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1 Introduction

Even simple models may lead to computational complications, as in latent variable
models:

Monte Carlo Methods

Example 1 —Mixture models—

Christian P. Robert

Universit é Paris Dauphine Models of mixtures of distributions:

X ~ f; with probability p;,
forj =1,2,...,k, with overall density

X ~pifi(@) +- -+ prfe(e) .
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For a sample of independent random variables (X17 sy Xn), sample density ~
n
LI o i) + - + i finla)} - s -
i=1
Expanding this product involves k™ elementary terms: prohibitive to compute in -
large samples.
B
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Example 2 —Mixtures again—

1.1 Likelihood Methods For a mixture of two normal distributions,

pN(:usz) + (1 _p)N(0a02) )

Maximum Likelihood Methods
likelihood proportional to

o For an iid sample X7, ..., X, from a population with density
f(x|61,...,0%), the likelihood function is
n
-1, (T H -1 zi — 0
LO|x) = L(by,...,06lz1,...,20) 11 [pf w( . ) +(1-po ¢ < . )]
n 1=
= €T; 91 cen ek .
Hi:lf( ilf1, - 0) containing 2" terms.
o Global justifications from asymptotics Standard maximization techniques often falil to find the global maximum
because of multimodality of the likelihood function.
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In the special case Missing variable models
2 € 2 2
flalp, o) = (1 —€)exp{(=1/2)a”} + —exp{(~1/207)(x — 1)"} @)
with ¢ > 0 known otalt) = [ 1(w.2l0)dz

Then, whatever n, the likelihood is unbounded:

lim (= @1, 0|21, ..., 2,) = 00 Completed likelihood
o L*(0]x.2) = f(x,z2/6)
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Echantillon N(0,1)

—EM Algorithm—
Iterate (in m)

0.6
|

0.5

1. (E step) Compute

04

Q(010(my, x) = Ellog L(8]x, Z) |0y, x] ,

03
I

0.2

2. (M step) Maximise Q(9|é(m) ,X) in 6 and take

0.1

é(erl) = argmeax Q(elé(m)vx)

0.0
L

-2 -1 o 1 2

until a fixed point [of ()] is reached

Sample from (1)
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1.2 Bayesian Methods

In the Bayesian paradigm, information brought by the data x, realization of
X ~ f(xl0),

combined with prior information specified by prior distribution with density 7r(9)

"

Likelinood of 7N (p1,1) 4 .3N (2, 1) and EM steps
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Posterior distribution central to Bayesian inference

Summary in a probability distribution, (6| z), called the posterior distribution
Derived from the joint distribution f(z|0)m(6), according to m(0]x) oc f(x]0) w(0)
f(x|0)m(6)

m(0|z) = ——F———
[ f(w\@)w(@)d&’ e Operates conditional upon the observations

Integrate simultaneously prior information and information brought by x
[Bayes Theorem]

where Avoids averaging over the unobserved values of ©

Coherent updating of the information available on 6, independent of the order in

m(x):/f(x|0)ﬂ'(9)d0

. . . which i.i.d. observations are collected
is the marginal density of X

e Provides a complete inferential scope and an unique motor of inference
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Example 4 —Normal—
Example 3 —Binomial— In the normal N(,u, 02) case, when both 4 and o are unknown, there still is a

conjugate prior on @ = (1, o), of the form
For an observation X from the binomial distribution (7, p) the (so-called) jugate p (p, %)

conjugate prior is the family of beta distributions Be(a, b) (02)™* exp — { N — 6)? + a} Jo?
The classical Bayes estimator 0™ is the posterior mean since
I'la+b+n) B
0" = (1, 0®) @1, .. xn) o (02)7 exp—{ A (p—&)*+a} [o?

I'(a+ z)['(n —x + b)

1
% / p p:r-‘ra—l(l _ p)n—x-‘rb—ldp
0

T +a
a+b+n’

x(c?) ™" exp—{n(p—=)* + 52} Jo?

x (02 exp —{(A,,, )= )’

2 nA 2
+a+sm+n+)\ﬂ}/0
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The curse of conjugate priors

The use of conjugate priors for computational reasons
e implies a restriction on the modeling of the available prior information
e may be detrimental to the usefulness of the Bayesian approach

e gives an impression of subjective manipulation of the prior information
disconnected from reality.

Models/MLE/Bayes

Example 5 —Mixture of two normal distributions—
T1,.. 20 ~ f(2]0) = po(x; p1, 01) + (1 — p)o(x; pe2, 02)
Prior
piloi ~ N'(&, 07 ni),  of ~IG(vi/2,57/2),  p~ Be(a, )

Posterior

m(0]z,. .. @) X H{W(wj;m,m)ﬂl—p)sﬁ(xj;uz,@)}ﬂ(@)

=Y S wlh)rl(h)
£=0 (k)

[0(2")]
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A typology of Bayes computational problems

(i) use of a complex parameter space, as for instance in constrained parameter

sets like those resulting from imposing stationarity constraints in dynamic

models;

(i) use of a complex sampling model with an intractable likelihood, as for instance

in missing data and graphical models;

(iii) use of a huge dataset;

(iv) use of a complex prior distribution (which may be the posterior distribution

associated with an earlier sample);

(v) use of a complex inferential procedure as for instance, Bayes factors

Bg(z) =

Models/MLE/Bayes

7P(9€@0‘$) ’/T(@E@o)
P(HE@;LZB)/

7T(9€®1).

