UNO Cavity Liner System: Status Report and R&D Proposal

> D. Warner Colorado State University October 16, 2004

Update: Progress since August Phone Meeting

- R&D proposal section written
 - CSU (Warner), CSM (Kuchta) collaboration
 - ~170k* total budget including:
 - Mechanical properties of cavity liner systems & components
 - Accelerated aging studies of cavity reinforcement system (DI water exposure)
 - In situ accelerated testing of liner systems
- Contact made with David Sinclair from SNO
- Continuing to evaluate possible materials for testing as part of the R&D program

* Working number- still being finalized

Cavity Liner R&D D. Warner CSU

Cavity Liner Requirements

- Provide support for cavity walls
 - Limit and contain fracturing of cavity wall rock
 - Limit damage to equipment/personnel from surface failures
 - Exact bond strength and tensile properties need to be determined in conjunction with cavity design
- Contain a DI water volume of 500kT
 - Seal out external contamination (including Radon)
 - Avoid contaminating the water beyond the capabilities of "reasonable" water filtration equipment
 - Allow repeated fill/empty cycles
 - Provide a reliable seal for 30+ years
 - Avoid breaking the bank!

Preliminary questions:

- Mine engineering issues
 - Mechanical requirements (Petersen, Kuchta)
 - What bond strength is required?
 - What tensile strength is required?
 - Application issues (Kuchta)
 - What surface treatment of rock is required before application?
 - What are the environmental concerns?
 - Retention of bond to cavern surface
 - What will be the impact of water seepage behind barrier?
 - What is the impact of multiple fill-empty cycles ?
- Detector engineering issues
 - How will we interface with PMT mounting scheme? (Wilkes)

More Questions:

- Detector Engineering Issues (Cont.):
 - Extractables from barrier—
 - What will migrate into the water?
 - How much?
 - Ease of filtration?
 - Migration of contaminants through barrier-
 - What will penetrate, and how fast?
 - Particular concern– Radon?
 - Stability/chemical resistance
 - How will the TSM polymer respond to aggressive DI water?
 - How will water vapor permeating the TSM affect the bond to the rock/shotcrete surface?

Investigations of UNO Cavity Liner Design

- Literature search of available materials UNDERWAY
- Evaluation of experience at other labs UNDERWAY
- Define "straw-man" cavity liner design and minimum requirements for TSM materials

UNDERWAY

 Mechanical testing & accelerated aging *R&D PROPOSAL*

Preliminary results on literature search

- Much of the available information is empirical, even anecdotal, but improved modeling may begin to change this situation.
- Many options exist:
 - Wide range of permeability to water vapor, Radon, etc.
 - Wide range of bond strengths, tensile strength
 - Custom membrane materials may be possible
 - Many application techniques
- Specific information about water-filled cavities limited- most material I have found is from HEP experience! Not much published literature, some internal notes.

Many commercial TSM products are available...

Product	Manufacturer	Mix Base	Material Type	Fast/ Slow
? mbadb/	3M	Polyurethane	Liquid/Liquid	Fast
Ardumin TM020	Ardex	Hydraulic Cement	Liquid/Powder	Fast
Castonite M1	Rohm & Haas Composit.	Thermo plastic acrylic polymer	Liquid/Liquid	Fast
Evermine	Mead Mining	Cement/Acrylic	Liquid/Powder	Slow
GSM CS1251	MBT	Polyurethane-Polyurea /Acrylic	Liquid/Liquid	Fast
Lanko 228	CHRYSO	Cement/Acrylic	Liquid/Powder	Slow
Masterseal 840 R	MBT	Methacrylate	Liquid/Liquid	Fast
Masterseal 850 C	MBT	Methacrylate	Liquid/Liquid	Fast
Mineguard	Mineguard Canada	Polyurethane	Liquid/Liquid	Fast
Rocguard	MCC	Cementitious Polymer	Liquid/Powder	Slow
Rock Hold	Mondi / ICTUS	Methacrylate	Liquid/Powder	Slow
Rock Web	Spray On Plastic	Polyurea	Liquid/Liquid	Fast
Rockguard	Engineered Coatings	Polyurea/Polyurethane	Liquid/Liquid	Fast
SPI Polyurea	Speciality Products Int.	Polyurea	Liquid/Liquid	Fast
Tekflex	Fosroc Inc.	Cement Latex	Liquid/Powder	Slow
Tunnelguard	SA Mining & Eng.	Cement Latex	Liquid/Powder	Slow

