs using Antares tools,” in Proc. of the Workshop on Technical

Aspects of a Very Large Volume Neutrino Telescope in the Mediterranean Sea “’VLVνT’, Amsterdam, October 5-8,

2003, ed. by E. de Wolf (NIKHEF, Amsterdam, The Netherlands), pp. 104–108.]
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3 High-Energy Neutrino Propagation Through Matter
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3.1 Neutrino transport through dense media

Passing through a medium, high-energy neutrinos and antineutrinos are absorbed and
lose their energy (and therefore regenerate) due to charged and neutral current
interactions. In a normal cold medium, like the earth’s or stellar interior, these are νN
(νN) and νe (νe) collisions. In more exotic media, as in hot galactic haloes filled with
massive neutrinos, and at super-high energies, the νν annihilation become important.
As a result, the spectrum of extraterrestrial neutrinos, in their passage from a source to
a detector, is transformed in the medium surrounding the source, then in the cosmic
backgrounds, and finally in the Earth. For media with thickness in excess of several
neutrino interaction lengths, λν , this transformation becomes dramatic.a Therefore, a
detailed study of the neutrino transport through thick media, taking account of the
neutrino regeneration, is one of the key elements for UHE neutrino astrophysics.

In the last years, several projects have been proposed for the search of UHE
extraterrestrial neutrinos through detecting Cherenkov radiation from the muons and
electromagnetic or hadronic showers produced by neutrinos in the transparent detector
medium (water or ice) and in the surrounding rock. Some initial results of the current
experiments with AMANDA and Baikal neutrino telescopes were considered in
Sect. 2.10 .

aThe thickness of the Earth along the diameter exceeds the interaction length at E & 35 TeV for νµ

and E & 60 TeV for νµ.
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Other projects, ANTARES, NEMO, NESTOR, IceCube, etc. are under development.
The ultimate (still remote) aim of these projects is to build a huge observatory with a
sensitive volume up to 1 km3 for UHE neutrino astrophysics and searching for particle
physics beyond the Standard Model, specifically, for studying speculative neutrino
interactions like direct-channel production of superpartner resonances through
R-parity-violating couplings and so on detecting neutrino signals from annihilation of
dark matter particles captured in the Sun and in the Earth, an so on.

A further increase of the sensitivity of underwater/ice neutrino telescopes would be
possible with techniques based upon hydroacoustic and radiowave detection of
neutrino-induced showers. It was showna that the ground-based Pierre Auger
Observatory has also a potential to detect neutrinos of energies in the multi-EeV range
through near-horizontal air showers. We will discuss this question later, in Part II,
together with the potentials of the more futuristic projects, based on the
“Space-Airwatch” method (EUSO, KLYPVE, OWL, etc.). Evidently, the problem of the
neutrino transport through matter will grow in importance with an increase in the
neutrino energy range accessible to observations.

aSee, e.g., K. S. Capelle et al., Astropart. Phys. 8 (1998) 321. The idea of detecting the ν-induced
horizontal showers at ground level was put forward by V. S. Berezinsky and A. Yu. Smirnov, Astrophys.
Space Sci. 32 (1975) 461. Some estimates for the ν-induced upgoing showers were done by G.Domokos
and S. Kovesi-Domokos, hep–ph/9805221, hep–ph/9801362.
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The neutral-current impact on the electron and muon (anti)neutrino absorption and
regeneration was for the first time investigated in Berezinsky et al.a for the case of
power-law initial spectra. Within a simple approximation, it was shown that the
neutrino absorption length, Λν , exceeds the interaction length, λν , as in the case of
hadronic cascades. As a consequence, the regeneration correction to the neutrino
penetration coefficient grows exponentially with depth and energy.

The effect of neutral currents for the non-power spectrum of neutrinos was studied by
Bugaev et al.b The authors considered the neutrinos originated from annihilation of
massive neutralinos captured in the solar core and for the spectrum of AGN neutrinos
penetrating the Earth. They used the method of successive generations and direct
Monte Carlo simulation. It was shown, in particular, that the regeneration due to
neutral currents essentially affects the flux of the ν-induced upward-going muons. For
example, in the case of AGN neutrinos, the yield of the vertical muons with energies
≥ 100 TeV per one neutrino with energy of 20PeV (60PeV) is roughly 100 (1000)
times more than that estimated neglecting the correction due to the neutrino
regeneration. Clearly, the effect diminishes after integration of the muon yield over the
neutrino spectrum, but it increases fast with increasing the muon energy threshold.

aV. S. Berezinsky, A. G. Gazizov, G. T. Zatsepin, and I. L. Rozental’, Yad. Fiz. 43 (1986) 637 [Sov. J.
Nucl. Phys. 43 (1986) 406].

bE.V. Bugaev, S. P.Mikheyev, and O.V. Suvorova, in Proc. of the 24th Internat. Cosmic Ray Conf.,
Rome, Italy, 1995, Vol. 1 , p. 666.
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Below, we will consider some results for the muon neutrino and antineutrino transport
through dense media obtained by using the Z factor method described in Sect. 1.2.3 a

Note that the standard numerical methods, like Monte Carlo or the method of
successive generations work well for moderate depths but they become inefficient for
the depths h� λν . The Z factor method works for media of any thickness. Here, we
will only consider decreasing unbroken initial spectra most interesting for the UHE
neutrino astrophysics. To avoid technical complications, we will neglect the (standard
and hypothetical) flavor-changing neutrino interactions. Also we well neglect the effects
of neutrino flavor mixing and refraction (see Sect. 3.2 ). In other words, we will
consider the simplest “classical” scenario for neutrino propagation which can be
described by the single TE. Lastly, we will consider sufficiently high energies in order to
neglect the thermal velocities of the scatterers in the background medium and to deal
with the 1D theory. We will discuss the results obtained with some specific models for
the initial spectra of νµ and νµ propagating through a normal cold medium, specifically
through the Earth.

The limitation of the case of dense media will allow us to neglect the charged-current
induced regeneration processes. To elucidate this point, let us briefly look at the main
features of the neutrino transport in rarefied media.

aSee also V. A. Naumov and L. Perrone, Astropart. Phys. 10 (1999) 239 (hep–ph/9804301) for more
details, in particular, for description of the input data.
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Figure 177: Primitive schemes for neutrino production, absorption and regeneration in
matter.
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3.1.1 Why is dense medium somewhat simpler than rarefied?

In dense enough matter, the main regeneration mechanism is the NC induced energy
loss with no change of flavor:

ν` +N → ν` +X, ν` +N → ν` +X (` = e, µ, τ).

The neutrino scattering off electrons (both CC and NC) is usually unimportant with the
only exception (for a normal C asymmetric matter) for νe which can effectively
regenerate (in very narrow energy range) through the reaction

νee
− →W− → νee

−.

This is a particular case because of the W boson resonance formed in the neighborhood
of
√
s = mW (that is E res

ν = m2
W /2me ≈ 6.33PeV) (see Fig. 178 and Table 19).

Under the same conditions, neutrinos may transform, changing flavor and energy via
processes

νee
− → ν``

− or ν`e
− → νe`

−.

Another way for the regeneration is through production and decay of unstable hadrons.

In exotic media (as in hot galactic haloes filled with massive neutrinos) neutrinos can
chane flavor through the reaction chains like

νµντ → µ−τ+, τ+ → ντX, etc.
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Figure 178: Total cross sections for (anti)neutrino interactions on electron targets. The
cross sections for (anti)neutrino CC and NC interactions on isoscalar nucleon are also
shown for a comparison.
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Table 19: Integrated cross sections for neutrino-electron and neutrino-nucleon scattering
at Eν = m2

W /2me ≈ 6.331PeV.

Reaction σ (cm2) Reaction σ (cm2)

νµe→ νµe 5.86× 10−36 νµN → µ− + anything 1.43× 10−33

νµe→ νµe 5.16× 10−36 νµN → νµ + anything 6.04× 10−34

νµe→ µνe 5.42× 10−35 νµN → µ+ + anything 1.41× 10−33

νee→ νee 3.10× 10−35 νµN → νµ + anything 5.98× 10−34

νee→ νee 5.215× 10−32

νee→ νµµ 5.214× 10−32

νee→ ντ τ 5.208× 10−32

νee→ hadrons 3.352× 10−31

νee→ anything 4.917× 10−31

Note:

The cross sections for electron targets listed in Table 19 were calculated using the
formulas given by Gandhi et al., a but some numerical values are different since the
inpit parameters were updated.

Just at the resonance peak, σtot
νee
≈ 250σtot

νeN
.

aR. Gandhi et al., Astropart. Phys. 5 (1996) 81 (hep–ph/9512364).
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In the most general case, the “regener-
ation function” Wν(y, E) is defined by

∑

T

NT
dσνT→νX(y, Ey)

dy
=

Wν(y, E)
∑

T

NTσ
tot
νT (E),

where dσνT→νX(y, E)/dy is the differ-
ential cross section for the inclusive re-
action νT → νX (with E the initial
neutrino energy and y the fraction of
energy lost), Ey≡E/(1− y), NT is the
number of scatterers T in 1 g of the
medium, σtot

νT (E) is the total cross sec-
tion for the νT interactions, and the
sum is over all scatterer types (T =
N, e, . . .). Figure 179 shows a particular
case for which only the νN NC and CC
interactions were taken into account.
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Regeneration in hadronic cascades

This mechanism can play a role if the column depth of the medium exceeds the
neutrino interaction length,

h & λin
ν (E),

while the average density (〈ρ〉) is low enough (like in the Thorne–Żytkow objects):

〈ρ〉 . ρ0
k

[
λin
k (Ek)

45 g/cm2

] [
1 PeV

Ek

]
.

Here λin
k (Ek) is the inelastic scattering length for a hadron k of energy Ek = ξkE at

production (45 g/cm2 is the typical value for a hydrogen-helium matter background),
ξk is the average fraction of the incident neutrino energy E carried by the hadron,

ρ0
k ≈

{
(0.8− 6.0)× 10−8 g/cm3 for k = π±,K0

L,K
±,

1.4× 10−2 g/cm3 for k = D±, D0, D0,Λ±
c .

Generally, this mechanism is not-too-effective because ξk � 1. However

✦ it becomes important for flat ν spectra, like ones expected from topological defects;

✦ regeneration due to neutrinoproduction and decay of charmed particles may be of
some effect for HE neutrinos propagating through the solar interior.
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Muon neutrino regeneration through CC induced chains

The charged-current induced chains

νµN → µ−X, µ− → νµνee
− and νµN → µ+X, µ+ → νµνee

+

are much more effective if only

〈ρ〉 . 6.4× 10−7

[
2.5× 10−6 cm2g−1

bµ(Eµ)

] [
1 PeV

Eµ

]
g

cm3
, (130)

where bµ is the muon fractional energy loss due to radiative and photonuclear
interactions, a slowly varying function of muon energy Eµ = ξµE and ξµ ∼ 1.
Elementary considerations suggest that

under condition (130), even very thick layers of matter
never become opaque to muon neutrinos and antineutrinos.

Note:

The form of distributions of density and composition of the medium also affects the
neutrino yields from decay of hadrons and muons. As a result, the regeneration effect
may be very different for neutrino beams penetrating the same nonuniform medium in
different directions.
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Tau neutrino regeneration through CC induced chains

HE and UHE ντ and ντ effectively regenerate (losing energy) even in rather dense
media, through the charged-current reaction chain

ντN → τX, τ → ντX.

Indeed, the corresponding “critical” density can be roughly estimated as

2× 104

[
10−8 cm2g−1

bτ (Eτ )

] [
1 PeV

Eτ

]
g

cm3
(Eτ = ξτE ∼ E).

The Earth is therefore effectively transparent for ντ and ντ at energies up to 1-10 EeV.

This fact is very profitable for future experiments with underwater NTs (e.g., detecting
ντ events from astrophysical neutrino oscillations at energies & 1 PeV) and especially
for UHE neutrino experiments based on the “Space-Airwatch” method.

Indeed, extraterrestrial ντ s will produce detectable upgoing showers from the whole
lower semisphere, whereas showers produced by UHE νes and νµs can be detected from
outer space only within a narrow solid angle around the horizontal directions.

Mathematically, inclusion of the processes that change the neutrino flavor and of neutrino

energy loss through creation and decay of short-lived particles leads to a system of TE that

explicitly include the density distribution along the neutrino beam path.
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Figure 180: A “double-bang” ντ in-
duced even simulation in IceCube.

Figure 180a shows a simulation of a ultra-high
energy τ lepton generated in IceCube by the
interaction of a 107 GeV ντ , followed by the
decay of the secondary τ lepton. The color
represents the time sequence of the hits (red-
orange-yellow-green-blue). The size of the
dots corresponds to the number of photons
detected by the individual photomultipliers. In
this event, both “bangs” (showers) as well as
the τ lepton track can be identified. More-
over, one gets to measure the total energy of
the incident neutrino and nearly the full kine-
matics of the double bang events. Such a nice
signature has been discussed for the first time
by Learned and Pakvasa.b

aBorrowed from F. Halzen, “The highest energy
cosmic rays, gamma-rays and neutrinos: Facts, fancy
and resolution,” Int. J. Mod. Phys. A 17 (2002) 3432–
3445 (astro-ph/0111059).

bJ. G. Learned and S. Pakvasa, “Detecting ντ os-
cillations at PeV energies,” Astropart. Phys. 3 (1995)
267–274 (hep-ph/9405296).
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Figure 181: Schematic ν initiated air show-
ers. [from S. Bottai and S. Giurgola, Astropart. Phys. 18

(2003) 539 (astro-ph/0205325).]