For a given permutation (kt) conditional posterior distribution

w61(00) = A7 (61000, =7 ) % TG((01 + £)/2,51(05)2)
N (€l Ty ) X T 41— )/2,52(04)2)

xBe(a+£,8+n —¥)

18

20
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where
zi(k) = 130w, S1(ke) = ooy (xr, — T1(ke))?,
To(ke) = 5311 Thes a(ke) = Dl (wh, — To(ky))?
J Bayes estimator of 6:
an
6 (k) = ni&i + fi’;(kt)v Ea(ky) = 22T (n - 5')T2(kt)7 0 (@1, wn) = > w(k)E[0]x, (k)]
ny + ¢ ng +n—4~ =0 (ky)
nit ‘
si(ky)) = s74 8% (k) + njlir {?(51 — 71(kt))?, Too costly: 2" terms
. " no(n — /¢ B .
Sz<]<’[) = Sé + 55(1.[) + ,L;:_n_)(({g — 5172(147[))2,

posterior updates of the hyperparameters
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Example 6 —Poly-t prior—
Normal observation & ~ N(@, 1)' with conjugate prior More involved prior distribution:
0~ N(p,e) poly-t distribution
b
[Bauwens,1985]

Closed form expression for the posterior mean

k
0) = i 0—3)?" i Vi
/Hf(ww)w(é)d@ / /f(x|0)7r(9)d0: m(0) E[a + (60— 6)°] ;v >0
o e
T+ Computation of E[6)]z] 22?
1+e 27
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Example 7 —AR(p) model-

Auto-regressive representation of a time series,

p
=1

If order p unknown, predictive distribution of x;1 given by

T(Tep1]Te, - -5 21) 0</f($t+1|$t,~~7$tp+1)77(97p|$t,~~

Models/MLE/Bayes

Multiple layers of complexity

25

., x1)dpdf

27

(i) Complex parameter space within each AR(p) model because of stationarity

constraint

(i) if p unbounded, infinity of models

(iii) 6 varies between models AR(p) and AR(p + 1), with a different stationarity

constraint (except for root reparameterisation).

(iv) if prediction used sequentially, every tick/second/hour/day, posterior distribution

(0, p|y, . .., x1) must be re-evaluated

Models/MLE/Bayes

Integration over the parameters of all models

0o
Z / f(l't+1|llit, eey l't_p+1)7T(9|p, Tty
p=0

MCMC Methods/Oulu/Apr. 19-22

2 Random Variable Generation

,x1) dO (p|xy, . ..

7'1;1)-

26

28
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e Rely on the possibility of producing (computer-wise) an endless flow of random

variables (usually iid) from well-known distributions

e Given a uniform random number generator, illustration of methods that produce

random variables from both standard and nonstandard distributions

Basics:Intro/Advanced 31

Consequence:

To generate a random variable X ~ F’, suffices to generate
U~ Up

and then make the transform
x=F"(u)

Basics:Intro/Advanced

2.1 Basic Methods

2.1.1 Introduction

For a function F' on IR, generalized inverse of F', F'—, defined by

F~(u) = inf {z; F(z) > u}.

Probability Integral Transform:

It U ~ Upp,11, then the random variable F'~ (U) has the distribution F".

Basics:Limits/Advanced

2.1.2 Desiderata and Limitations

e Production of a deterministic sequence of values in [0, 1] which imitates a

sequence of iid uniform random variables U[OJ].

e Can't use the physical imitation of a “random draw” [Nn0 guarantee of
uniformity, no reproducibility]

° sequence in the sense: Having generated (Xl, e ,Xn), knowledge
of X, [or of (X1, -+, X, )]imparts no discernible knowledge of the value of
Xnt1-

30

32
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° : Given the initial value X, sample (X1, - - -, X,) always the

same

e Validity of a random number generator based on a single sample X1, ---, X,
when n tends to 400, not on replications

(Xllv"' 7X1n)7(X217“'7X2n)7' .. (Xkrlv' 7an)

where n fixed and k tends to infinity.

Basics:Generator/Advanced

e Validity of the algorithm means that the sequence U1, - - -, U,, leads to accept

the hypothesis
H:Uy,---,U, areiid Uy,
e The set of tests used is generally of some consequence
o Kolmogorov—Smirnov
o Time series methods, for correlation between U; and (U;—1, -+, U; )
O nonparametric tests

o Marsaglia’s battery of tests called Die Hard (!)

33
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2.1.3 Uniform pseudo-random number generator

Algorithm starting from an initial value ug and a transformation D), which produces

a sequence
(w;) = (Di(uo))
in [0, 1].
For all n,
(uh c. 7un>
reproduces the behavior of an iid ¢y 1) sample (V1, - - -, V;,) when compared

through usual tests

Basics:Generator/Advanced

Usual generators

In R and S-plus, procedure runif()

The Uniform Distribution

Description:
‘runif generates random deviates.

Example:
u <- runif(20)

‘‘Random.seed’ is an integer vector, containing the
random number generator (RNG) state for random number
generation in R. It can be saved and restored, but
should not be altered by the user.

34

36
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In C, procedure rand()  or random()

SYNOPSIS
#include <stdlib.h>
. long int random(void);

00 02 04 06 08 10

i DESCRIPTION
i The random() function uses a non-linear additive
o 20 0 0 00 o0 feedback random number generator employing a

uniform sample

default table of size 31 long integers to return
successive pseudo-random numbers in the range
from O to RAND_MAX. The period of this random
generator is very large, approximately

16*((2**31)-1).

