Simulation for **Gadolinium dissolved** Water Cerenkov Detector A.Kibayashi **Okayama University** Oct. 6, 2008

In collaboration with

Hirokazu Ishino, Yusuke Koshio, Masayuki Nakahata, Hiroyuki Sekiya, Micheal Smy, Mark Vagins

Oct. 6, 2008

Outline

- Super-Kamiokande
 - A brief introduction
- Gadolinium
 - Why?
- Prototype Detector
 - Its purpose
- Simulation with Geant4
 - Status & ToDo
- Summary

Super Kamiokande (SK)

a water cerenkov detector

Inner Detector (ID) ~11,000 20 inch-PMTs 40% photo coverage

39.3m

Oct. 6, 2008

A.Kibayashi @ 13th Geant4 User's Conference

41.4m

1 km

SK 2km

3km

2700mwe)

Oct. 6, 2008

History of Super-Kamiokande

What's Next?

- Supernova Neutrinos?
 - Diffuse supernova neutrino background (DSNB)
- Super-Kamiokande is already the best DSNB detector, but...
 - Spectrum consistent with background
 - M. Malek et al. Phys.Rev.Lett. 90 (2003) 061101
- Is there a way to reduce the backgrounds ?
 - Tag every DSNB events in Super-K.
 ⇒ John F. Beacom and Mark R. Vagins, Phys.Rev.Lett. 93 (2004) 171101

Key Issues

$$\overline{v}_e$$
 + p \rightarrow e⁺ + n

- Large cross section of Gd for neutron capture
 - ~49,000 barns (0.3 barns on free proton)
- Coincident signal detection
 - e⁺ and gamma shower
 - e⁺ energy 3~8 MeV peaking around 5 MeV
 - ~8 MeV shared among 3-4 gammas
- Tagging neutron with Gd will lower threshold!
- Gd is cheap and safe!

Expected Rates with 100 tons of GdCl3 in Super-K

- Neutrinos from Reactors from all power reactors in Japan
 - ~5,000 events per year
- Diffuse Supernova Neutrino Background (DSNB)
 - ~ 5 events per year

Prototype Detector

Nakahata @ Neutrino08

Items to be studied before introducing gadolinium to SK

Effect to water transparency

Water transparency should be long enough to do various physics at SK.

Water purification system

Current water purification system remove ions. So, it must be modified to purify water without removing gadolinium.

Material effects

Corrosion by gadolinium solution should be checked.

How to introduce/remove

How to mix gadolinium uniformly in the tank. How

quickly/economically/completely can the Gd be removed?

Ambient neutron level in the tank

Does it cause significant increase singles in trigger rate[for solar analysis]?

In order to study those things, we will construct a test tank (6~10m size) in the Kamioka mine.

Hardware Tests

- Stainless steel corrosion tests in Gd solutions at MES (Mitsui Engineering & Shipbuilding, Co.,LTD)
 - Stainless steel (SUS304) in solutions of several types of Gd compounds.
 - Accelerated (stress+high temperature) tests , longer term tests are needed.
 - Gd2(SO4)3 is the best so far, need tests for slightly low pH.
- Corrosion tests of other
 0.2 % GdCl₃ solution
 materials planned at Okayama
 University
 - Cables, blacksheet, PMT related materials
- Neutron tagging study conducte
 - Paper coming soon!

Oct. 6, 2008

A.Kibayashi @ 13th Geant4 User's Co

Simulation with Geant4

• Geant4 .9.1

- Started from extended/optical/LXe example
- Ref:
 - GLG4sim (<u>http://neutrino.phys.ksu.edu/~GLG4sim/</u>) Generic Liquid-scintillator Anti-Neutrino Detector ("GenericLAND") Geant4 simulation
 - T2K 2km water cerenkov detector simulation, M. Fechner et al.

