

KamLAND: A Brief Status Report

D. Markoff North Carolina State University Triangle Universities Nuclear Lab

NuFact02 – July 2002

Kamioka Liquid-scintillator Anti-Neutrino Detector

A long-baseline, neutrino oscillation experiment measuring the flux and energy spectrum of electron anti-neutrinos from near-by nuclear power reactors.

KamLAND Collaboration

G.A.Horton-Smith, R.D.McKeown, J.Ritter, B.Tipton, P.Vogel California Institute of Technology

> C.E.Lane Drexel University Y.-F.Wang IHEP, Beijing

B.E.Berger, Y.-D.Chan, D.A.Dwyer, S.J.Freedman, B.K.Fujikawa, K.T.Lesko, K.-B.Luk,

H.Murayama, D.R.Nygren, C.E.Okada, A.W.Poon, H.M.Steiner, L.A.Winslow

Lawrence Berkeley National Laboratory/U.C. Berkeley

S.Dazeley, S.Hatakeyama, M.Murakamki, R.C.Svoboda

Louisiana State University

J.Detwiler, G.Gratta, N.Tolich, Y.Uchida

Stanford University

K.Eguchi, S.Enomoto, K.Furuno, Y.Gando, J.Goldman, H.Hanada, H.Ikeda, K.Inoue, K.Ishihara, W.Ito, T.Iwamoto, T.Kawashima, H.Kinoshita, M.Koga, T.Maeda, T.Mitsui, M.Motoki, K.Nakajima, H.Ogawa, K.Oki, T.Sakabe, I.Shimizu, J.Shirai, F.Suekane, A.Suzuki, O.Tajima, H.Watanabe Tohoku University

L.DeBraeckeleer, C.Gould, H.Karwowski, D.Markoff, J.Messimore, K.Nakamura, R.Rohm, W.Tornow, A.Young Triangle Universities Nuclear Laboratory

J.Busenitz, Z.Djurcic, K.McKinney, D.-M.Mei, A.Piepke, E.Yakushev

University of Alabama

P.Gorham, J.Learned, J.Maricic, S.Matsuno, S.Pakvasa

University of Hawaii

B.D.Dieterle

University of New Mexico

M.Batygov, W.Bugg, H.Cohn, Y.Efremenko, Y.Kamyshkov, Y.Nakamura University of Tennessee

NuFact02 – July 2002

Reactor Neutrino Source

Site	Distance	# of	P(ther.)	flux	Signal
Japan	(km)	cores	(GW)	(v cm ⁻² s ⁻¹)	(⊽/ yr)
Kashiwazaki	160.0	7	24.6	4.25x10 ⁵	348.1
Ohi	179.5	4	13.7	1.88X10 ⁵	154.0
Takahama	190.6	4	10.2	1.24x10 ⁵	101.8
Hamaoka	214.0	4	10.6	1.03x10 ⁵	84.1
Tsuruga	138.6	2	4.5	1.03x10 ⁵	84.7
Shiga	80.6	1	1.6	1.08x10 ⁵	88.8
Mihama	145.4	3	4.9	1.03x10 ⁵	84.5
Fukushima-1	344.0	6	14.2	5.3x10 ⁴	43.5
Fukushima-2	344.0	4	13.2	4.9x10 ⁴	40.3
Tokai–II	294.6	1	3.3	1.7x10 ⁴	13.7
Shimane	414.0	2	3.8	9.9x10 ³	8.1
Onagawa	430.2	2	4.8	9.8x10 ³	8.1
Ikata	561.2	3	6.0	8.4x10 ³	6.9
Genkai	755.4	4	6.7	5.3x10 ³	4.3
Sendai	824.1	2	3.3	3.5x10 ³	2.8
Tomari	783.5	2	5.3	2.4x10 ³	2.0
Korea					
Ulchin	~750	4	11.2	8.8x10 ³	7.2
Wolsong	~690	4	8.1	7.5x10 ³	5.2
Yonggwang	~940	6	16.8	8.4x10 ³	6.9
Kori	~700	4	8.9	8.0x10 ³	6.6
Total		69	175.7	1.34x10 ⁶	1102

Total expected signal from reactors: (~80% duty factor) ≈ 2 events/day

Baseline is limited: 85.3% of signal has 140 km < L < 344 km

Average baseline distance <L>~ 190 km

68 GWe power 4% world's manmade power 20% world's nuclear power

Positron Energy Spectrum

Neutrino oscillations change both the rate and energy spectrum of the detected events.