RETURN VALUE

random() returns a value between 0 and RAND_MAX.

15

10

0.5

0.0
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In Scilab, procedure rand()
2.2 Beyond Uniform Distributions

rand() : with no arguments gives a scalar whose

value changes each time it is referenced. By

default, random numbers are uniformly distributed e Generation of any sequence of random variables can be formally implemented

in the interval (0,1). rand('’normal’) switches to through a uniform generator

a normal distribution with mean 0 and variance 1. o For distributions with explicit forms of '~ (for instance, exponential,

double-exponential or Weibull distributions),

EXAMPLE the Probability Integral Transform can be implemented.

x=rand(10,10,’uniform’) o Case specific methods, which rely on properties of the distribution (for

instance, normal distribution, Poisson distribution)
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o More general (indirect) methods exist, for example the accept-reject and the

ratio-of-uniform methods

e Simulation of the standard distributions is accomplished quite efficiently by
many statistical programming packages (for instance, IMSL, Gauss,
Mathematica , Matlab/Scilab , Splus/R ).

Basics/Advanced:Transforms
Other random variables that can be generated starting from an exponential include
v
2
Y = -2 log(Uj) ~ x3,,
j=1
1 a
Y=-3 > log(U;) ~ Ga(a, B)
j=1

_ 2?21 log(U;)

= = ~ Be(a,b)
> o) log(Uy)

41 Basics/Advanced:Transforms 42

2.2.1 Transformation Methods
Case where a distribution F'is linked in a simple way to another distribution easy to
simulate.
Example 8 —Exponential variables— If U ~ U[O’l], the random variable
X =—logU/\
has distribution
P(X <z) = P(-logU < \z)
= PU>e™)=1-e"7,

the exponential distribution Exp(\).

43 Basics/Advanced:Transforms 44

Points to note
o Transformation quite simple to use
o There are more efficient algorithms for gamma and beta random variables
o Cannot generate gamma random variables with a non-integer shape parameter

o For instance, cannot get a X% variable, which would get us a N(0, 1) variable.
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Example 9 —Normal variables— If r, @ polar coordinates of (X1, X52), then,
r? = XP+ X5~ x; = Eap(1/2)

and

6 ~ uniform distribution on [0, 27]

Consequence: If Uy, Uz iid U 1),

X = —2log(Uy) cos(27Us)
Xo = /—2log(U;) sin(2nwUs)
id A/(0, 1).

Basics/Advanced: Transforms

e Unlike algorithms based on the CLT, this algorithm is exact
e Get two normals for the price of two uniforms

e Drawback (in speed) in calculating log, cos and sin.

45
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—Box-Muller Algorithm—

1 Generate U,Us, iid  Ujpy) ;
2 Define

{ajl = /—2log(uy) cos(2ruz) ,
xo = /—2log(uq) sin(2musz) ;

3 Take z; and z5 as two independent draws
from  AN(0,1).

Basics/Advanced:Transforms

Example 10 —Poisson generation—
Poisson—exponential connection:

If N ~P(A) and X; ~ Exp(N), i € N,

Py(N =k) =
P)\(X1+"'+Xk§1<X1+"'+Xk+1).

46
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e A Poisson can be simulated by generating Exp(l) till their sum exceeds 1.
e This method is simple, but is really practical only for smaller values of \.

e On average, the number of exponential variables required is \.

e Other approaches are more suitable for large \’s.

Basics/Advanced: Transforms

e A generator of Poisson random variables can produce negative binomial

random variables since,

implies

Y ~Ga(n,(1-p)/p) Xly~P(y)

X ~ Neg(n,p)

49
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To generate N ~ P()\):
0. Define

B=n/V3X, a=XA3 and k=Ilogc—\—Ilogp;
1. Generate U; ~Up, and calculate
z ={a—log{(l —u1)/u1}}/B
until X > —0.5 ;

Define N = [X +0.5] and generate Uy ~ U 1);
3. Accept N if

a—pBz+log (up/{1+exp(a—pz)}?) < k+N log \—log N! .

Basics/Advanced:Transforms 52

Mixture representation

e The representation of the negative binomial is a particular case of a mixture

distribution

e The principle of a mixture representation is to represent a density f as the

marginal of another distribution, for example
f(z) = Z pi fi(z)
i€y

e |f the component distributions fl(:v) can be easily generated, X can be
obtained by first choosing f; with probability p; and then generating an
observation from f;.
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Partitioned sampling

Special case of mixture sampling when

fi(e) = F@)La, (@) / IRCE

and
pPi = PI’(X S Az)

for a partition (A;);

Basics/Advanced:Accept-Reject

Fundamental theorem of simulation

Simulating
X~ f(z)

equivalent to simulating

(X, U) ~U{(z,u) : 0 <u< f(z)}

)
05 0 0%
1 1 1

010
I

005
I

000
I
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2.2.2 Accept-Reject Methods

e Many distributions from which difficult, or even impossible, to directly simulate.

e Another class of methods that only require us to know the functional form of the

density f of interest only up to a multiplicative constant.

e The key to this method is to use a simpler (simulation-wise) density g, the
instrumental density, from which the simulation from the target density f is

actually done.