Figure 182: Upward and horizontal τ show-
ers. [from D. Fargion, astro-ph/0307485].

Figure 181:
τ ’s created in CC ντ interactions inside
the Earth could emerge from the Earth
surface and eventually decay in the at-
mosphere. These events could be detected
by EAS detectors as upwardgoing showers.

Figure 182:
Upward and horizontal τ air showers
originate from UHE ντ ’s skimming
the Earth. The open fan-like jets are
due to geomagnetic bending at high quota
(20− 30 km for upward and 23− 40 km for
horizontal showers). The shower may be
pointing to an orbiting satellite detector
(e.g. EUSO). The shower tail may
be spread by the geomagnetic field into a
thin beam observable by the detector as a
small blazing oval (few dot-pixels) aligned
orthogonal to the local geomagnetic field.
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3.1.2 The Earth’s interior

We will neglect the nonsphericity of the Earth. Then, the column depth of the Earth in
direction ϑ between the neutrino entrant point A and the current point B, defined

parametrically by the angle α, is given by

h =





h⊕ (α, ϑ) , for 0 ≤ α ≤ π

2
− ϑ,

2h⊕
(π

2
− ϑ, ϑ

)
− h⊕ (α, ϑ) ,

for
π

2
− ϑ < α ≤ π − 2ϑ,

where

h⊕ (α, ϑ) =

∫ R⊕

R(α,ϑ)

ρ(R)dR√

1− sin2 ϑ

(
R⊕
R

)2
,

R(α, ϑ) =
R⊕ sinϑ

sin(α+ ϑ)
,

ρ(R) is the radial density distribution and R⊕
is the (mean) radius of the Earth.

ϑ

ϑ

α

R
R

A

B

dM = h(A,B)dS

Figure 183: Definition of variables to
derive the depth h(α, ϑ) for the Earth.
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The depth of the Earth along the whole chord (α = π − 2ϑ) is given by

hϑ = 2h⊕
(π

2
− ϑ, ϑ

)
= 2

∫ R⊕

R⊕ sinϑ

ρ(R)

[
1− sin2 ϑ

(
R⊕
R

)2
]−1/2

dR. (131)

According to Don Anderson,a

“Almost everything known or inferred
about the inner core, from seismology or in-
direct inference, is controversial”.

Fig. 184 schematically shows the Earth’s interior. The
volumetric relation of the various regions of the core
to the whole Earth is shown: outer core (pale blue)
occupies 15%, the inner core (pink) occupies less than
1%, and the innermost inner core (red) constitutes only
0.01% of the Earth’s volume. The Earth’s core lies
beneath 3,000-km thick, heterogeneous mantle (anom-
alies with higher than average seismic speed are shown
in blue and those with lower than average speed are
shown in red) making investigations of core properties
challenging.

aD. L. Anderson, “The innerinner core of Earth,” Proc. Natl.
Acad. Sci. USA 99 (2002) 13966–13968.

Figure 184: A schematis view
of the Earth’s interior.
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For the radial density distribution in the Earth, it is now conventional to use the
so-called “Preliminary Reference Earth Model” (PREM).a In this model, the Earth is

Table 20: Coefficients of the polynomials for the PREM.

n Rn+1 an0 an1 an2 an3

(km)

0 1221.5 13.0885 -8.8381
1 3480.0 12.5815 -1.2638 -3.6426 -5.5281
2 5701.0 7.9565 -6.4761 5.5283 -3.0807
3 5771.0 5.3197 -1.4836
4 5971.0 11.2494 -8.0298
5 6151.0 7.1089 -3.8045
6 6346.6 2.6910 0.6924
7 6356.0 2.9000 ← crust (must be replaced
8 6368.0 2.6000 with the local values)
9 6371.0 1.0200 ← ocean (ditto)

divided into 10 concentric
layers and the density
distribution, ρ = ρ(R), in
each layer is approximated
by a cubical polynomial:

ρ(R) =
3∑

k=0

ank (R/R⊕)
k
,

Rn ≤ R < Rn+1,

n = 0, 1, . . . , 9

(R0 = 0, R10 = R⊕).

The nonzero coefficients
ank [in g/cm3] are listed
in Table 20. Graphical re-
presentation of the model
is shown in Figs. 185, 186.

aA. M. Dziewonski and D. L. Anderson, Phys. Earth Planet. Inter. 25 (1981) 297; see also
A. M. Dziewonski, “Earth structure, global”, in Encyclopedia of solid Earth geophysics, edited by
D. E. James (Van Nostrand Reinhold, New York, 1989), p. 331.
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Figure 185 shows the Earth’s layers according to PREM. The four outermost and two
inner layers are shown as single ones. Radial density distribution in the Earth calculated
according to PREM is shown in Fig. 186.

<ρ> = 5.52 g/cm 3
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Figure 185: A schematis view of the
Earth’s layers according to PREM.

Figure 186: Radial density distribution in
the Earth according to PREM.
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The function hϑ (that is the col-
umn depth of the Earth along
the total chord with the tar-
get distance of R⊕ sinϑ from
the center of the Earth) calcu-
lated with the PREM is shown
in Fig. 187 as a function of
zenith angle ϑ. The kinks are, of
course, due to the layered struc-
ture of the Earth.
In particular, according to
PREM and Eq. (131), the
depth of the Earth along its
diameter is equal to

h⊕ = 2h⊕ (π/2, 0)

' 1.095× 1010 g/cm2.
(132)

It is 107 times larger than
the vertical depth of the at-
mosphere.
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Figure 187: The column depth of the Earth vs zenith
angle, evaluated within the PREM.
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3.1.3 Chemical composition of the Earth (where the devil dwells in?)

Measurements of the propagation of seismological waves in the Earth and studies of the
properties of minerals under high pressure, have been combined to determine the
chemical composition of the Earth’s interior.
It is dominated by the elements iron (Fe),

oxygen (O), silicon (Si), magnesium (Mg),

nickel (Ni) and sulfur (S). This is because
most of the mass of the Earth occurs within
the mantle which is composed largely of the
ferromagnesium silicate minerals olivine and
pyroxenes.
• The crust of the Earth mainly comprises
the minerals plagioclase, quartz and horn-
blende and is dominated by the elements
oxygen (O), silicon (Si), aluminium (Al), iron

(Fe), calcium (Ca), sodium (Na) and potas-

sium (K).

Table 21: Masses (×1027 g) of the six
most abundant elements in the whole
Earth’s core as estimated by Herndon
[see J. M.Herndon, Phys. Earth Planet. Inter. 105

(1998) 1 and references therein.]

Element 1980/82 1993

Magnesium (Mg) 0.0475 0.0389
Silicon (Si) 0.0326 0.0376
Calcium (Ca) 0.0184 0.0178
Sulfur (S) 0.284 0.285
Iron (Fe) 1.45 1.46
Nickel (Ni) 0.0831 0.0871

• The core of the Earth is largely composed of iron-nickel alloy.

The overall composition of the Earth is very similar to that of meteorites, and because of this, it is

thought that the Earth originally formed from planetesimals composed largely of metallic iron and

silicates.
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Figure 188: Structure and composition of the Earth according to the Australian Museum
online [URL <http://www.amonline.net.au/> ].
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3.1.4 Charge-to-mass ratio distribution in the Earth

The mean charge-to-mass ratio, 〈Z/A〉, has
been estimated by Bahcall and Krastev.a

Summary:
✦ 〈Z/A〉 = 0.468 for the core

(83% Fe, 9% Ni and 8% light elements
with Z/A = 0.5),

✦ 〈Z/A〉 = 0.497 for the mantle
(41.2% SiO2, 52.7% MgO and 6.1%
FeO).

[These data are only in qualitative agreement
with those from Fig. 188.]
The charge composition of the Earth may
also be illustratedis in terms of the num-
ber densities of u and d quarks and electrons
(Fig. 189).

The composition is almost isoscalar but
the deviations are not negligible.
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Figure 189: Estimated number densities
of quarks and electrons vs distance from
the center of the Earth. [From J. Kameda,

Ph. D Thesis, University of Tokyo, September, 2002.]

aJ. N. Bahcall and P. I. Krastev, Phys. Rev. C 56 (1997) 2839. The estimations are based on the
experimental data from Y. Zhao and D. L. Anderson, Phys. Earth Planet. Inter. 85 (1994) 273.
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Figure 190: DIS contributions to the total CC νµn, νµp, νµp and νµn cross sections.
Calculations are done with GRV98 NLO PDFs for W < Wc (where W is the invariant
mass of the final state hadronic system) with different cutoffs Wc = mN + kmπ, [k =
0, 1, . . . , 8 from left to right and from top to bottom].
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3.1.5 Numerical results for muon neutrinos

Figure 191 shows the energy dependence of the Z factors, Zνµ
(E, h) and Zνµ

(E, h) for
various depths, calculated with the following model for the initial neutrino spectrum:

F 0
ν (E) = K

(
E0

E

)γ+1 (
1 +

E

E0

)−α
φ

(
E

Ecut

)
, (133)

where K, γ, α, E0, and Ecut are parameters and φ(x) is a function equal to 0 at t ≥ 1
and 1 at x� 1. Varying the parameters in Eq. (133), one can approximate many
models for the neutrino fluxes expected from the known astrophysical sources.
Technically, the function φ(t) serves to avoid an extrapolation of the cross sections to
the extremely-high energy region for which our knowledge of the parton density
functions becomes doubtful. For realistic values of the parameters γ, α, and E0, the
explicit form of φ(t) is of no importance for as long as one is interested in the energy
range E � Ecut. Here it is adopted φ(x) = 1/ [1 + tan (πx/2)] (x < 1) and
Ecut = 3× 1010 GeV. The calculations were made in the fourth order of the iteration
procedure. For all the spectra under discussion, for 10 GeV ≤ E ≤ 1010 GeV and

0 ≤ h ≤ h⊕, the maximum difference between Z
(1)
ν (E, h) and Z

(2)
ν (E, h) is about 4%;

the value
∣∣∣Z(3)
ν /Z

(2)
ν − 1

∣∣∣ is less than 2× 10−3, and
∣∣∣Z(4)
ν /Z

(3)
ν − 1

∣∣∣ is less than the

precision of the numerical integration and interpolation (about 10−5) adopted in the
calculations.
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Figure 191: Z factors, Zνµ
(E, h) and Zνµ

(E, h) vs energy for the initial spectra (133),
calculated with four different sets of γ and α with E0 = 1 PeV for depths h = h⊕/k
[k = 1, 2, 3, 5, 10, 20, 50 from bottom to top] and h = 0 (the largest Z factors).
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After tests with many models for the initial spectrum, one can conclude that the
convergence of the algorithm is very good and that even the first approximation,

Z
(1)
ν (E, h), has an accuracy quite sufficient for the majority of applications of the

theory.

Figure 192 shows the penetration coefficient, exp [−x/Λν(E, h)], in the Earth for muon
neutrinos with the initial spectrum (133) calculated with γ = 0.7 and α = 0
(“quasi-power-law” spectrum). The results are presented as a function of nadir angle
(π − ϑ) for several values of E (left panel) and as a function of energy for several nadir
angles (right panel). The kinks are due to the layered structure of the Earth.
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Figure 192: Muon neutrino penetration coefficients in the Earth for the quasi-power-
law initial spectrum with γ = 0.7. Left panel: as a function of ϑ for E = 10k GeV
[k = 3, 4, . . . , 7 from top to bottom]. Right panel: as a function of E at fixed nadir
angles [0◦ to 90◦ from bottom to top with steps of 10◦].

VN Sesto Fiorentino, April–May, 2005



Some highlights

✦ As is clear from Fig. 191, the shape of the Z factors is very dependent from the
initial neutrino spectrum. This is a positive fact for neutrino astronomy, since it
gives, at least in principle, the possibility to reconstruct the initial neutrino
spectrum from the measured energy spectrum and angular distribution of neutrino
induced muon events in a neutrino telescope.

✦ At comparatively low energies (except for unrealistically hard spectra like the one
used in Fig. 191.a), the Z factors for antineutrinos exceed those for neutrinos.
Considering the inequality

λin
νµ

(E) > λin
νµ

(E),

one can conclude that
Λνµ

(E, h) > Λνµ
(E, h)

for any depth. In the multi-PeV energy range and above, the Z factors (and
effective attenuation lengths) are identical for νµ and νµ. The difference between
the shapes of Zνµ

(E, h) and Zνµ
(E, h) is almost depth-independent and becomes

more important for steep initial spectra. This behavior may be understood from an
analysis of the shapes of the total cross sections and regeneration functions for νµ
and νµ.