Gadolinium dissolved

Water

- Water property
 - Same data as current SK simulation
 - Wavelength dependent
 - index of refraction
 - absorption length
- Gd compound
 - 0.2 % solution
 - All Gd isotopes included

absorption length(m

20 inch Hamamatsu Photo-multiplier Tube (PMT)

Geometry simplify as sphere + tube

Blue (invisible): glass surface Orange: photo-cathode behind glass

PMT Properties

- Use the same data used in the current SK simulation
- PMT surface properties
 - Incident angle dependent Reflection & Absorption
 - 50% s-wave and 50% d-wave $\frac{d}{d}_{0.2}$
- Quantum Efficiency
 - Depends on the wavelength

Oct. 6, 2008

A.Kibayashi @ 13th Geant4 User's

0.15

0.125

0.1 0.075

0.05 0.025

300 350

wavelength (nm)

Technical Note Use of FastSimulationModel

Review

- Can be triggered in two possible regions
 - The primary 'mass' geometry
 - Set the region (pmt glass) in DetectorConstruction
 - Ref: ExNo5EMShowerModel
 - A parallel (ghost) geometry
 - Need to build a separate parallel world which is exactly the same as the 'mass' region
 - RegisterParallelWorld in the main program.
 - Ref: ExNo5PionShowerModel

In MyCode

- Ref: GLG4PMTOpticalModel
- G4bool ModelTrigger
 - Trigger the FastSimulationModel when local position of G4FastTrack on G4LogicalVolume (my glass pmt region) is in the spherical region of PMT.
- G4bool IsApplicable
 - Apply when G4ParticleDefinision is a photon.
- Void Dolt
 - Read the PMT property table.
 - Incident angle dependent Reflection (R) and Absorption(A)
 - Apply to all tracks.
 - A track hits PMT surface
 - if(G4UniformRand()<R) Reflect the track if(G4UniformRand()<A) { Detect on cathode } else{ Kill; }

Digitization

Outputs

- Time (T) information
 - Gate 1.3 microsec
 - Dark noise at 4 kHz rate
 - No. of dark photon per PMT ~ Poisson
 - Randomly assign time in the gate window for the no. of dark photons
 - Photon arrival time smeared by 2.5 ns with Gaussian
- Charge (Q) information
 - No. of photons detected in 400 ns gate for each PMT

Double muon event in T mode ↑ in Q mode ↓

Oct. 6, 2008

Minimum tank size allowed?

check in terms of vertex resolutions

- Change size of the tank
 - Place max. number of PMTs automatically

Geom:

- Diameter of PMT = 50.8 cm
- Spacing between PMTs = 70.7 cm
- Blacksheet covering between PMTs
- Stainless steel tank frame structure
- Size of the inner volume (tank size is +2 x 0.5 m)
 - 4m h x 4m ø
 - 6m h x 6m ø
 - 8m h x 8m ø

@ 13th Geant4 User's Conference

Vertex Resolutions

- Fitter : SK standard fitter used for low energy events
 - Still needs fine tuning for the much smaller prototype detector
- Fiducial volume cut
 - Removes badly fitted events
 - Removes environmental neutrons and gammas
 - Needs to be optimized

Vertex Positions true(random) & fitted Fitted vertex tend to be near the wall

True Vertex - Fitted Vertex

w/ f.v. 0.5m from wall cut

Summary

- Geant4 simulation package is being built for a small scale prototype Gadolinium dissolved water cerenkov detector.
- Optical properties of the Super-Kamiokande detector are installed.
- Output is the time and charge information for each PMT.
- SK fitter for low energy events works for vertexing.
 - Fine tuning still needed.
- Next: Add neutron capture simulation (G4NDL)

Backups

Expected Rates

Inner volume	1 m cut F.V. (ton)	o.5 m cut F.V. (ton)	No F.V. cut (ton)	PMT coverage	Reactor nu rate w/ 1 m cut /year	Reactor nu rate w/ o.5 m cut /year
4m x 4m	6.3 (12.5 %)	21.2 (42.1 %)	50.3	34.1 %	1	5
5m x 5m	21.2 (21.5 %)	50.3 (51.2 %)	98.2	39.2 %	5	11
6m x 6m	50.3 (29.7 %)	98.2 (57.9 %)	169.6	37.3 %	11	22
8m x 8m	169.6 (42.2 %)	269.4 (67.0 %)	402.1	37.8 %	38	60

Vertex Resolutions vs. Size

5 MeV e⁺

True - Fitted Vertex

w/ f.v. 1m from wall cut

No. of PMTs

- Diameter of PMT = 50.8 cm
- Spacing between PMTs = 70.7 cm

Tank Size (mxm)	Barrel	Top/Bottom	Total
4 X 4	85	21 X 2	127
6 x 6	208	52 X 2	312
8 x 8	385	89 x 2	563
10 X 10	616	148 x2	912

True - Fitted Vertex

No cuts