55 Basics/Advanced:Accept-Reject 56

Accept-Reject method

Given a density of interest f, find a density g and a constant M such that
fx) < Mg(x)
on the support of f.
1. Generate X ~g, U~Upy ;

2. Accept Y =X if U< f(X)/Mg(X) ;

3. Return to 1. otherwise.
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Validation of the Accept-Reject method

This algorithm produces a variable  Y'distributed accordingto  f ‘

Basics/Advanced:Accept-Reject

Two interesting properties:

o First, it provides a generic method to simulate from any density f that is known
up to a multiplicative factor
Property particularly important in Bayesian calculations: there, the posterior
distribution
m(0|z) oc w(0) f(x]0) .

is specified up to a normalizing constant

o Second, the probability of acceptance in the algorithm is 1/M, e.g., expected
number of trials until a variable is accepted is M

57
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Uniform repartition under the graph of  f of accepted points

Basics/Advanced:Accept-Reject 60

Some intuition

o In cases f and g both probability densities, the constant M is necessarily
larger that 1.

o The size of M, and thus the efficiency of the algorithm, functions of how closely
g can imitate f, especially in the tails

o For f/g to remain bounded, necessary for g to have tails thicker than those of
f.
It is therefore impossible to use the A-R algorithm to simulate a Cauchy
distribution f using a normal distribution g, however the reverse works quite

well.
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Example 11 —Normal from a Cauchy—

flz) = \/12? exp(—:r2/2)
and ) )
9@ = 21y

densities of the normal and Cauchy distributions.

fl@) _ 72y e
T =3 e s

attained at z = +1.

Basics/Advanced:Accept-Reject

Example 12 —Normal/Double Exponential —

Generate a N (0, 1) by using a double-exponential distribution with density
g(z|a) = (@/2) exp(—alz|)

f(@) < 2a—1e—a2/2

glala) = Vom

and minimum of this bound (in «) attained for

a* =1

=1.52

61
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So probability of acceptance
1/1.52 = 0.66,

and, on the average, one out of every three simulated Cauchy variables is rejected.

Mean number of trials to success 1.52.

Basics/Advanced:Accept-Reject 64

Probability of acceptance
Vm/2e = .76

To produce one normal random variable, this Accept-Reject algorithm requires on
the average 1/.76 ~ 1.3 uniform variables.

To compare with the fixed single uniform required by the Box-Muller algorithm.
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Can use the Accept-Reject algorithm with instrumental distribution

Ga(a,b), witha = [a], « > 0.

Example 13 —-Gamma with non-integer shape parameter— (Without loss of generality, 3 = 1.)
lllustrates a real advantage of the Accept-Reject algorithm Up to a normalizing constant

The gamma distribution ga(a, ﬁ) represented as the sum of o exponential random a—a @9
variables, only if c is an integer flgy =02 exp{—(1—b)z} <b™“ ((1—())6)

forb < 1.

The maximum is attained at b = a /.
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Define ¢, =a—1, ¢ = (a— (1/6a))/01, c3 = 2/01' Example 14 —Truncated Normal distributions—
ca=1+c3, and c¢5 = 1/\/5- Truncated Normals appear in many contexts
1. Repeat Constraints > p produce densities proportional to

generate Uy, Uy
take U, =U; + 05(1 = 186U1) if a>25
until 0<U; <1.

e_(ﬁ—ﬂ)2/2o'2 ]IxZH

for a bound (s large compared with 14

W= C2U2/U1' Alternatives far superior to the naive method of generating a/\/(,u, 02) until
—il
3. I Ui+ WH+W™" < ¢4 or c3zlogUsi—logW+W <1, exceeding £, which requires an average number of 1/®((x — ) /o) simulations
take W; from N (1, o2) for one acceptance.

otherwise, repeat.
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Instrumental distribution: translated exponential distribution, &rp(oz, H)' with
density

Ja(2) = ae (1) L>u -
The ratio f /g, is bounded by

1/a exp(a?/2 —ap) ifa>p,

flg9a < {

1/a exp(—p?/2) otherwise.

Basics/Advanced:ARS

Take
S ={z;,i=0,1,...,n+ 1} C supp(f)

such that h(x;) = log f(x;) known up to the same constant.
By concavity of &, line L; ;41 through (x;, h(x;)) and (241, h(zit1))
e below h in [z;, z;4+1] and

e above this graph outside this interval

69 Basics/Advanced:ARS 70

2.2.3 Log-concave densities

Densities f whose logarithm is concave, for instance Bayesian posterior

distributions such that
log 7(0|x) = log () +log f(x]0) +c

concave

71 Basics/Advanced:ARS 72

log f(x)

Forx € [z, xiy1], if
hp(x) = min{L; 1 ;(x), Liy1i42(x)} and h,(2) = L (z),

the envelopes are
hy (@) < h(@) < ha(z)
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uniformly on the support of f, with

hy(x) = =00 and hy(z) = min(Lo,1(2), Lnn+1(x))
on [Zg, Tp+1]¢. Therefore, if
f, (@) = exph,(z) and fo(x) = exphy(x)
then

where w,, normalizing constant of f;,

Basics/Advanced:ARS

Example 16 Northern Pintail ducks
Ducks captured at time ¢ with both probability p; and size N of the population

unknown.

Dataset
(ny,...,n11) = (32,20,8,5,1,2,0,2,1,1,0)

Number of recoveries over the years 1957-1968 of N = 1612 Northern Pintail
ducks banded in 1956

73 Basics/Advanced:ARS 74

Algorithm 15 —ARS Algorithm—

0. Initialize n and S,,.
1. Generate X ~ gn(x), U ~ Ujg 1.
2.1f U < f (X)/w, gn(X), accept X;

—n

otherwise, if U < f(X) /@y gn(X), accept X
and update Sj, to Sp1 = S, U{X }.