✦ At any fixed energy, the Z factors monotonically decrease with increasing depth
and the inequality Zν(E, h) < Z0

ν(E) takes place for any h > 0. This effect leads
to a significant decrease of the neutrino event rates in comparison with those
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estimated in the approximation Zν ≈ Z0
ν ; the latter only works at low energies,

when the shadow effect is by itself small (that is when the medium is almost
transparent for neutrinos). Although these conclusions were derived from particular
models for the initial neutrino spectrum, cross sections, and medium, they are
actually highly general and model-independent. Moreover, similar effects take place
in many problems of high-energy particle transport, like in the example with
nucleon transport through the atmosphere considered in Sect. 1.2.4 .
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3.1.6 Atmospheric neutrino attenuation in the Earth

Figures 193–196 show different characteristics of the muon atmospheric (anti)neutrino
propagation through the Earth calculated in the first approximation of the Z factor
method. They seem to be selfexplanatory.
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Figure 193: Z factors for atmospheric νµ (solid curves) and νµ (dashed curves) vs energy,
calculated in the 1st approximation in for cosϑ = −0.1, −0.2, . . . ,−1.0 (the sequence
corresponds to the curves from top to bottom).
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Figure 195: Penetration coefficients for atmospheric νµ (solid curves) and νµ (dashed
curves) vs cosϑ for energies Eν = 10k GeV with k = 3, 4, . . . , 10 from top to bottom.
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Figure 196: Penetration coefficients for atmospheric νµ (solid curves) and νµ (dashed
curves) vs energy for cosϑ = −0.1, −0.2, . . . ,−1.0. (from top to bottom).
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3.1.7 Astrophysical sources of high-energy neutrinos (in short)

Candidate point sources

? Young supernova remnants [due to cosmic-ray acceleration by shock waves from
SN explosions]

? Accreting neutron stars and black holes

? Binary (multiple) systems [pulsar + giant, pulsar + star filling its Roche lobe, white
dwarf + (super)giant, etc.]

? The Galactic center [within the model of a supermassive accreting black hole]

? Active Galactic Nuclei (AGNs) [Seyfert galaxies, N galaxies, quasars, Lacertae
(BLLac objects), blazars (radio-loud AGNs); particle acceleration in extragalactic
jets from radio-quiet and radio-loud AGNs]

? Gamma-Ray Bursts (GRBs) [example: γ’s and ν’s arise from decay of pions
produced in shock front collisions]

? Hidden or latent sources [young SN shell, cocooned massive black hole (MBH) in

AGN, Thorne–Żytkow star (the binary with a neutron star submerged into a red
supergiant core), AGN with standing shock in the vicinity of a MBH, etc.]

?

?
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Diffuse neutrino backgrounds

? Galactic neutrinos [including ν’s from cosmic-ray interactions with the spherical
halo of baryonic dark matter]

? Quasi-diffuse background from AGN’s

? Neutrinos from intergalactic space [the most important are UHE ν’s from the
cosmic-ray spectrum tip (due to the GZK cutoff)]

? Pregalactic neutrinos and neutrinos from the bright phase of galaxy evolution

?

?

Speculative sources of the highest-energy neutrinos and science fiction

? Topological defects [ultra-heavy particle emission and acceleration by saturated
superconducting cosmic strings, cusp radiation from ordinary cosmic strings,
vortons, textures, global monopoles, etc.]

? Mini-black-hole evaporation

? Decay of super-heavy exotic particles [such as long-lived Big Bang relics or the
Planck mass objects (planckeons ∼ fridmons ∼ maximons ∼ cosmions)]

?

?
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Figure 197: Summary of expected νµ + νµ intensities
for diffuse emission from various sources. The exper-
imental data (triangles) are from Frejús proton decay
detector (limit on any excess above the atmospheric
background) and Fly’s Eye fluorescence air shower de-
tector (limits on upward events).

Explanation of Fig. 197 [borrowed from
J. G. Learned and K.Mannheim, Ann. Rev.
Nucl. Part. Sci. 50 (2000) 679.]

Shaded regions
Cerulean band: terrestrial atmosphere in the hori-
zontal (upper boundary) and vertical (lower bound-
ary) directions including prompt neutrinos from
charm production [Thunman et al. (1996)];
Yellow band: Galactic disk towards the center
(upper boundary) and the poles (lower boundary)
[Thunman et al. (1996)];
Gray area: unresolved extragalactic sources from
which gamma rays and cosmic-ray nucleons escape
freely (curved upper boundary) and from which
only gamma rays escape (straight upper bound-
ary) [Mannheim et al. (1999)], cosmic-ray storage
in galaxy clusters (lower boundary) [Colafrancesco
& Blasi (1998)].

Numbered lines
1 – Nellen et al. (1993) model for pp interactions
in the core of AGN;
2 – Stecker & Salamon (1996) model for pγ inter-
actions in the core of AGN (from which nucleons
can not freely escape);
3 – Mannheim et al. (1999) maximum model for
pγ interactions in extragalactic sources;
4 – Mannheim (1995) model A for pγ interactions
in blazar jets producing UHECRs through neutron
escape;
5 – pγ interactions due to UHE cosmic rays es-
caping from radio galaxies and traveling through
the 2.7 K background according to the model of
Rachen & Biermann (1993, 1996);
6 – pp interactions in host galaxies of blazar jets
as assumed in the model of Mannheim (1995);
7 – GRB model by Waxman & Bahcall (1997);
8 – decaying X, Y gauge bosons of mass 10 PeV
created at topological defects as in the models of
Sigl (1998) and Birkel & Sarkar (1998).
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Figure 198: Summary of expected νµ + νµ from can-
didate cosmic-ray accelerators (“point sources”).

Explanation of Fig. 198 [borrowed from
J. G. Learned and K.Mannheim, Ann. Rev.
Nucl. Part. Sci. 50 (2000) 679.]

Shaded regions
Cerulean band: background from terrestrial at-
mosphere including prompt neutrinos from charm

production within an angular bin 1◦ × 1◦ [Thun-
man et al. (1996)];
Yellow band: background from Galactic disk within

an angular bin 1◦ × 1◦ [Thunman et al. (1996)].

Numbered lines
1 – Nellen et al. (1993) model for the core emission
from 3C273 due to pp interactions (or similarly
Mrk501 during its outburst in 1997 if it emits half
of its TeV gamma ray flux in neutrinos);
2 – Stecker & Salamon (1996) model for the core
emission from 3C273 due to pγ interactions;
3 – Mannheim (1993) model for the relativistic jet
of 3C273 including pp and pγ interactions;
4 – Coma cluster according to the model of Co-
lafrancesco & Blasi (1998);
5 – Crab nebula, Model I due to Bednarek &
Protheroe (1997);
6 – cosmic-ray induced neutrinos from the sun ac-
cording to Ingelman & Thunman (1996);
7 – supernova remnant IC444 according to the
model of Gaisser et al. (1998);
8 – supernova remnant γ Cygni according to
Gaisser et al. (1998);
9 – CasA according to the model of Atoyan et al.
(2000) (adopting Lν = Lγ and Eν =

0.5Eγ ).
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Figure 199: The third-brightest star of Cygnus, called γ Cygni or Sadr (the bright star
near the center of the photo), surrounded by a huge complex of emission nebulosity.
[From Gallery of Astrophotography & CCD Images, <http://www.astro.univie.ac.at/ ˜ exgalak/koprolin/

Photo/> .]
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Figure 200: Antineutrino fluxes from Cygnus.
The integrated AN flux is shown for an an-
gular bin of 1◦ × 1◦. The excluded region is
according to J. Ahrens, astro-ph/0309585.
[The data are borrowed from L. A. Anchordoqui et al. astro-

ph/0311002. The Cygnus X-3 image by the Chandra X-

ray Observatory is taken from <http://www.mfsc.nasa.

gov/> .]

According to L. A. Anchordoqui et al.,
the Cygnus region (Cygnus X-3 or
Cygnus-OB2 cluster) may be a source
of HE free neutrons created via nuclei
photo-disintegration on background
photon fields. The neutron β decay
provides detectable ν flux:

n→ p+ e− + νe,[
Losc
� ∼ 0.01

(
Eν
PeV

)
ps, θ� ' 32.5◦

]

νe
vacuum
 0.6 νe + 0.2 νµ + 0.2 ντ .

Figure 200 shows the integrated νµ and
νµ + νe + ντ fluxes predicted to arrive at
Earth from the direction of the Cygnus.
The expected rates of νµ and νµ+νe+ντ
induced showers to be detected in the
IceCube (the planned angular resolution
is about 0.7◦) together with the expected
background for the same angular bin are
plotted on the bottom-left.
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Using the Sun as a standard candle for the calibration of neutrino detectors is hampered
by the rather low expected event rate which is ∼ 17 per year in a cubic-kilometer NT
above 100GeV. If the rate were higher than predicted, this could indicate neutralino
annihilation in the solar interior. Thus, in spite of the low CR induced flux, it is
desirable to obtain statistics of solar HE ν’s down to this conservative flux.

π

cosmic rays EarthSun

ν
τ

ν
µ

1 AU

ν

Figure 201: Cosmic rays hitting the Sun produce νµ’s which propagate further to Earth.
At an energy of 10TeV the length for νµ ↔ ντ oscillations is (according to the SK AN
result) about 1AU. [From J. G. Learned and K. Mannheim, Ann. Rev. Nucl. Part. Sci. 50 (2000) 679, Fig. 7.]

Particular interest lies in a likely νµ ↔ ντ oscillations for which the computed rate is
4–6 τ ’s above 100GeV per year in a 1 km3 detector [Hettlage et al. (2000)]. It is of the
same order of magnitude as the expected τ rate in the CERN–NGS experiment).
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3.2 High-energy neutrino oscillations in matter

3.2.1 Neutrino oscillations in vacuum

Quantum mechanical approach

The flavor neutrino eigenstates which can be written as a vector

|ν〉
f
= (νe, νµ, ντ , . . .)

T ≡ (να)
T

are defined as the states which correspond to the charge leptons α = e, µ, τ . The
correspondence is established through the charged current interactions of να and α.

It is not excluded that there are additional, very heavy charge leptons and the
corresponding neutrinos. Moreover, there may be neutrino states not associated with
some charge leptons, in particular, the sterile neutrinos, νs, may exist. In general, the
flavor states have no definite masses.

The neutrino mass eigenstates

|ν〉
m

= (ν1, ν2, ν3, . . .)
T ≡ (νi)

T

are, by definition, the states with the definite masses mi, i = 1, 2, 3, . . .. They are the
eigenstates of the total Hamiltonian in vacuum.

Since να and νi are not identical, they are related to each other through the unitary
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transformation
να = Vαiνi or |ν〉

f
= V|ν〉

m
, (134)

where V =‖ Vαi ‖ is the unitary (in general, N×N) vacuum mixing matrix.

Time evolution of the single mass eigenstate νi with momentum pν is trivial,

iν̇i(t) = Eiνi(t),

where Ei =
√
p2
ν +m2

i is the total energy of νi. Therefore, assuming that all the
components of the neutrino wave packet have the same momenta, one can write

i
d

dt
|ν(t)〉

m
= H0|ν(t)〉m, (135)

where
H0 = diag (E1, E2, E3, . . .)

is the vacuum Hamiltonian. From Eqs. (134) and (135) we have

i
d

dt
|ν(t)〉

f
= VH0V

†|ν(t)〉
f
. (136)

Solution to this equation is obvious:

|ν(t)〉
f
= Ve−iH0(t−t0)V†|ν(t0)〉f
= Vdiag

(
e−iE1(t−t0), e−iE2(t−t0), . . .

)
V†|ν(t0)〉f. (137)
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In the ultrarelativistic limit p2 � m2
i , which is valid for almost all interesting

circumstances (except for the relic neutrinos),

Ei =
√
p2
ν +m2

i ≈ p+
m2
i

2p
.

By applying this approximation and Eq. (137) one can derive the survival and transition
probabilities

P [να(t0)→ να′(t)] ≡ Pαα′(L) =

∣∣∣∣∣δαα′ +
∑

i

VαiV
∗
α′i

[
exp

(
−i2πL

Lij

)
− 1

]∣∣∣∣∣

2

, (138)

where it is assumed that vi = p/Ei ≈ c = 1 and thus L ≈ (t− t0) is the
source-detector distance,

The values

Lij =
4πp

∆m2
ij

=
4πp

m2
i −m2

j

are called the oscillation lengths. Usually they are defined through the “mean neutrino
energy” E ≈ Ei rather than momentum that is the same in the ultrarelativistic limit.
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Simplest case: two flavor vacuum oscillations

Let us now consider the simplest 2-flavor case with i = 2, 3 and α = µ, τ (the most
favorable due to the SK and other underground experiments). The 2× 2 vacuum
mixing matrix can be parametrized (due to the unitarity) with a single parameter,
θ = θ23, the vacuum mixing angle,

V =

(
cos θ sin θ
− sin θ cos θ

)
, 0 ≤ θ ≤ π/2.

Equation (138) then becomes very simple:

Pαα′(L) =
1

2
sin2 2θ

[
1− cos

(
2πL

Lv

)]
,

Lv ≡ L23 =
4πE

∆m2
23

≈ 2R⊕

(
E

10 GeV

)(
0.002 eV2

∆m2
23

)

where R⊕ is the mean radius of the Earth. Since 10 GeV is a typical energy for the
atmospheric neutrinos, the Earth is surprisingly very suitable for studying the
atmospheric neutrino oscillations in rather wide range of the parameter ∆m2

23.