Courtesy of CSM

...And custom products are possible

October 16, 2004

Cavity Liner R&D D. Warner CSU

Existing HEP Experience

- David Sinclair from SNO Lab has been very helpful
 - Not much published data regarding cavity design
 Sinclair is looking into securing internal reports/documents for us.
 - SNO cavity design virtually identical to UNO straw-man design
 - SNO used Urylon for TSM– now "out of favor" due to difficulties with application
 - Multi-layer TSM application (alternating colors!) necessary to discover pin-prick leaks (initial cistern test leaked badly)
 - Smoothing and preparation of shotcrete surface critical
 - SNO cavity leaks slowly
 – Believed to be due to penetrations in cavity liner. PMTs should be suspended from top deck
- No contact with yet with KamLAND
 beginning to look for a contact there.

Cavern Wall Water Containment: Revised straw-man design

- Cavern wall excavated, rock wall stabilized, surface scaled
- Preliminary layer of geomembrane applied
- Rock bolts/cables, steel mesh installed
- Shotcrete applied, large overhangs filled, surface smoothed
- "Geotextile" layer applied (water wick to sump at detector base)
- Surface prepared, Spray-on membrane applied (several layers, alternating colors?)
- Water volume makes contact with secondary spray-on membrane
- Detector veto volume isolated from membrane by film layer

R&D Proposal

- The main goals of research are:
 - To provide feedback for cavity design
 - To determine if TSM lined cavity for water containment is feasible (and cost effective)
- Outline of R&D plan:
 - Mechanical tests of candidate TSM materials
 - Application of candidate liner materials at CSM Experimental Mine and studies of system mechanical properties.
 - Tests of mechanical properties before after immersion in DI water and accelerated aging
 - Tests of candidate materials in DI water cistern at CSM experimental mine

Mechanical Testing

- We have access to the materials lab at CSU, which allows us to characterize candidate TSM materials.
 - Bond strength
 - Modulus of elasticity
 - Ultimate strength
 - Elongation at yield
- Provides critical input into cavity design.

In situ Mechanical Testing

- CSM has a teaching mine available to test proposed liner designs.
- Equipment exists for applying sample TSM/Shotcrete liners and testing them.
 - Bond strength and ground support can be measured.
- Surface preparation of rock before application can also be studied.

Accelerated Membrane Aging

- We will construct a temperature-controlled DI water immersion tank at CSU to allow for accelerated (high temperature) aging of TSM samples.
- DI water will be tested before and after sample immersion to look for extractables (commercial testing lab).
- Mechanical properties of TSM materials will be re-tested following immersion aging.

Accelerated Aging in CSM test Mine

- A test cistern (~10,000 L, 10m2 X 1 m deep) can be produced in CSM experimental mine and candidate liner system applied.
- DI water system from CSU will be used to maintain high-purity, high temperature DI water in cistern
- Tests will be done on cistern leak rate and DI water immersion impact on membrane bond strength to Shotcrete and mine wall
- Repeated water fill/empty cycles can also be tested

Current Funding & R&D Proposal

- SUNY Stony Brook has provided \$10K for initial research at CSU.
- CSU/CSM have submitted a request for \$170K to be included in the UNO R&D proposal.

Conclusions

- Cavern-wall based water containment seems feasible.
- Previous examples exist- SNO, KamLAND, but questions remain.
- CSU and CSM are submitting a request for R&D funds to study new TSM/Shotcrete ground support designs and long-term aging effects of DI water on TSMs and adhesion.
- These studies provide important feedback into cavity design and detector costing.