75 Basics/Advanced:ARS 76

Corresponding conditional likelihood

N!

I
L(py,....prIN,na, . onp) = —— [] pi"(1 = p)V ™",
_ ] 7
(N - L

where I number of captures, n; number of captured animals during the 7th capture,

and r is the total number of different captured animals.
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N ~P())

and

oG = lOg <1 fzp> ~ N(ﬂi,UQ),

[Normal logistic]

Basics/Advanced:ARS

For the conditional posterior distribution

1 A
(| Nyny,...,mp) exp{aini—M(ai_’ui)?}/(l+em)N7

the ARS algorithm can be implemented since

1 ,
Qing = 53 (i — pi)? — N log(1 + e*)

is concave in ¢;.

7

79
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Then

m(a, N|,nq,. ..

Basics/Advanced:ARS

Posterior distributions of capture log-odds ratios for the years 1957-1965.

1957

anl)

N! AN

=l M

! 1
| | 2
Pl eXp{ami g ) }

1958

I

[T +e)=n

=1

1959

00 02 04 06 08 10

00 02 04 06 08 10

L

5

00 02 04 05 08 10

00 02 04 06 08 10

L

L

00 02 04 06 08 10

00 02 04 06 08 10

T S T T
3 10 -9 8 7

- 1962
3 10 o 8 7

- 1965
3 10 o 8 7
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1960

True distribution versus histogram of simulated sample

Intro/Monte Carlo/Importance/Acceleration

3.1

Introduction

Two major classes of numerical problems that arise in statistical inference

o

- generally associated with the likelihood approach

- generally associated with the Bayesian approach

81

83
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3 Monte Carlo Integration

Intro/Monte Carlo/Importance/Acceleration

Example 17 —Bayesian decision theory—

Bayes estimators are not always posterior expectations, but rather solutions of the

minimization problem
nlﬁin / L(#,0) w(0) f(x|0) db .
Joe

Proper loss:

For L(6,0) = (6 — 6)?, the Bayes estimator is the posterior mean
Absolute error loss:

For 1.(6,0) = | — ], the Bayes estimator is the posterior median
With no loss function

use the maximum a posteriori (MAP) estimator

arg mgx€(€|x)7r(9)

82
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3.2 Classical Monte Carlo integration

Generic problem of evaluating the integral
3=E/[h(X)) = [ hle) f(o) da
X

where X is uni- or multidimensional, f is a closed form, partly closed form, or

implicit density, and h is a function

Intro/Monte Carlo/Importance/Acceleration

Estimate the variance with

m

Um = ——— [h(x;) — hm]27

and for m large,

hin — Ef[R(X)]
No

Note: This can lead to the construction of a convergence test and of confidence

~ N(0,1).

bounds on the approximation of I ¢ [2.(X)].

85
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First use a sample (X1, . .., X, ) from the density f to approximate the integral J
by the empirical average

_ 1 &
h = — Y h(z;
Jj=1
Average

. — By [h(X))]

by the Strong Law of Large Numbers
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Example 18 —Cauchy prior—

For estimating a normal mean, a robust prior is a Cauchy prior

X ~N(0,1), 6~C(0,1).

Under squared error loss, posterior mean

R 2
—(@=0)"/249
/oo 1 926

577(1,) = —F 1

[ 7w
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Form of 0™ suggests simulating iid variables 01, - - -, 6,,, ~ N (z, 1) and calculate
0
S T
o 14 6;
Zi:l 1 + 03

The Law of Large Numbers implies

o (x) — §"(x) asm — oo.
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3.3 Importance Sampling

Simulation from f (the true density) is not necessarily optimal

Alternative to direct sampling from f is importance sampling , based on the

alternative representation
)] = [ [ 28] g0 ao

which allows us to use other distributions than f
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o 200 400 600 800 1000

iterations

Range of estimators  J7, for 100 runs and 2 = 10
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Evaluation of
BAW(X)) = [ h(e) f(@) da
by
1 Generate a sample X1, ..., X, from a distribution g
2 Use the approximation
T
o2

j=1

~

(X;) A

Q
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Convergence of the estimator

m

1 X]'
mEﬁd“mH

/X h(z) f(z) dz
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Although g can be any density, some choices are better than others:

o Finite variance only when

s PO [ o PO
MV“QMLLh”mmd<'

o Instrumental distributions with tails lighter than those of f (that is, with

sup f/g = oo) not appropriate.

o Ifsup f/g = oo, the weights f(z;)/g(z;) vary widely, giving too much

importance to a few values ;.

o Ifsup f/g = M < 00, the accept-reject algorithm can be used as well to

simulate f directly.

Intro/Monte Carlo/Importance/Acceleration 94

o Same reason the regular Monte Carlo estimator h,,, converges

o converges for any choice of the distribution g [as long as
supp(g) D supp(f)]
o Instrumental distribution g chosen from distributions easy to simulate

o The same sample (generated from g) can be used repeatedly, not only for
different functions h, but also for different densities f

o Even dependent proposals can be used, as seen later
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Example 19 —Cauchy target— Case of Cauchy distribution C(O, 1) when

importance function is Gaussian (0, 1).

Ratio of the densities

p*(z) Nor expx?/2

Topoe) VT (1+a?)

very badly behaved: e.g.,

| e = o.