Unfortunately, the range of applicability of the standard quantum-mechanical approach
is very limited. It can be seen on one simple example.
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Quantum field theoretical approach (a sketch)

Quite a different viewpoint on the neutrino oscil-
lation phenomenon is illustrated by Fig. 202 which
shows an unusual Feynman diagram for the flavor-
violating process of a pion decay and subsequent
quasielastic neutrino scattering off a neutron with
production of τ lepton. The 4-momenta of the par-
ticles are shown in parentheses. The mass eigenstate
neutrino νi is in a virtual state between the space-
time points of its production in the atmosphere (x1)
and absorption in the Earth (x2). These two points
are separated with a macroscopic spatial interval
|x1 − x2| = L. The amplitude of this process,

〈out|in〉 = 〈µ+(kµ), τ
−(kτ ), p(pp)|π+(pπ), n(pn)〉,

is given by the sum of N diagrams with
i = 1, 2, . . . , N . If the neutrino mass spectrum is
not fully degenerate, the conservation of energy and
momentum in each vertex requires for the neutrinos
to be in general off-shell.

Figure 202: A bizarre Feyn-
man diagram for the reac-
tion π++n→ µ++τ−+p.
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Indeed q = pπ − pµ and thus the neutrino virtuality q2 is the same for all N
intermediate neutrinos. Therefore at least some of them are off-shell.

It is easy to calculate the upper boundary for the neutrino virtuality. In the pion rest

frame (p
(π)
π = 0) we have

E(π)
µ + q

(π)
0 = mπ, p(π)

µ + q(π) = 0

and therefore

E(π)
µ =

m2
π +m2

µ − q2
2mπ

, q
(π)
0 =

m2
π −m2

µ + q2

2mπ
.

Since E
(π)
µ ≥ mµ we obtain

q2 ≤ (mπ −mµ)
2.

In the rest frame of neutrino (q(ν) = 0)

q2 =
[
q
(ν)
0

]2
=
[
E(ν)
π −E(ν)

µ

]2
≥ 0.
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3.2.2 Neutrino refraction in matter

It has been noted by Wolfensteina that neutrino oscillations in a medium are affected by
interactions even if the thickness of the medium is negligible in comparison with the
neutrino mean free path.

Let us forget for the moment about the inelastic collisions and consider the simplest
case of a ultrarelativistic neutrino which moves in an external (effective) potential W
formed by the matter background. If the neutrino momentum in vacuum was p then its
energy was ' p = |p|. When the neutrino enters into the medium, its energy becomes
E = p+W . Let us now introduce the index of refraction

n = p/E

which is a positive value in the absence of inelastic collisions. Therefore

W = (1− n)E ' (1− n)p. (139)

In the last step, we took into account that neutrino interaction with matter is very
weak, |W | � E, and thus E ' p is a good approximation.

The natural generalization of Eq. (136) for the time evolution of neutrino flavor states
in matter then follows from this simple consideration and the quantum-mechanical

aL. Wolfenstein, Phys. Rev. D 17 (1978) 2369.
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correspondence principle. This is the famous Wolfenstein equation:

i
d

dt
|ν(t)〉

f
=
[
VH0V

† + W(t)
]
|ν(t)〉

f
, (140)

where
W(t) = diag

(
1− nνe

, 1− nνµ
, 1− nντ

, . . .
)

(141)

is the interaction Hamiltonian.

It will be useful for the following to introduce the time-evolution operator for the flavor
states defined by

|ν(t)〉
f
= S(t)|ν(0)〉

f
.

Taking into account that |ν(t)〉
f
must satisfy Eq. (140) for any initial condition

|ν(t = 0)〉
f
= |ν(0)〉

f
, the Wolfenstein equation can be immediately rewritten in terms

of the evolution operator:

iṠ(t) =
[
VH0V

† + W(t)
]
S(t), S(0) = 1. (142)

This equation (or its equivalent (140)) cannot be solved analytically in the general case
of a medium with a varying (along the neutrino pass) density. But for a medium with a
slowly (adiabatically) varying density distribution the approximate solution can be
obtained by a diagonalization of the effective Hamiltonian. Below we will consider this
method for a rather general 2-flavor case but now let us illustrate (without derivation)
the simplest situation with a matter of constant density.
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Matter of constant density

In the 2-flavor case, the transition probability is given by the formula very similar to
that for vacuum:

Pαα′(L) =
1

2
sin2 2θm

[
1− cos

(
2πL

Lm

)]
,

Lm = Lv

[
1− 2κ (Lv/L0) cos θ + (Lv/L0)

2
]−1/2

.

The Lm is called the oscillation length in matter and is defined through the following
quantities:

Lv ≡ L23 =
4πE

∆m2
, L0 =

√
2πA

GFNAZρ
≈ 2R⊕

(
A

2Z

)(
2.5 g/cm3

ρ

)
,

κ = sign
(
m2

3 −m2
2

)
, ∆m2 =

∣∣m2
3 −m2

2

∣∣ .

The parameter θm is called the mixing angle in matter and is given by

sin 2θm = sin 2θ

(
Lm

Lv

)
, cos 2θm =

(
cos 2θ − κLv

L0

)(
Lm

Lv

)
.

The solution for antineutrinos is the same but with the replacement κ 7→ −κ. The
closeness of the value of L0 to the Earth’s diameter is even more surprising than that
for Lv. The matter effects are important for atmospheric neutrinos.
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“The matter doesn’t matter”

Lincoln Wolfenstein, lecture given at 28th
SLAC Summer Institute on Particle Physics
“Neutrinos from the Lab, the Sun, and the
Cosmos”, Stanford, CA, Aug. 14-25, 2000.

When neutrinos propagate through vacuum there is a phase change

exp
(
−im2

i t/2pν
)
.

For two mixed flavors there is a resulting oscillation with length

Lvac =
4πEν
∆m2

≈ D⊕

(
Eν

10 GeV

)(
0.002 eV2

∆m2

)
.

In matter there is an additional phase change due to refraction associated with forward
scattering

exp [ipν(Ren− 1)t]

and the characteristic length (for a normal medium) is

Lref =

√
2A

GFNAZρ
≈ D⊕

(
A

2Z

)(
2.5 g/cm2

ρ

)
.

It is generally believed that the imaginary part of the index of refraction n which
describes the neutrino absorption due to inelastic interactions does not affect the
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oscillation probabilities or at the least inelastic interactions can be someway decoupled
from oscillations.

The conventional arguments are

✦ Ren− 1 ∝ GF while Imn ∝ G2
F

✦ Only ∆n may affect the oscillations and ∆Imn is all the more negligible.

It will be shown that these arguments do not work for sufficiently high neutrino energies
and/or for thick media =⇒ in general absorption cannot be decoupled from refraction
and mixing.

By using another cant phrase of Wolfenstein, one can say that

“In some circumstances the matter could matter.”
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3.2.3 Generalized MSW equation

Let fναA(0) be the amplitude for the να zero-angle scattering from particle A of the
matter background (A = e, p, n, . . .),
ρ(t) – the matter density (in g/cm3),
YA(t) – the number of particles A per amu in the point t of the medium,
N0 = 6.02214199× 1023 cm−3 – the reference particle number density (numerically
equal to the Avogadro’s number).

Then the index of refraction of να for small |n− 1| is given by

nα(t) = 1 +
2πN0ρ(t)

p2
ν

∑

A

YA(t)fναA(0),

where pν is the neutrino momentum. Since the amplitude fναA(0) is in general a
complex number, the index of refraction is also complex. Its real part is responsible for
neutrino refraction while the imaginary part – for absorption. From the optical theorem
of quantum mechanics we have

Im [fναA(0)] =
pν
4π
σtot
ναA (pν) .

This implies that

pν Im [nα(t)] =
1

2
N0ρ(t)

∑

A

YA(t)σtot
ναA (pν) =

1

2Λα (pν , t)
,
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where Λα (pν , t) is the mean free path of να in the point t of the medium.

Note:

The dimension of Λα is cm,

Λα (pν , t) =
1

Σtot
α (pν , t)

=
λtot
a (pν , t)

ρ(t)
.

Since the neutrino momentum, pν , is an extrinsic variable in Eq. (143), we will
sometimes omit this argument to simplify formulas.

The generalized MSW equation for the time-evolution operator

S(t) =

(
Sαα(t) Sαβ(t)
Sβα(t) Sββ(t)

)

of two mixed stable neutrino flavors να and νβ propagating through an absorbing
medium can be written as

i
d

dt
S(t) =

[
VH0V

T + W(t)
]
S(t), (S(0) = 1) . (143)

Here
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V =

(
cos θ sin θ
− sin θ cos θ

)
is the vacuum mixing matrix (0 ≤ θ ≤ π/2),

H0 =

(
E1 0
0 E2

)
is the vacuum Hamiltonian for ν mass eigenstates,

Ei =
√
p2
ν +m2

i ' pν +m2
i /2pν is the energy of the νi eigenstate,

W(t) = −pν
(
nα(t)− 1 0

0 nβ(t)− 1

)
is the interaction Hamiltonian.

3.2.4 Master equation

It is useful to transform MSW equation into the one with a traceless Hamiltonian. For
this purpose we define the matrix

S̃(t) = exp

{
i

2

∫ t

0

Tr [H0 + W(t′)] dt′
}

S(t).

The master equation (ME) for this matrix then is

i
d

dt
S̃(t) = H(t)S̃(t), S̃(0) = 1 (144)
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Here

H(t) =

(
q(t)−∆c ∆s

∆s −q(t) + ∆c

)
,

∆c = ∆ cos 2θ, ∆s = ∆ sin 2θ, ∆ =
m2

2 −m2
1

4pν
,

q(t) = qR(t) + iqI(t) =
1

2
pν [nβ(t)− nα(t)] .

The Hamiltonian for antineutrinos is of the same form as H(t) but

Re [fναA(0)] = −Re [fναA(0)] and Im [fναA(0)] 6= Im [fναA(0)] .

The neutrino oscillation probabilities are

P [να(0)→ να′(t)] ≡ Pαα′(t) = |Sα′α(t)|2 = A(t)
∣∣∣S̃α′α(t)

∣∣∣
2

, (145)

where

A(t) = exp

[
−
∫ t

0

dt′

Λ(t′)

]
,

1

Λ(t)
=

1

2

[
1

Λα(t)
+

1

Λβ(t)

]
.

Owing to the complex potential q, the Hamiltonian H(t) is non-Hermitian and the new

evolution operator S̃(t) is nonunitary. As a result, there are no conventional relations
between Pαα′(t).
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Since

qI(t) =
1

4

[
1

Λβ(t)
− 1

Λα(t)

]
,

the matrix H(t) becomes Hermitian when Λα = Λβ. If this is the case at any t, the ME
reduces to the standard MSW equation and inelastic scattering results in the common
exponential attenuation of the probabilities. probabilities. From here, we shall consider
the more general and more interesting case, when Λα 6= Λβ.

Examples

να − νs This is the extreme example. Since Λs =∞, we have Λ = 2Λα and

qI = −1/4Λα. So qI 6= 0 at any energy. Even without solving the evolution equation,
one can expect the penetrability of active neutrinos to be essentially modified in this
case because, roughly speaking, they spend a certain part of life in the sterile state. In
other words, sterile neutrinos “tow” their active companions through the medium as a
tugboat. On the other hand, the active neutrinos “retard” the sterile ones, like a bulky
barge retards its tugboat. As a result, the sterile neutrinos undergo some absorption.

νe,µ − ντ Essentially at all energies, σCC
νe,µN

> σCC
ντN

. This is because of large value of

the τ lepton mass, mτ , which leads to several consequences:

✦ high neutrino energy threshold for τ production;

✦ sharp shrinkage of the phase spaces for CC ντN reactions;
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✦ kinematic correction factors (∝ m2
τ ) to the nucleon structure functions (the

corresponding structures are negligible for e production and small for µ production).

The neutral current contributions are canceled out from qI . Thus, in the context of the
master equation, ντ can be treated as (almost) sterile within the energy range for
which σCC

νe,µN
� σCC

ντN
(see Figs. 203–205 below).

νe − να A similar situation, while in quite a different and narrow energy range, holds

in the case of mixing of νe with some other flavor. This is a particular case for a normal
C asymmetric medium, because of the W boson resonance formed in the neighborhood
of Eres

ν = m2
W /2me ≈ 6.33 PeV through the reactions

νee
− →W− → hadrons and νee

− →W− → ν``
− (` = e, µ, τ).

Let’s remind that σtot
νee
≈ 250 σtot

νeN
just at the resonance peak (see Fig. 178 and

Table 19, Sect. 3.1.1 ).
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3.2.5 Total cross sections

According to Albright and Jarlskoga

dσCC
ν, ν

dxdy
=
G2
FmNEν
π

(A1F1 + A2F2 ± A3F3+A4F4 +A5F5 ),

where Fi = Fi(x,Q
2) are the nucleon structure functions and Ai are the kinematic

factors i = 1, . . . , 5). These factors were calculated by many authorsb and the most
accurate formulas were given by Paschos and Yu:

A1 = xy2 +
m2
l y

2mNEν
, A2 = 1− y − mN

2Eν
xy − m2

l

4E2
ν

, A3 = xy
(
1− y

2

)
− m2

l y

4mNEν
,

A4 =
m2
l

2mNEν

(
xy +

m2
l

2mNEν

)
, A5 = − m2

l

2mNEν
.