 Δm^2 sensitivity to 7*10⁻⁶ eV²

LMA-MSW solution

within reach <u>on the earth !</u>

KamLAND Detector Design

•Scintillator 80% Paraffin Oil 20% pseudocumine 1.5 g/l PPO

•30% photocathode coverage

1325 fast 17" PMTs 544 large area 20" PMTs

•Water Čerenkov veto detector

225 large area 20" PMTs

•Multi-hit, deadtime-less electronics

Anti 20" PMTs **Kevlar Suspension Rope** Tyvek Sheet/ 18m Stainless Tank 17"/20" inner PMTs Rock Wall/ PE sheet/ Radon Blocking Resin/ Tyvek reflector **PET Black Sheet** EVOH/3Nylon/EVOH 13m Balloon Acrylic Sphere (3mm t) **Fiducial Volume for** Reactor Neutrinos (600t) Fiducial Volume for Solar Neutrinos (450t)

KamLAND Construction: Sphere

Steel Sphere Constructed September-October 1999

KamLAND Construction: ID

ID PMT Installation Summer 2000 Completed September 28

False neutrino signal from µ-induced spallation neutrons.

Prompt signal E > 1 MeV Delayed signal $\Delta t \sim 50-500 \ \mu s$ Vertex distance $\Delta r < 1 \ m$

Veto muon induced events tracking – spatial veto veto in time after muon signal Passive neutron shield

NuFact02 – July 2002

KamLAND Construction: OD

OD PMT Installation December 2000 to April 2001

KamLAND Construction: Balloon

Balloon Installed and Tested January-March 2001

NuFact02 – July 2002

KamLAND Construction: Filling

Oil and Scintillator Filling Spring-Summer 2001 Completed September 24

Cabling

Front-End Electronics

KamLAND Construction

Infrastructure Completed And Data Taking Begins January, 2002

Calibration Deck and Glovebox

KamLAND Data

Event Display: through-going muon

Color is integrated pulse area

All tubes illuminated

KamLAND Data

Stopped cosmic-ray muon

Color is integrated pulse area

KamLAND Data

Example of Michel electron following a muon.

Calibration

- Waveform data collected convert charge and time information to event position and energy
- PMT calibration
 - Single photoelectron gain: peripheral LEDs
 - $G = 5 \times 10^6 \pm 6\%$
 - Large pulse height gain: UV laser
 - Timing: 500 nm dye laser
- The detector response is calibrated with radioactive sources
 - ^{60}Co (2505 keV sum from 2 γ) and ^{65}Zn (1116 keV γ)
- Position obtained from vertex fit
- Light calibration study of scintillator
- Energy response depends on position

Light Yield Calibration 17" PMTs Only

⁶⁵Zn: 1.115 MeV γ

241 p.e./MeV

 $\sigma/E = 6.5 \%$ Light Yield

⁶⁰Co : 2.505 MeV γ

 $\sigma/E = 4.2\%$ Light Yield 239 p.e./MeV

NuFact02 – July 2002

Position Calibration

 60 Co: z = -394.1 m

NuFact02 – July 2002

Summary of Backgrounds

⁴⁰K limit fit

Fiducial volume cuts (< 5 m) reduce accidental coincidence rates to less than $6x10^{-4}/day$.

Radioactivity background is negligible for the reactor v studies.

Fiducial Region:

Energy Deposition of Cosmic-Ray Muon Events

NuFact02 – July 2002

Neutrino Event Candidate

Looking toward the future: The Solar Neutrino Phase

- Goal: direct detection of
 ⁷Be solar neutrinos
- Singles measurement: no coincidence signal
- Low backgrounds required!
- " U/Th near required levels
- Reduction in low-energy backgrounds is needed

⁷Be signal

Low-Energy Backgrounds: Issues for the ⁷Be Measurement

Radiopurity design goals and current limits:

 $\begin{array}{rl} ^{238} U & 10^{-16} \text{ g/g} & < 6.4 \times 10^{-16} \text{ g/g} \\ ^{232} \text{Th} & 10^{-16} \text{ g/g} & < 1.8 \times 10^{-16} \text{ g/g} \\ ^{40} \text{K} & 10^{-18} \text{ g/g} & < 2.3 \times 10^{-16} \text{ g/g} \end{array}$

Dominant low-energy backgrounds are:

- ⁸⁵Kr (noble gas)
- ²¹⁰Pb, ²¹⁰Bi (metals) from Rn decays

Working on purification and eliminating leaks to remove contamination

Observed low-energy event spectrum and calculated backgrounds.

Summary

- Backgrounds and calibrations are sufficient for a successful reactor anti-neutrino oscillation measurement.
- Good quality data is now being collected.
- ⁷Be solar neutrino measurement is within reach – reduction of low-energy background sources will be needed.
- Plans are underway to achieve this second phase.

The Completed Detector Looking Up

NuFact02 – July 2002