— 0o

Poor performances of the associated importance sampling estimator
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Range and average of 500 replications of IS estimate of E[exp — X over
10, 000 iterations.
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Practical alternative

Yoy X)) f(X5)/9(X;5)
S F(X)/a(X5)

where f and g are known up to constants.

o Also converges to J by the Strong Law of Large Numbers.
o Biased, but the bias is quite small

o In some settings beats the unbiased estimator in squared error loss.
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The choice of ¢ that minimizes the variance of the importance sampling

estimator is

_ @) f=)
Jz [h(2)] f(2) dz

9" ()

Rather formal optimality result since optimal choice of g*(m) requires the

knowledge of J, the integral of interest!
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For ratio estimator
n n
=3 w h@;i)/ S
i=1 i=1
with X; ~ g(y) and W; such that

EWilXi = x| = wf(z)/g(x)

98
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then
var(dy) ~ o

for

Intro/Monte Carlo/Importance/Acceleration

Example 20 —Students  distribution— X ~ 7 (v, 6, o), with density

_ I((v+1)/2) (z — 0)?
fol@) = oy/vm I'(v/2) (1 R

Without loss of generality, take § = 0, o = 1.

[ (52 s

Calculate the integral

1 .
—— (var(Sy) — 2E7[h] cov(Sy, ST) + E™[h]* var(ST)) .

)(V+1)/2

101
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First approximation

vard, ~ %var”(h(X)) {1 4 var,(W)}
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e Simulation possibilities
. . _ N(0,1)
o Directly from f,, since = —=
y Jv fv \/g
o Importance sampling using Cauchy C(0, 1)

o Importance sampling using a normal N(O, 1)
(expected to be nonoptimal)
o Importance sampling using a/([0, 1/2.1])

change of variables
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70
|

i SV AU

i -
St t
v v

6.0

55

o 10000 20000 30000 40000 50000

Sampling from  f (solid lines), importance sampling with Cauchy instrumental
(short dashes), U([0,1/2.1]) instrumental (long dashes) and normal

instrumental (dots).
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Frn=0Vi;k <n),set
Un =[] Vi
k=1
Since E[V},+1] = 1 and V}, 11 independent from F,,,
E(Un—l—l | fn) = UnE(Vn-i-l ‘ fn) = Un’

and thus {U,, } >0 martingale

Since x +— \/E concave, by Jensen’s inequality,

E(VUn+1 | Fo) < VEUnir | Fo) < VU

and thus {\/Up, }n>0 supermartingale
Assume E(1/V,,+1) < 1. Then

105
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IS suffers from curse of dimensionality

As dimension increases, discrepancy between importance and target worsens
Explanation:

Take target distribution p and instrumental distribution v

Simulation of a sample of iid samples of size n x1.,, from p,, = ,u® n
Importance sampling estimator for i, (fr) = [ fn(Z1:0)pn (dZ1:0,)

YN @) T W
:U/n(fn) = . J
Z;‘Vﬂ vazl W;

where W} = %(52) and & are iid with distribution v

)

For {Vk}kzo, sequence of nonnegative random variables and forn > 1,
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But {\/ Un}nzo is a nonnegative supermartingale and thus /U, converges a.s.

to a random variable Z > 0. By Fatou’s lemma,

E(Z) =E ( lim \/(Tn) < liminf E(VT,) = 0.

n—0o0 n—oo

Hence, Z = 0 and U,, — 0 a.s., which implies that the martingale {U,, },,>0 is

not regular.

Apply these results to Vj, = %(&)@ e{1,,N}

E fl—“(ki) <IE[d#(k)}—1.

dv

) L d .
with equality iff 5 = 1, v-a.e., ie pu=v.
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Example 21 —Stochastic volatility model—
yr = Bexp(x¢/2) e, e ~N(0,1)

with AR(1) log-variance process (or volatility)

Tpp1 = ot +oup, up ~N(0,1)

Intro/Monte Carlo/Importance/Acceleration

Observed likelihood unavailable in closed from.

Joint posterior (or conditional) distribution of the hidden state sequence

{ X% }1<k<n can be evaluated explicitly

K
H exp— {0 % (z), — dzi_1)> + B % exp(—zr)yp + 21} /2,
k=2

up to a normalizing constant.
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Evolution of IBM stocks (corrected from trend and log-ratio-ed)

-6

-8

-10
1

o 4

100 200 300 400

time
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Computational problems

500

Direct simulation from this distribution impossible because of
(a) dependence among the X}'s,
(b) dimension of the sequence { X} }1<k<p, and

(c) exponential term exp(—x,)y3 within (2).
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Importance sampling

Natural candidate: replace the exponential term with a quadratic approximation to

preserve Gaussianity.

E.g., expand exp(—x},) around its conditional expectation ¢x_1 as

exp(—zx) ~ exp(—¢zr-1) {1 — (2 — ¢rp_1) + %(ﬂik - ¢Ik1)2} .

Intro/Monte Carlo/Importance/Acceleration

Simulation starts with X1 and proceeds forward to X,,, each X, being generated

conditional on Y}, and the previously generated Xj,_1.

Importance weight computed sequentially as the product of

exp— {072 (z), — pwp_1)? + exp(—zp )y} + x } /2
exp — {7, % (zk — )2} ;"

113
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Corresponding Gaussian importance distribution with mean

_ ¢ria{o ™ + ypexp(—dwi-1)/2} — {1 — yi exp(—¢zp—1)}/2
’ o2+ yZ exp(—pzx_1)/2 ’

and variance
2 _ [ _—2 2 -1
T = (07" +ypexp(—prr-_1)/2)" .