The contributions proportional to m2
l must vanish as Eν � ml. However they remain

surprisingly important even at very high energies.

aC. H. Albright and C. Jarlskog, Nucl. Phys. B84 (1975) 467. See also I. Ju, Phys. Rev. D8 (1973)
3103 and V. D. Barger et al., Phys. Rev. D16 (1977) 2141.

bSee previous footnote and also the more recent papers: S. Dutta, R. Gandhi, and B. Mukhopadhyaya,
Eur. Phys. J. C 18 (2000) 405 (hep–ph/9905475); N. I. Starkov, J. Phys. G: Nucl. Part. Phys. 27 (2001)
L81; E. A. Paschos and J. Y. Yu, Phys. Rev. D65 (2002) 033002 (hep–ph/0107261).
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Figure 203: Total inelastic νn cross sections evaluated with the MRST 2002 NNLO
PDF model modified according to Bodek–Yang prescription (solid lines) and unmodified
(dashed lines).
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Figure 204: Differences between the total neutrino cross sections for proton and neutron
targets evaluated with the MRST 2002 NNLO PDF model.
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Figure 205: Differences between the total neutrino cross sections for proton and neutron
targets evaluated with the CTEQ5-DIS LO PDF model.
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3.2.6 Indices of refraction

For Eν � min
(
m2
W,Z/2mA

)
and for an electroneutral nonpolarized cold medium, the

qR is energy independent. In the leading orders of the standard electroweak theory it is

qR =





1
2V0Ypρ for α = e and β = µ or τ ,

− 1
2aτV0 (Yp + bτYn) ρ for α = µ and β = τ ,

1
2V0

(
Yp − 1

2Yn
)
ρ for α = e and β = s,

1
4V0Ynρ for α = µ or τ and β = s,

where

V0 =
√

2GFN0 ' 7.63× 10−14 eV

(
L0 =

2π

V0
' 1.62× 104 km ∼ D⊕

)
,

aτ =
3αrτ [ln(1/rτ )− 1]

4π sin2 θW
' 2.44× 10−5, bτ =

ln(1/rτ )− 2/3

ln(1/rτ )− 1
' 1.05,

α is the fine-structure constant, θW is the weak-mixing angle and rτ = (mτ/mW )2.

Notes:

✦ For an isoscalar medium the |qR| is of the same order of magnitude for any pair of
flavors but νµ − ντ .

✦ For an isoscalar medium q
(νµ−ντ )
R /q

(νe−νµ)
R ≈ −5× 10−5.
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✦ For certain regions of a neutron-rich medium the value of q
(νe−νs)
R may become

vanishingly small. In this case, the one-loop radiative corrections must be taken
into account.

✦ For very high energies the qR have to be corrected for the gauge boson propagators
and strong-interaction effects.

One can expect |qR| to be either an energy-independent or decreasing function for any
pair of mixed neutrino flavors. On the other hand, there are several cases of much
current interest when |qI | either increases with energy without bound (mixing between
active and sterile neutrino states) or has a broad or sharp maximum (as for νµ − ντ or
νe − νµ mixings, respectively).

Numerical estimations suggest that for every of these cases there is an energy range in
which qR and qI are comparable in magnitude. Since qR ∝ ρ and qI ∝ and are
dependent upon the composition of the medium (YA) there may exist some more
specific situations, when

|qR| ∼ |qI | ∼ |∆|
or even

|qR| ∼ |∆c| and |qI | ∼ |∆s| .
If this is the case, the refraction, absorption and mixing become interestingly
superimposed.
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3.2.7 Eigenproblem and mixing matrix in matter

Eigenvalues

The matrix H(t) has two complex instantaneous eigenvalues, ε(t) and −ε(t), with
ε = εR + iεI satisfying the characteristic equation

ε2 = (q − q+) (q − q−) ,

where q± = ∆c ± i∆s = ∆e±2iθ. The solution is

ε2R =
1

2

(
ε20 − q2I

)
+

1

2

√
(ε20 − q2I )

2
+ 4q2I (ε20 −∆2

s),

εI =
qI (qR −∆c)

εR
(provided qR 6= ∆c) ,

with

ε0 =
√

∆2 − 2∆cqR + q2R ≥ |∆s| , sign (εR)
def
= sign(∆) ≡ ζ.

(At that choice ε = ∆ for vacuum and ε = ζε0 if qI = 0.)

In the vicinity of the MSW resonance, qR = qR(t?) = ∆c

lim
qR→∆c±0

εR = ∆s

√
max (1−∆2

I/∆
2
s, 0),

lim
qR→∆c±0

εI = ±ζ∆I

√
max (1−∆2

s/∆
2
I , 0),
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where ∆I = qI(t?). Therefore the resonance value of |εR| (which is inversely
proportional to the neutrino oscillation length in matter) is always smaller than the
conventional MSW value |∆s| and vanishes if ∆2

I < ∆2
s (εI remains finite in this case).

In neutrino transition through the region of resonance density ρ = ρ(t?), εI undergoes
discontinuous jump while εR remains continuous. The corresponding cuts in the q
plane are placed outside the circle |q| ≤ |∆|. If ∆2

I > ∆2
s, the imaginary part of ε

vanishes while the real part remains finite.

A distinctive feature of the characteristic equation is the existence of two mutually
conjugate “super-resonance” points q± in which ε vanishes giving rise to the total
degeneracy of the levels of the system (impossible in the “standard MSW” solution).
Certainly, the behavior of the system in the vicinity of these points must be
dramatically different from the conventional pattern.

The “super-resonance” conditions are physically realizable for various
meaningful mixing scenarios.
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Some useful relations

qR

qI

− |∆  |s

   |∆  |s

∆c

2θ

|∆|
0

Figure 206: Zeros and cuts of ε
in the q plane for ∆c > 0. The
cuts are placed outside the circle
|q| ≤ |∆| parallel to axis qR =
0. The MSW resonance point
is (∆c, 0) and the two “super-
resonance” points are (∆c,±∆s).

ε2R =
2q2I

(
ε20 −∆2

s

)
√

(ε20 − q2I )
2

+ 4q2I (ε20 −∆2
s)− ε20 + q2I

,

εI =

√
(ε20 − q2I )

2
+ 4q2I (ε20 −∆2

s)− ε20 + q2I

2qI (qR −∆c)
,

∂εR
∂qR

=
∂εI
∂qI

=
qIεI + (qR −∆c) εR

ε2R + ε2I
,

∂εI
∂qR

= −∂εR
∂qI

=
qIεR − (qR −∆c) εI

ε2R + ε2I
,

Re

[
q(t)−∆c

ε

]
=

(
qR −∆c

εR

)(
ε2R + q2I
ε2R + ε2I

)
,

Im

[
q(t)−∆c

ε

]
=

(
qI
εR

)(
ε2R − ε20 + ∆2

s

ε2R + ε2I

)
,

(qR −∆c)
2

= ε20 −∆2
s.
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Eigenstates

In order to simplify the solution to the eigenstate problem we’ll assume that the phase
trajectory q = q(t) does not cross the points q± at any t. In non-Hermitian quantum
dynamics one has to consider the two pairs of instantaneous eigenvectors |Ψ±〉 and
|Ψ±〉 which obey the relations

H|Ψ±〉 = ± ε|Ψ±〉 and H†|Ψ±〉 = ± ε∗|Ψ±〉. (146)

and (for q 6= q±) form a complete biorthogonal and biorthonormal set,

〈Ψ±|Ψ±〉 = 1, 〈Ψ±|Ψ∓〉 = 0, |Ψ+〉〈Ψ+|+ |Ψ−〉〈Ψ−| = 1.

Therefore, the eigenvectors are defined up to a gauge transformation

|Ψ±〉 7→ eif± |Ψ±〉, |Ψ±〉 7→ e−if
∗
± |Ψ±〉,

with arbitrary complex functions f±(t) such that Im (f±) vanish as q = 0.a Thus it is
sufficient to find any particular solution of Eqs. (146). Taking into account that
H† = H∗, we may set |Ψ±〉 = |Ψ∗

±〉 and hence the eigenvectors can be found from the
identity

H = ε|Ψ+〉〈Ψ∗
+| − ε|Ψ−〉〈Ψ∗

−|.
aFor our aims, the class of the gauge functions may be restricted without loss of generality by the

condition f±|q=0 = 0.
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Setting |Ψ±〉 = (v±,±v∓)
T

we arrive at the equations

v2
± =

ε± (q −∆c)

2ε
, v+v− =

∆s

2ε
,

a particular solution of which can be written as

v+ =

√∣∣∣∣
ε+ q −∆c

2ε

∣∣∣∣ e
i(ϕ−ψ)/2,

v− = ζ

√∣∣∣∣
ε− q + ∆c

2ε

∣∣∣∣ e
i(−ϕ−ψ)/2.

where

ϕ = arg(ε+ q −∆c) = − arg(ε− q + ∆c) = arctan

(
qI
εR

)
,

ψ = arg(ε) = arctan

(
εI
εR

)
,

and we have fixed the remaining gauge ambiguity by a comparison with the vacuum
case.
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Mixing angle in matter

It may be sometimes useful to define the complex mixing angle in matter
Θ = ΘR + iΘI by the relations

sinΘ = v+ and cosΘ = v−

or, equivalently,

sin 2Θ =
∆s

ε
, cos 2Θ =

∆c − q
ε

,

The real and imaginary parts of Θ are found to be

Re(Θ) ≡ ΘR =
1

2
arctan

[
(qI −∆s) εR − (qR −∆c) εI
(qR −∆c) εR + (qI −∆s) εI

]
,

Im(Θ) ≡ ΘI =
1

4
ln

[
ε2R + ε2I

(qR −∆c)
2

+ (qI −∆s)
2

]
.

cosΘ = cosΘR coshΘI − i sinΘR sinhΘI ,

sinΘ = sinΘR coshΘI + i cosΘR sinhΘI .

Having regard to the prescription for the sign of εR, one can verify that Θ = θ if q = 0
(vacuum case) and Θ = 0 if ∆s = 0 (no mixing or m2

1 = m2
2). It is also clear that Θ

becomes the standard MSW mixing angle with Im(Θ) = 0 when qI = 0 (Λα = Λβ).
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Mixing matrix in matter

In order to build up the solution to ME for the nondegenerated case one has to
diagonalize the Hamiltonian. Generally a non-Hermitian matrix cannot be diagonalized
by a single unitary transformation. But in our simple case this can be done by a
complex orthogonal matrix (extended mixing matrix in matter)

Uf = U exp(if),

where f = diag (f−, f+) and

U = (|Ψ−〉, |Ψ+〉) =

(
v− v+
−v+ v−

)
=

(
cosΘ sinΘ
− sinΘ cosΘ

)
.

Properties of U:

UTHU = diag (−ε, ε) , UTU = 1, U|q=0 = V.

From CE it follows that

∂ε/∂q = (q −∆c)/ε

and thus
∂v±
∂q

= ±∆2
sv∓
2ε2

.
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We therefore have

iUT U̇ = −Ω

(
0 −i
i 0

)
= −Ωσ

2
,

where

Ω =
q̇∆s

2ε2
=
i

4

d

dt
ln

(
q − q+
q − q−

)
.

Properties of Uf :

UT
f HUf = diag (−ε, ε) , UT

f Uf = 1, Uf |q=0 = V,

iUT
f U̇f = −Ωe−ifσ

2
eif − ḟ .
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3.2.8 Adiabatic solution

Formal solution to ME in the most general form:

S̃(t) = Uf (t) exp [−iΦ(t)]Xf (t)U
T
f (0). (147)

Here Φ(t) = diag (−Φ(t), Φ(t)) and Φ(t) = ΦR(t) + iΦI(t) is the complex dynamical
phase, defined by

ΦR(t) =

∫ t

0

εR(t′)dt′, ΦI(t) =

∫ t

0

εI(t
′)dt′,

and Xf (t) must satisfy the equation

iẊf (t) =
[
Ω(t)e−if(t)F(t)eif(t) + ḟ(t)

]
Xf (t), Xf (0) = 1,

where

F(t) = eiΦ(t)
σ2e

−iΦ(t) =

(
0 −ie−2iΦ(t)

ie2iΦ(t) 0

)
.

It can be proved now that the right side of Eq. (147) is gauge-invariant i.e. it does not
depend on the unphysical complex phases f±(t). This crucial fact is closely related to
the absence of the Abelian topological phases in the system under consideration.
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Finally, we can put f± = 0 in Eq. (147) and the result is

S̃(t) = U(t) exp [−iΦ(t)]X(t)UT (0), (148a)

iẊ(t) = Ω(t)F(t)X(t), X(0) = 1. (148b)

These equations, being equivalent to the ME, have nevertheless a restricted range of
practical usage on account of poles and cuts as well as decaying and increasing
exponents in the “Hamiltonian” ΩF.

Adiabatic theorem

The adiabatic theorem of Hermitian quantum mechanics can almost straightforwardly
be extended to ME under the requirements:

(a) the potential q is a sufficiently smooth and slow function of t;

(b) the imaginary part of the dynamical phase is a bounded function i.e.
limt→∞ |ΦI(t)| is finite;

(c) the phase trajectory q = q(t) is placed far from the singularities for any t.