Prior proposal on X1, X1 ~ N(0,0?).

Intro/Monte Carlo/Importance/Acceleration

00
|

Densty
0
R

RUH

log—weights t

Histogram of the logarithms of the importance weights (left) and comparison
between the true volatility and the best fit, based on 10, 000 simulated importance

samples.
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Highest weight trajectories

02
|

A1
|

42
|

3
|

t

Corresponding range of the simulated {X k}1§ k<100, compared with the true

value.
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Correlated simulations

Negative correlation reduce variance

Special technique — but efficient when it applies

117
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3.4 Acceleration methods

Intro/Monte Carlo/Importance/Acceleration

Two samples (X1, ..., X;,) and (Y1,...,Y,,) from f to estimate

with mean J and variance o

2

5= /R h(@) f(2)da .
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Variance of the average

I +3 L DA
% = % + 5001)(31,32).

var

If the two samples are negatively correlated
COV(ﬁl, 52) < 0,

they improve on two independent samples of same size

Intro/Monte Carlo/Importance/Acceleration

Control Variates

For

3= /h(x)f(m)dm
unknown and

30 = [ ho(a)f(a)da
known,

Jo estimated by jo (and J estimated by ﬁ)

121
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Example: Antithetic variables

o If f symmetric about 4, take Y; = 2 — X;
o If X; = F_l(Ui), take Y; = F_l(l — Uz)

o If (Ai)i partition of X', partitioned sampling by sampling Xj’s in each A;
(requires to know Pr(A;))

Intro/Monte Carlo/Importance/Acceleration

Combined estimator
T =346 - 1)

J* is unbiased for J and

var(3*) = var(J) + §?var(3) + 268cov(J, Jp)

122
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Optimal choice of 3
cov(J,Jp)

var(

B =

L
o
Nl

with
var(3%) = (1 — p?) var(J) ,

where p correlation between J and Jg

Usual solution:

Intro/Monte Carlo/Importance/Acceleration

Control variate

1< 1«
2 ST > )+ 3010 > ) = (X > )
improves upon g if
01,6 Pr(X
<0 and |ﬂ|<2cov( L 3):2 (X >a)

var(d3) Pr(X > )

125
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Example 22 — Quantile Approximation —

Evaluate
o="Pr(X > a) :/ f(z)dx
by
5= 1 Zn:]I(X > a)
= % a),
¢ et
with X; iid f.

If Pr(X > p1) = % known

Intro/Monte Carlo/Importance/Acceleration

Integration by conditioning

Use

126
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Consequence : If J unbiased estimator of J = E ;[,(X )], with X simulated from ,
o o= Example 23 —Student’s ¢ expectation—
a joint density f(x,y), where

For
/f(:c,y)dy = f(z), E[h(z)] = Elexp(—2?)] with X ~ T (v,0,0?)

the estimator a Student’s t can be simulated as

¥ =B, ..., Yl Xy~ N(uo%y) et Y ayZ

dominate J(X71, ..., X,,) variance-wise (and is unbiased)
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0.60
h

Empirical distribution

058
h

1 «— )
— Z exp(_Xj) )
m 4
7j=1
can be improved from the joint sample

(X1, Y1), ..., (Xm,Ym))

0.56
|

054
|

since

0.52
|

1 «— 1 — 1
— Elexp(—X?)|Y;] = — —_—
w2 Bl XM =03 e

0.50
h

o 2000 4000 6000 8000 10000

is the conditional expectation.
Estimators of [E[exp(—X?)]: empirical average (full) and conditional

In this example, precision ten times better )
expectation (dotted) for (v, u, o) = (4.6,0, 1).
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3.5 Bayesian importance sampling

Recall algorithm:

1. Generate 951),---,9§T)from cg(0)
with

Intro/Monte Carlo/Importance/Acceleration

Choice of g

9(8) = m(0)

'S (@) = 73 f(alo®)

{> often inefficient if data informative
{> impossible if 7 is improper
{> (a) often satisfied

{> (b) always satisfied

133 Intro/Monte Carlo/Importance/Acceleration

2. Take

/f(x|€)7r(9)d9

135 Intro/Monte Carlo/Importance/Acceleration

19(0) = f(2]0)7(0) |

{> ¢ unknown

{ (a) satisfied

Q

%

134

[Marginal approximation]

136

1 1
18 _ -
Om(”’%T;ﬂwm
$ (b) often fails: ex. N'(0,1)

<{> improper priors allowed
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9(6) = pm(6) + (1 — p)m(6]2) |

{ defensive mixture

O pkl Ok

Intro/Monte Carlo/Importance/Acceleration

Bridge sampling

137

[Newton & Raftery, 1994]

[Hestenberg, 1998]

139

[Chen & Shao, 1997]

m1(01) f1(01)

mq(z)
m2(02) f2(x]02)

ma(x)

ratio of normalising constants

Intro/Monte Carlo/Importance/Acceleration

<> works for any h

> finite variance if

Intro/Monte Carlo/Importance/Acceleration

@
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(ii)

Q

MCMC Methods/Oulu/Apr. 19-22

4 Notions on Markov Chains

141

0ji ~ m;(0)

143
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Optimal choice
n1 + no .
0) = ?
) 7117T1(9) + N (9) { ]

[Chen, Meng & Wong, 2000]
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4.1 Basics

Markov chain sequence of random variables whose distribution evolves over time

as a function of past realizations

Chain defined through its transition kernel , a function K defined on X x B(X)

such that
(i) Vo € X, K(z,-) is a probability measure;

(i) VA € B(X), K (-, A) is measurable.