The first requirement breaks down for a condensed medium with a sharp boundary or
layered structure (like the Earth). If however the requirement (a) is valid inside each
layer (ti, ti+1), the problem reduces to Eqs. (148) by applying the rule

S̃(t) ≡ S̃(t, 0) = S̃ (t, tn) . . . S̃ (t2, t1) S̃ (t1, 0) ,

where S̃ (ti+1, ti) is the time-evolution operator for the i-th layer.
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The requirement (b) alone is not too restrictive considering that for many astrophysical
objects (like stars, galactic nuclei, jets and so on) the density ρ exponentially disappears
to the periphery and, on the other hand, εI → 0 as ρ→ 0. In this instance, the
function ΦI(t) must be t independent for sufficiently large t. But, in the case of a steep
density profile, the requirements (a) and (b) may be inconsistent.

The important case of violation of the requirement (c) is the subject of a special study
which is beyond the scope of this study.

It is interesting to note in this connection that, in the Hermitian case, a general
adiabatic theorem has been proved without the traditional gap condition [J. E. Avron
and A. Elgart, Commun. Math. Phys. 203 (1999) 445].

The solution

Presume that all necessary conditions do hold for 0 ≤ t ≤ T . Then, in the adiabatic
limit, we can put Ω = 0 in Eq. (148b). Therefore X = 1 and Eq. (148a) yields

S̃αα(t) = v+(0)v+(t)e−iΦ(t) + v−(0)v−(t)eiΦ(t),

S̃αβ(t) = v−(0)v+(t)e−iΦ(t) − v+(0)v−(t)eiΦ(t),

S̃βα(t) = v+(0)v−(t)e−iΦ(t) − v−(0)v+(t)eiΦ(t),

S̃ββ(t) = v−(0)v−(t)e−iΦ(t) + v+(0)v+(t)eiΦ(t),
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Taking into account Eq. (145) we obtain the survival and transition probabilities:

Pαα(t) = A(t)

{[
I+
+ (t)eΦI(t) + I−− (t)e−ΦI(t)

]2
− I2(t) sin2 [ΦR(t)− ϕ+(t)]

}
,

Pαβ(t) = A(t)

{[
I−+ (t)eΦI(t) − I+

−(t)e−ΦI(t)
]2

+ I2(t) sin2 [ΦR(t)− ϕ−(t)]

}
,

Pβα(t) = A(t)

{[
I+
−(t)eΦI(t) − I−+ (t)e−ΦI(t)

]2
+ I2(t) sin2 [ΦR(t) + ϕ−(t)]

}
,

Pββ(t) = A(t)

{[
I−− (t)eΦI(t) + I+

+ (t)e−ΦI(t)
]2
− I2(t) sin2 [ΦR(t) + ϕ+(t)]

}
,

(149)

where we have denoted for compactness

Iς
′

ς (t) = |vς(0)vς′(t)| (ς, ς ′ = ±),

ϕ±(t) =
ϕ(0)± ϕ(t)

2
,

I2(t) = 4I+
+ (t)I−− (t) = 4I−+ (t)I+

−(t) =
∆2
s

|ε(0)ε(t)| .
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Limiting cases

In the event that the conditions
∣∣∣∣

1

Λβ(t)
− 1

Λα(t)

∣∣∣∣� 4ε0(t) and t� min [Λα(t), Λβ(t)]

are satisfied for any t ∈ [0, T ], the formulas (149) reduce to the standard MSW
adiabatic solution

Pαα(t) = Pββ(t) =
1

2
[1 + J(t)]− I2

0 (t) sin2 [Φ0(t)] ,

Pαβ(t) = Pβα(t) =
1

2
[1− J(t)] + I2

0 (t) sin2 [Φ0(t)] ,





(MSW)

where

J(t) =
∆2 −∆c [qR(0) + qR(t)] + qR(0)qR(t)

ε0(0)ε0(t)
,

I2
0 (t) =

∆2
s

ε0(0)ε0(t)
, Φ0(t) =

∫ t

0

ε0(t
′)dt′.

Needless to say either of the above conditions or both may be violated for sufficiently
high neutrino energies and/or for thick media, resulting in radical differences between
the two solutions. These differences are of obvious interest to high-energy neutrino
astrophysics.
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It is perhaps even more instructive to examine the distinctions between the general
adiabatic solution (149) and its “classical limit”

Pαα(t) = exp

[
−
∫ t

0

dt′

Λα(t′)

]
, Pαβ(t) = 0,

Pββ(t) = exp

[
−
∫ t

0

dt′

Λβ(t′)

]
, Pβα(t) = 0,





(∆s = 0)

which takes place either in the absence of mixing or for m2
1 = m2

2.

Note:

Considering that Ω ∝ ∆s, the classical limit is the exact solution to the master equation
(for ∆s = 0). Therefore it can be derived directly from Eq. (144). To make certain that
the adiabatic solution has correct classical limit, the following relations are useful:

lim
∆s→0

ε(t) = ζζR [q(t)−∆c] and lim
∆s→0

|v±( t)|2 =
1

2
(ζζR ± 1) ,

where ζR = sign [qR(t)−∆c].
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3.2.9 Matter of constant density and composition

In this simple case, the adiabatic approximation becomes exact and thus free from the
above-mentioned conceptual difficulties. For definiteness sake we assume Λα < Λβ
(and thus qI < 0) from here. The opposite case can be considered in a similar way.
Let’s denote

1

Λ±
=

1

2

(
1

Λα
+

1

Λβ

)
± ξ

2

(
1

Λα
− 1

Λβ

)
,

I2
± =

1

4

(
1 +

ε20 + q2I −∆2
s

ε2R + ε2I

)
± ξ

2

(
ε2R + q2I
ε2R + ε2I

)
,

L =
π

|εR|
and ξ =

∣∣∣∣
qR −∆c

εR

∣∣∣∣ .

As is easy to see,

I±± =

{
I± if sign (qR −∆c) = +ζ,

I∓ if sign (qR −∆c) = −ζ,

I−+ = I+
− =

√
I+I− =

I

2
=

∣∣∣∣
∆s

2ε

∣∣∣∣ and sign(ϕ) = −ζ.
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By applying these identities the neutrino oscillation probabilities can be written as

Pαα(t) =
(
I+e

−t/2Λ+ + I−e
−t/2Λ−

)2

− I2e−t/Λ sin2

(
πt

L
+ |ϕ|

)
,

Pββ(t) =
(
I−e

−t/2Λ+ + I+e
−t/2Λ−

)2

− I2e−t/Λ sin2

(
πt

L
− |ϕ|

)
,

Pαβ(t) = Pβα(t) =
1

4
I2
(
e−t/2Λ− − e−t/2Λ+

)2

+ I2e−t/Λ sin2

(
πt

L

)
.

The difference between the survival probabilities for να and νβ is

Pαα(t)− Pββ(t) = −ζRe

(
q −∆c

ε

)(
e−t/2Λ− − e−t/2Λ+

)

+I2e−t/Λ sinϕ sin

(
2πt

L

)
.

VN Sesto Fiorentino, April–May, 2005



Case |q| & |∆s|
Let’s examine the case when Λ+ and Λ− are vastly different in magnitude. This will be
true when Λβ � Λα and the factor ξ is not too small. The second condition holds if qR
is away from the MSW resonance value ∆c and the following dimensionless parameter

κ =
∆s

|q| ≈ 0.033× sin 2θ

(
∆m2

10−3 eV2

)(
100 GeV

Eν

)(
V0

|q|

)

is sufficiently small. In fact we assume |κ| . 1 and impose no specific restriction for the
ratio qR/qI . This spans several possibilities:

? small ∆m2,

? small mixing angle,

? high energy,

? high matter density.

The last two possibilities are of special interest because the inequality |κ| . 1 may be
fulfilled for a wide range of the mixing parameters ∆m2 and θ by changing Eν and/or
ρ. In other words, this condition is by no means artificial or too restrictive.

After elementary while a bit tedious calculations we obtain

ξ = 1− 1

2
κ

2 +O
(
κ

3
)
, I2 = κ

2 +O
(
κ

3
)
,

I+ = 1 +O
(
κ

2
)
, I− =

1

4
κ

2 +O
(
κ

3
)
;

VN Sesto Fiorentino, April–May, 2005



Λ ≈ 2Λα,

Λ+ ≈
(

1 +
κ

2

4

)
Λα ≈ Λα,

Λ− ≈
(

4

κ2

)
Λα � Λα.

Due to the wide spread among the length/time scales Λ±, Λ and L as well as among
the amplitudes I± and I, the regimes of neutrino oscillations are quite diverse for
different ranges of variable t.

With reference to Figs. 207–210, one can see a regular gradation from slow (at t . Λµ)
to very fast (at t & Λµ) neutrino oscillations followed by the asymptotic nonoscillatory
behavior:

Pµµ(t) '
κ

4

16
e−t/Λ− ,

Pss(t) ' e−t/Λ− ,

Pµs(t) = Psµ(t) '
κ

2

4
e−t/Λ− .
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Figure 207: Survival and transition probabilities for νµ ↔ νs oscillations (Eν = 250 GeV,
ρ = 1 g/cm3).
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Figure 208: Survival and transition probabilities for νµ ↔ νs oscillations (Eν =
1000 GeV, ρ = 0.2 g/cm3).
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Figure 209: Survival and transition probabilities for νµ ↔ νs oscillations (Eν = 100 TeV,
ρ = 10−3 g/cm3).
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Figure 210: Survival and transition probabilities for νµ ↔ νs oscillations (Eν = 100 TeV,
ρ = 3× 10−4 g/cm3).
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Degenerate case

The consideration must be completed for the case of degeneracy. Due to the condition
qI < 0, the density and composition of the “degenerate environment” are fine-tuned in
such a way that q = q−ζ = ∆c − i |∆s|. The simplest way is in coming back to the
master equation. Indeed, in the limit of q = q−ζ , the Hamiltonian reduces to

H = |∆s|
(
−i ζ
ζ i

)
≡ |∆s|hζ .

Considering that h2
ζ = 0, we promptly arrive at the solution of ME:

S̃(t) = 1− it |∆s|hζ
and thus

Pαα(t) = (1− |∆s| t)2 e−t/Λ,
Pββ(t) = (1 + |∆s| t)2 e−t/Λ,
Pαβ(t) = Pβα(t) = (∆st)

2
e−t/Λ.

Since 1/Λβ = 1/Λα − 4 |∆s|, the necessary condition for the total degeneration is
4Λα |∆s| ≤ 1 and thus 1/Λ = 1/Λα − 2 |∆s| ≥ 2 |∆s|. The equality only occurs when
νβ is sterile.
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The degenerate solution must be compared with the standard MSW solution

Pαα(t) = Pss(t) =
1

2
[1 + cos (2∆st)] ,

Pαs(t) = Psα(t) =
1

2
[1− cos (2∆st)] ,





(MSW)

and with the classical penetration coefficient

exp (−t/Λα)

(with 1/Λα numerically equal to 4 |∆s|) relevant to the transport of unmixed active
neutrinos through the same environment.
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Figure 211: Survival and transition probabilities for να ↔ νs oscillations in the case of
degeneracy (q = q−ζ). The standard MSW probabilities (dotted and dash-dotted curves)
together with the penetration coefficient for unmixed να (dashed curve) are also shown.

VN Sesto Fiorentino, April–May, 2005



3.2.10 Conclusions

We have considered, on the basis of the MSW evolution equation with

complex indices of refraction, the conjoint effects of neutrino mixing,

refraction and absorption on high-energy neutrino propagation through

matter. The adiabatic solution with correct asymptotics in the standard

MSW and classical limits has been derived. In the general case the

adiabatic behavior is very different from the conventional limiting cases.

A noteworthy example is given by the active-to-sterile neutrino mixing. It

has been demonstrated that, under proper conditions, the survival

probability of active neutrinos propagating through a very thick medium of

constant density may become many orders of magnitude larger than it

would be in the absence of mixing. The quantitative characteristics of this

phenomenon are highly responsive to changes in density and composition

of the medium as well as to neutrino energy and mixing parameters.

Considering a great variety of latent astrophysical sources of high-energy
neutrinos, the effect may open a new window for observational neutrino
astrophysics.
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4 Mechanisms of Cosmic Ray Acceleration
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4.0.11 Mechanical (toy) model

Let us consider an elastic collision of a relativistic particle from a moving object, say a
pingpong racket, whose mass is much larger than the total energy of the particle (ball).

u

v=p/E

v'=p'/E'

x

y

z

Figure 212: Relativistic pingpong.

The energy and momentum of the ball viewed from
the rest frame of the racket (RF) relate to that
from the lab. frame (LF) through the Lorentz
boost along the racket’s velocity u:a

before collision after collision

Ẽ = Γ
(
E − up‖

)
, Ẽ′ = Γ

(
E′ − up′‖

)
,

p̃‖ = Γ
(
p‖ − uE

)
, p̃

′
‖ = Γ

(
p
′
‖ − uE′

)
,

p̃⊥ = p⊥, p̃
′
⊥ = p

′
⊥.

Here Γ = 1/
√

1− u2 is the Lorentz factor,
u = |u|,
tilde (˜) marks the values in RF,
index ‖ (⊥) marks the components of the particle’s
momenta p,p′ and velocities v = p/E,v′ = p′/E′

parallel (perpendicular) to the velocity u.
aFor simplicity, we assume that u is perpendicular to the racket’s plane.
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According to our assumptions,

Ẽ′ = Ẽ and ṽ
′
‖ = −ṽ‖ (or uṽ′ = −uṽ).

By applying these relations and the Lorentz transformations, we obtain
(
1− uv′‖

)
E′ =

(
1− uv‖

)
E,

(
v
′
‖ − u

)
E′ = −

(
v‖ − u

)
E,

⇓
(
1− u2

)
E′ =

(
1− 2uv‖ + u2

)
E,

⇓

E′

E
=

1− 2uv + u2

1− u2
,

∆E

E
=

2
(
−uv + u2

)

1− u2
.

The energy change will be either positive (gain) or negative (loss), subject to the angle
θ between the vectors v and u (cos θ = vu/uv). Assuming v > u yields the conditions:

∆E > 0 if 1 ≤ cos θ <
u

v

∆E ≤ 0 if
u

v
≤ cos θ ≤ 1.
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head-on collision overtaking collision "accelerator"

∆E > 0 ∆E < 0

In particular, for an ultrarelativistic particle and nonrelativistic racket (u� v ≈ 1),
∆E > 0 for head-on collisions and ∆E < 0 for overtaking collisions.

Problems: 1. Prove that v
′
‖ = −v‖ +

2u(1− v2
‖)

2uv‖ − (1 + u2)
and thus

v
′
‖ ≈ ∓1±

(
1∓ v‖

)(1± u
1∓ u

)2

when v‖ ≈ ±1 and u� 1.

2. Study the case of a (ultra)relativistic racket.
3. Try to generalize our toy model by avoiding the assumption

that u is perpendicular to the racket’s plane.
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Second-order Fermi acceleration

Let us now assume that many rackets are distributed uniformly in space and their
velocities are all equal in magnitude and isotropically directed. Then the probability
P (v,u) for the particle having velocity v (relative to the lab. frame) to collide with a
racket having velocity u is proportional to the relative velocity |v − u|:

P (v,u) =
|v − u|
A

and the factor A (which can only depend on v and u) can be found from the
normalization condition ∫ 1

−1

P (v,u) d cos θ = 1.

After simple integration

∫ 1

−1

|v − u| d cos θ =

∫ 1

−1

√
v2 − 2vu cos θ + u2 d cos θ =

(v + u)3 − (v − u)3
3vu

,

we obtain

A = 2v

(
1 +

u2

3v2

)
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and thus

P (v,u) =
|v − u|

2v

(
1 +

u2

3v2

) (v > u). (150)

Then, taking into account that

∫ 1

−1

vu |v − u| d cos θ = −2vu2

3

(
1− u2

5v2

)
,

we can calculate the average values of cos θ and energy gain, ∆E, per collision:

〈cos θ〉 ≡
∫ 1

−1

cos θP (v,u) d cos θ = − u

3v

(
1− u2/5v2

1 + u2/3v2

)
, (151a)

〈∆E〉 ≡
∫ 1

−1

∆E P (v,u) d cos θ =
8u2E

3(1− u2)

(
1 + u2/5v2

1 + u2/3v2

)
. (151b)

In the case of nonrelativistic rackets, u2 � v2, the relative energy gain is proportional
to u2 and is independent of v:

〈∆E〉
E

≈ 8

3
u2 ≡ κ. (152)

This is a common feature of the second-order Fermi acceleration.
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Power-law spectrum

In the next step of our analysis we assume that many particles (balls) of the same
energy E0 were injected into the “Fermi accelerator” by some (unknown) mechanism.
These particles may collide with the rackets, but we forbid them to collide with each
other and exchange energy.a This means that their number density is assumed to be
small. Some particles may be lost from the accelerator due to inelastic interactions with
matter inside it or simply because they leak out from the system if it has a finite
volume. We assume that the mean characteristic time of that, τe, is energy and time
independent. It means that all particles have the same probability, dt/τe, of escaping in
any time interval dt. Let N(t) be the number of particles in the system at time t. Then

dN(t)

N(t)
= −dt

τe
, (153a)

⇓
N(t′)

N(t)
= exp

[
− (t′ − t)

τe

]
. (153b)

Let τc be the average time between the collisions (thus the mean free path of the
particles is Lc = τcv ' τc if v ' 1). Putting t′ = t+ τc in Eq. (153b) then shows that
exp (−τc/τe) is the fraction of particles survived during the time between successive
collisions.

aThe rackets may collide with each other if they wish.
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If the initial energy E0 of particles was ultrarelativistic then, according to Eq. (152),
their average energy E = En after n collisions becomes

E = (1 + κ)nE0 ⇒ n =
ln(E/E0)

ln(1 + κ)
.

Therefore the number of particles having energies greater than E (that is the integral
energy spectrum) is

N(> E) = K
∑

l≥n
exp

(
− lτc
τe

)
= K exp

(
−nτc
τe

)∑

l≥0

exp

(
− lτc
τe

)

=

K exp

(
−nτc
τe

)

1− exp

(
− τc
τe

) =

K

(
E

E0

)−γ

1− exp

(
− τc
τe

) ,

where K is some constant and

γ =
τc

τe ln(1 + κ)
≈ τc
κτe

.

(In the last equality we used the condition κ ∝ u2 � 1.) The differential energy
spectrum therefore is
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N(E) = −dN(> E)

dE
=

γK (E0/E)
γ+1

E0 [1− exp (−τc/τe)]
.

Let N0 = N(E0) be the number of injected particles. Then

K =
N0E0

γ

[
1− exp

(
− τc
τe

)]

and finally we arrive at the famous power-law spectra:

N(E) = N0

(
E0

E

)γ+1

, N(> E) =
N0E0

γ

(
E0

E

)γ
.

In order to have γ ∼ 1, there should be τc ∼ κτe � τe, that is the collisions should be
much more frequent than the processes resulting in escape of particles from the Fermi
accelerator. Many questions arise immediately: Are there some real analogs of our
rackets in Cosmos? Who plays this pingpong and who supplies the players with the
preaccelerated balls?

Problem: Fill up the list of questions.

To answer some of these questions we have to consider some features of cosmic
medium and magnetic fields.
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4.0.12 Stochastic collisions with magnetic clouds

First adiabatic invariant

Both interstellar medium and the magnetic fields frozen into it are highly
inhomogeneous. Let us assume however that the field slowly changes in space that is
the typical scale of the magnetic inhomogeneities LH is very large compared to the the
particle’s gyroradius,

LH � rg.

Then the transverse to H = H(r) component of the momentum obeys the low

p
2

⊥
H(r)

=
p2

Hp
, (154)

where the critical field Hp is a constant. The left part of Eq. (154) is called the first
adiabatic invariant. Eq. (154) can be rewritten as

sin2 αg =
H(r)

Hp
, (155)

where αg is the pitch angle defined above. Hence, as the particle approaches a region
where H = Hp the pitch angle attains the maximum possible value of π/2. At this
point the particle is reflected back along the same line of force and spirals backwards.
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u
H
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Figure 213: Collisions with moving magnetic irregularities leading to reflection.

This is, according to Fermi,a the “type A” reflection. Somewhat similar process takes
place when the particle spirals around a curve of the line of force (“type B” reflection).

aE. Fermi, Phys. Rev. 75 (1949) 1169. See also E. Fermi, Ap. J. 119 (1954) 1.
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Figure 214 schematically shows an example of a “magnetic trap” or “magnetic bottle”.
Its action is obvious from the previous consideration. If the Helmholtz coils move
toward each other, the particle is accelerated.

Figure 214: Motion of a trapped charged particle in a in a magnetic bottle produced by
two single axis Helmholtz coils. An example of the coil design is shown on the right.

A well-known example of the cosmic magnetic trap is the Van Allen radiation belts,
which surround the Earth. The radiation belt particles are trapped by the field because
the field lines converge (i.e., the field gets stronger) at the poles. As a charged particle,
spiraling about a field line enters a region of converging magnetic fields, it experiences a
net displacement force in the direction of the weaker field, which causes the particle to
oscillate between the poles (Fig. 215). The end result is that a population of energetic
particles is trapped within the dipolar structure.
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Figure 215: Mirroring of a trapped particle in the Earth’s magnetic field. The dipole-like
structure of the geomagnetic field provides the mechanism for a trapped population of
energetic particles. [From A.P. Stern and N. F. Ness, Planetary Magnetospheres, NASA Technical Memorandum

83841, Goddard Space Flight Center, Greenbelt, MD, 1981.]
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The magnetic inhomogeneities shown in Fig. 213, sometimes called “magnetic mirrors”,
are the real analog of our rackets which almost elastically scatter cosmic ray particles.

θθ′

v

v′

u

Figure 216: Schematic view of a charged par-
ticle collision with moving magnetic cloud.

Since the frozen magnetic field
is very stable compared to the time of
collision with a fast particle and remains
unchanged during the collision, the
collision is mechanically similar to that of
a fast ball with a slowly moving massive
object (racket). The particle would
gain energy due to head-on collisions
and lose it in overtaking collisions.

The motion of the particle scattered on
the random magnetic irregularities inside
a magnetic cloud can be treated as a
random walk. In complete analogy with
the mechanical model, the probability
of head-on collisions is higher than that
of overtaking collisions and hence, in
average, the particles would gain energy.

We will assume that the particle moves
fast compared to the cloud (v � u) and

may only scatter on the magnetic field irregularities rather than on the thermal particles
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frozen into the cloud. By using the same notation as for the mechanical model (see
Sect. 4.0.11 ), we can write

Ẽ = Γ
(
E − up‖

)
= ΓE

(
1− uv‖

)
,

Going back to the lab. frame, we have

E′ = Γ
(
Ẽ′ + up

′
‖

)
= ΓẼ′

(
1 + uv

′
‖

)
.

The energy is conserved in the cloud’s rest frame, Ẽ = Ẽ′. Therefore

E′ = Γ2E
(
1− uv‖

) (
1 + uv

′
‖

)

= Γ2E
(
1− uv‖ + uv

′
‖ − u2v‖v

′
‖

)

or, in terms of the angles defined in Fig. 216,

∆E/E = Γ2
(
1− uv cos θ + uṽ′ cos θ̃′ − u2vṽ′ cos θ cos θ̃′

)
− 1.

Neglecting the O(u2) contributions, this equation simplifies to

∆E/E ' −uv cos θ + uṽ′ cos θ̃′ ' uv
(
cos θ̃′ − cos θ

)
.

Since the particle motion inside the cloud is assumed to be random, all values of θ̃′ are
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equally probable and we can write

〈cos θ̃′〉 = 0.

Neglecting the O(u2/v2) contributions in Eq. (151a) (which is obviously applicable to
the considered situation) then yields

〈cos θ′〉 ' − u

3v
,

and we arrive to the result
〈∆E〉
E

' 4

3
u2. (156)

which is within factor of 2 the same as given by Eq. (152). The origin of this difference
is obvious.
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Appendix to Sect. 2.3.1 : Some details about K`3 decays.

From Eqs. (123) and (124) (see Sect. 2.3.1 ) and applying the standard techniques, one can
find the differential (with respect to the energy of final lepton, neutrino or pion) and total K`3

decay rates in the lab. frame. In a general way, the K`3 spectral function may be written asa

Eν
d3Γν

d3pν
=

G2
F sin2 θCm2

K

3(4π)4EK
f2
+(0)

q

(q2
ν)2 − 2µ2

+q2
ν + µ4

−

3X
n=−4

cν
n

�
q2

ν

m2
K

�n

,

E`
d3Γ`

d3p`
=

G2
F sin2 θCm2

K

3(4π)4EK
f2
+(0)(q2

` − m2
π)

3X
n=−4

c`
n

�
q2

`

m2
K

�n

Eπ
d3Γπ

d3pπ
=

G2
F sin2 θCm2

K

3(4π)4EK
f2
+(0)(q2

π − m2
`)

3X
n=−3

cπ
n

�
q2

π

m2
K

�n

,

where µ2
± = m2

π ± m2
` and the coefficients ci

n are the functions of the masses and parameters
of the form factors. Below we will use the following notation:

rπ =
m2

π

m2
K

, r` =
m2

`

m2
K

, u = 1 − ξ, v = 1 − ξ
λ−

λ+
, λ =

λ+

2rπ
.

aV. A. Naumov, T. S. Sinegovskaya and S. I. Sinegovsky, “The K`3 form factors and atmospheric
neutrino flavor ratio at high energies,” Nuovo Cim. 111 A, (1998) 129–148 (hep-ph/9802410); “Spectra
of secondary particles in K`3 decays,” in: Proc. of the Baikal School on Fundamental Physics “As-
trophysics and Microworld Physics,” Irkutsk, Russia, October 11–17, 1998, edited by V. A. Naumov,
Yu. V. Parfenov, and S. I. Sinegovsky (Irkutsk State University Publ. House, Irkutsk, 1998), pp. 67–85.
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Coefficients cν
n

cν
−4 = −6r`(rπ − r`)

3v2λ2,
cν
−3 = 8r`(rπ − r`)

2uvλ − 2(rπ − r`){4(rπ − r`)[rπ − r`(1 − 4v)]
−r`[3rπ(1 + 3rπ) − r`(9 + 10rπ − r`)]v

2}λ2,
cν
−2 = −3r`(rπ − r`)u

2 + 4{2(rπ − r`)[2(rπ − r`) + 3r`(u + v)]
−r`[r + r` + (rπ − r`)(3 + 4rπ − r`)]uv}λ + 8(rπ − r`)[(rπ − r`)(4 + 3rπ + r`)
−(rπ + r`)]λ

2 + 16r`[rπ + r` + 3(rπ − r`)(1 + 2rπ)]vλ2

−2r`{(rπ − r`)[3(2 + 8rπ + 3r2
π) − r`(2rπ + r`)] + (rπ + r`)(3 + 3rπ + r`)}v2λ2,

cν
−1 = −3{4rπ − r`[4(1 − 2u) + (1 + rπ − r`)u

2]} − 4{8rπ(1 + rπ) − 4r`(4 + rπ + r`)
+r`[2(1 + 4rπ + r2

π) − r`(1 + rπ + r`)]uv − 6r`(1 + 2rπ(u + v)}λ
−8{3rπ(1 + 3rπ + r2

π) − r`[5 + 16rπ + r2
π + r`(1 + rπ + r`)]

+2r`(5 + 15rπ + 6r2
π + 3r`)v}λ2 + 2r`{3(1 + 10rπ + 10r2

π + r3
π)

+r`[3 + 4rπ + r2
π + r`(4 + rπ + r`)]}v2λ2,

cν
0 = 3{4(1 + rπ) − r`[4 + (u − 8)u]} + 4{4(1 + 4rπ + r2

π) − r`[4(5 − rπ + 2r`)
−6(2 + rπ + r`)(u + v) + (4 + 4rπ + r`)uv]}λ + 8{1 + 9rπ + 9r2

π + r3
π

−r`[3 − 4rπ − r2
π + r`(3 − rπ + 3r`)]}λ2 + 2r`{16[3 + 6rπ + r2

π + r`(3 + rπ + r`)]
−[9(1 + 3rπ + r2

π) + r`(7 + 4rπ + r`)]v}vλ2,
cν
1 = −12 − 8{4(1 + rπ) − r`[2 − 3(u + v) − uv]}λ

−2{12(1 + 3rπ + r2
π) − r`[4(7 + 5r`) − 32(3 + 2rπ + 2r`)v + (9 + 9rπ + 5r`)v

2]}λ2,
cν
2 = 16λ + 2{12(1 + rπ) − r`[4 − (16 − 3v)v]}λ2,

cν
3 = −8λ2.
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Coefficients c`
n

c`
−4 = −6r3

πr`(1 − r`)
3(2 − v)2λ2,

c`
−3 = 2r2

π(1 − r`){4r`(1 − r`)(4 + uv − 2(u + v))λ − 4(1 − r`)[r(1 + 7r`) + r2
` (4 + v2)

−4r`(rπ + r`)v]λ2 + 3r`[rπ(1 + r`) + (1 − r`)(3 + 2rπ + r`](2 − v)2λ},
c`
−2 = −3rπr`(1 − r`)(2 − u)2 + 4rπ{4[rπ − 4r` + r2

` (5 − 3rπ − r`)]
+2r`(u + v)[rπ + 4 − r`(5 − rπ − r`)] − r`uv[4(1 + rπ) − r`(5 + 2rπ − r`)]}λ
+8rπ{3rπ(1 + rπ) + rπr`(19 + 8rπ − 15r`) − 3rπr2

` (rπ + r`) + 4r2
` (2 − r` − r2

` )}λ2

−8rπr`v{4rπ(1 − r`)
2 + (4rπ + r`(4 − v))[2(1 + rπ) − r`(1 + rπ + r`)]}λ2

−6rπr`(2 − v)2{3(1 + 3rπ + r2
π) − r`(1 + 4rπ + r2

π) − r2
` (1 + rπ + r`)}λ2,

c`
−1 = 3{r`[(1 + rπ + r`)(2 − u)2 + 2(4(rπ + r`) − r`u)u] − 4[rπ + r`(3rπ + 2r`)]}

+2{4[2r`(2 − r` − r2
` ) − 4rπ(1 + rπ) − 3rπr`(3 + rπ + r`)]

+4r`(u + v)[r`(1 + rπ + r`) − 2 − 2rπ + r2
π] + 2uvr`[2(1 + 4rπ + r2

π)
−r`(1 + rπ + r`)]}λ − 8{3rπ(1 + 3rπ + r2

π) + 4r2
` (1 + r` + r2

` )
+rπr`(26 + 32rπ + 15` + 3(r2

π + rπr` + r2
` )}λ2 + r`{8[r`(1 + 4rπ + r2

π

+r`(1 + rπ + r`)(4 − v) + 4rπ(3 + 6rπ + r2
π)]v

+6(2 − v)2[1 + 9rπ + 9r2
π + r3

π + r`(1 + 4rπ + r2
π) + r2

` (1 + rπ + r`)]}λ2,

c`
0 = 3[4(1 + rπ + 3r`) − r`(8u + (2 − u)2)] + 2{8(1 + 4rπ + r2

π + 3r`(1 + rπ + r`))
+4r`[(1 − 2rπ − 2r`)(u + v) − (4 + 4rπ + r`)uv]}λ
+8{1 + 9rπ + 9r2 + r3

π + r`(9 + 17r` + 13r`) + rπr`(40 + 13rπ + 21r`)}λ2

+r`{16v[r`(1 + rπ + r`)v − (2 + 12rπ + 6r2
π + r`(5 + 11rπ + 6r`))]

−6(2 − v)2[3(1 + 3rπ + r2
π) + r`(4 + 5rπ + 3r`)]}λ2,
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c`
1 = −12 + 8[r`(u + uv + v) − 4 − 4rπ − 6r`]λ − 4[6(1 + 3rπ + r2

π)
+2r`(16 + 17rπ + 15r`)]λ

2 + 2r`[9(1 + rπ + r`)(2 − v)2

+4v(8 + 12(rπ + r`) − r`v)]λ2,

c`
2 = 16λ + 2[4(3 + 3rπ + 4r`) − r`(3v + 4)v]λ,

c`
3 = −8λ2.

Coefficients cπ
n

cπ
−3 = −4r2

` (1 − rπ)2,
cπ
−2 = 3r2

` (1 − rπ)u2 + 2r`[(1 − rπ)2 − 2r`(1 − 2rπ)] − 16r2
` (1 − rπ)2λ

cπ
−1 = 3r`[2 − 2rπ − r`(2 − u)]u + 2{1 − 2rπ + r2

π + 2r`(2 − rπ − r`)}
+4r`{2(1 − rπ)2 − 4r`(1 − 2rπ)) + 3r`(1 − rπ)(u + v)}λ
−16r2

` (1 − rπ)2λ2,
cπ
0 = 3r`(u − 2)u − 2(2 + 2rπ − r`) + 8[1 − 2rπ + r2

π + 2r`(2 − rπ − r`)λ
−12r`{(1 − rπ − r`)(u + v) + r`uv}λ
+4r`{2r`(1 + rπ) + 2(1 − rπ)(1 − rπ − 3r`) + 3r`(1 − rπ)v}λ2,

cπ
1 = 2 + 4[3r`(uv − (u + v)) − 4 − 4rπ + 2r`]λ

+4{2[1 − 2rπ + r2
π + 2r`(2 − rπ − r`)] − 3r`[3 + rπ + r`(1 − v)]v}λ2,

cπ
2 = 8λ − 4[4 + 4rπ − 2r` + 3r`(1 − v)v]λ2,

cπ
3 = 8λ2.
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Appendix to Sect. 3.2.9 .

Case |q| � |∆|

Notation: x = ∆/|q| � 1, r = qR/|q| ≤ 1, s = sin 2θ, c = cos 2θ.

ε2
R =|q|2

�

r2 − 2crx + (c2 + s2r2)x2 − 2cs2(1 − r2)rx3 + s2(1 − r2)(c2 + r2 − 5c2r2)x4

−2cs2r(1 − r2)(1 − 3c2 − 3r2 + 7c2r2)x5 + O(x6)

�
,

ε2
I =q2

I

�

1 − s2x2 − 2cs2x3 + s2(c2 + r2 − 5c2r2)x4 − 2cs2r(1 − 3c2 − 3r2 + 7c2r2)x5 + O(x6)

�

,

|ε|2 =|q|2

�

1 − 2crx + s2x2 − 2cs2rx3 + s2(c2 + r2 − 5c2r2)x4

−4cs2r(1 − r2)(1 − 3c2 − 3r2 + 7c2r2)x5 + O(x6)

�
;

εR =ζ|q|

��r − cx + 1
2
s2rx2 − 1

2
cs2(1 − 2r2)x3 + 1

8
s2(1 − 5c2)(3 − 4r2)rx4

− 1
8
cs2(3 − 7c2)(1 − 8r2 + 8r4)x5 + O(x6)

�� ,
εI =ζζRqIξ;

ξ =1 − 1
2s2x2 − cs2rx3 − 1

8s2(1 − 5c2)(1 − 4r2)x4 − 1
2 cs2(3 − 7c2)(1 − 2r2)rx5 + O(x6),

I2 =s2x2 �1 + 2crx +

�
1 − 2c2 − 2(1 − 3c2)r2� x2 +

�
2 − 3c2 − (3 − 5c2)r2�x3 + O(x4)

	

;
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a1 =1 + 1
2
s2(1 − 2r2)x2 + cs2(3 − 4r2)rx3 + 1

2
s2 �1 − 4c2 − 6(1 − 5c2)(1 − r2)r2�x4

+ 2cs2 �4 − 9c2 − (3 − 7c2)(5 − 4r2)r2� rx5 + O(x6),

a2 =1 + 1
2
s2(1 − 2r2)x2 + cs2(3 − 4r2)rx3

+ 3
8s2(1 − 5c2)

�

1 − 8r2(1 − r2)

�

x4 + 1
2 cs2(3 − 7c2)

�

5 − 4r2(5 − 4r2)

�
rx5 + O(x6);

I+ =1 + 1
4
s2(1 − 2r2)x2 + 1

2
cs2(3 − 4r2)rx3 − 1

16
s2 �3(1 − 5c2) + 2(11 − 59c2)(1 − r2)r2�x4

+ 1
4
cs2 �2(7 − 17c2) − (11 − 27c2)(5 − 4r2)r2� rx5 + O(x6),

I− = 1
4s2x2 �1 + 2crx + O(x2)

�

;

I2
+ =1 + 1

2
s2(1 − 2r2)x2 + cs2(3 − 4r2)rx3 + 1

16
s2 �7 − 31c2 − 48(1 − 5c2)(1 − r2)r2�x4

+ 1
4
cs2 �31 − 71c2 + (3 − 7c2)(5 − 4r2)r2� rx5 + O(x6),

I2
− = 1

16s4x4 �1 + 4crx + O(x2)

�
.
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Case q2
I � ε2

0

Notation: xs = ∆2
s/q2

I , x = ε2
0/q2

I ≥ xs, ζI = sign (qI).

εR = |qI |
√

x − xs

�

1 + 1
2
xs − 1

2
xsx + 7

8
x2

s + . . .

�

,

εI = ζRqI

�

1 − 1
2
xs + 1

2
xsx − 5

8
x2

s − 1
2
xsx

2 + 7
4
x2

sx − 21
16

x3
s + . . .

�
,

ε2
R = q2

I (x − xs)

�

1 + xs − xsx + 2x2
s + . . .

�
,

ε2
I = q2

I

�

1 − xs + xsx − x2
s − xsx

2 + 3x2
sx − 2x3

s + . . .

�
,

|ε|2 = q2
I

�

1 + x − 2xs + 2xsx − 2x2
s − 2xsx

2 + 6x2
sx − 4x3

s + . . .

�
,

|ε| = |qI |

�

1 + 1
2
x − xs − 1

8
x2 + 3

2
xsx − 3

2
x2

s + 1
16

x3
s + . . .

�
,

a1|ε|2 = q2
I

�

1 + x − 3
2
xs + xsx − x2

s − xsx
2 + 3x2

sx − 2x3
s + . . .

�
,

a2|ε|2 = q2
I

�

1 + x − 3
2xs + xsx − 9

8x2
s − xsx

2 + 25
8 x2

sx − 35
16x3

s + . . .

�
,

I2
+ = 1 + 1

2
xs − 3

2
xsx + 31

16
x2

s + 5
2
xsx

2 − 71
8

x2
sx + 217

32
x3

s + . . . ,

I2
− = 1

16
x2

s

�

1 − 2x + 7
2
xs + . . .

�
,

I+ = 1 + 1
4
xs − 3

4
xsx + 15

16
x2

s + 5
4
xsx

2 − 17
4

x2
sx + 101

32
x3

s + . . . ,

I− = 1
4
xs

�
1 − x + 7

4
xs + x2 − 5xsx + 37

8
x2

s + . . .

�

,

tan ϕ = ζI (x − xs)
−1/2 �1 − 1

2xs + 1
2xsx − 5

8x2
s + . . .

�

,

ϕ = π
2
− ζI

√
x − xs

�
1 + 1

2
xs − 1

3
x2 + 1

6
xsx + 13

24
x2

s + . . .

�

.
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