142
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e When X isa

a (transition) matrix KK with elements

(finite or denumerable) set, the transition kernel simply is

Po:y:Pr(Xn:y|Xn—1: )7 x,yEX

Since, for all z € X, K (x, -) is a probability, we must have

Py >0 and K(z,X)=> Py =1

yex

The matrix K is referred to as a Markov transition matrix ~ or a stochastic

matrix

Basics/Irreducible/Recurrent/Invariant/Ergodic/Limits/Quanta/CLT

Markov chains

Given a transition kernel K, a sequence Xg, X1,..., Xy, ... of random variables
is a Markov chain denoted by (Xn) if, for any ¢, the conditional distribution of X

given x;_1,T¢_o,...,Tq is the same as the distribution of X; given x;_1. Thatis,

Pr(Xk+1 S A|.T0,l'1,l’2, R ,{Ek) = Pr(Xk+1 S A|$k)

= /Aﬁ(xk, dzx)
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e Inthe
K(z, ") of the transition K (x, )

case, the kernel also denotes the conditional density

Pr(X € Alz) = / Az, 2")dx'.
A

Then, for any bounded ¢, we may define

Note that

Ko(z)] < /X R, d)|o(y)] < ol = sup [6(a).

We may also associate to a probability measure p the measure , defined as
WK(A) = [ p(do)K (e )
X
147 Basics/Irreducible/Recurrent/Invariant/Ergodic/Limits/Quanta/CLT 148

Note that the entire structure of the chain only depends on
o The transition function K

o The initial state x¢ or initial distribution Xy ~ 1
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Example 24 —Random walk— The normal random walk is the kernel K (z, -)

associated with the distribution
2
Np(@,771p)
which means
Xt+1 = Xt -+ TEt

€; being an iid additional noise
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Ona X ={xg,21,...},

e A function ¢ on a discrete state space is uniquely defined by the (column)

vector ¢ = (¢(xg), p(1),...,)T and
Ko@) =) Puyd(y)

yeX
can be interpreted as the xth component of the product of the transition matrix
K and of the vector ¢.

e A probability distribution on P(X’) is defined as a (row) vector
w= (p(zg), u(x1), - ..) and the probability distribution 1K is defined, for
eachy € X as
nE({y}) =D n({a}) Py
TEX
yth component of the product of the vector i and of the transition matrix K.
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100 consecutive realisations of the random walk in R2 with 7 =1
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Composition of kernels

Let Q1 and (2 be two probability kernels. Define, for any z € X and any
A € B(X) the product of kernels Q1 Q2 as

&%@Mzﬁ&@@ﬂﬂﬂ)

When the state space X is discrete, the product of Markov kernels coincides with

the product of matrices Q1 x Q.
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4.2 Irreducibility

S " . _— In the continuous case, the chain is @-irreducible for some measure  if for some n,
Irreducibility is one measure of the sensitivity of the Markov chain to initial

conditions K"(z,A) >0

It leads to a guarantee of convergence for MCMC algorithms e forallz € X

In the discrete case, the chain is irreducible if all states communicate, namely if o forevery A € B(X) with cp(A) >0

P,(ry <o0) >0, Ve,y € X,

Ty being the first (positive) time y is visited
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Minoration condition

Small sets
Assume there exist a probability measure v and € > 0 such that, for all z € X and If there exist C' € B(X), <p(C) > (), a probability measure v and € > 0 such that,
al A € B(X), forallz € C'andall A € B(X),

K(z,A) > ev(A) K(z,A) > ev(A)

This is called a minoration condition

. . . . . ) C'is called a small set
When K is a Markov chain on a discrete state space, this is equivalent to saying

that Py, > Oforallz,y € & For discrete state space, atoms are small sets.
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4.3 Transience and Recurrence

e Irreducibility ensures that every set A will be visited by the Markov chain (Xn)

e This property is too weak to ensure that the trajectory of (Xn) will enter A

often enough.

e A Markov chain must enjoy good stability properties to guarantee an acceptable

approximation of the simulated model.
o Formalizing this stability leads to different notions of recurrence

o For discrete chains, the recurrence of a state equivalent to probability one of

sure return.

o Always satisfied for irreducible chains on finite spaces
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Stronger form of recurrence: Harris recurrence

A set A is Harris recurrent if

P,(nsg =00) = 1lforalz € A.

The chain (X,,) is U-Harris recurrent if it is
o )—irreducible
o for every set A with 1)(A) > 0, A is Harris recurrent.

Note that
P.(na = o00) =1 implies E [na] = 0o

157
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In a finite state space X, denote the average number of visits to a state w by
oo
e =Y L.(X;)
i=1

If B, [nw] = 00, the state is recurrent
If E,,[n.] < oo, the state is transient

For irreducible chains, recurrence/transience property of the chain , not of a

particular state

Similar definitions for the continuous case.
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4.4 Invariant Measures

Stability increases for the chain (Xn) if marginal distribution of X, independent of

n

Requires the existence of a probability distribution 7 such that

Xn+1 ~m if Xn ~ T
A measure 7 is invariant for the transition kernel K (-, -) if

©(B) = /X K(z,B) n(dz), VBeBX).
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o

The chain is positive recurrent if 7 is a probability measure.

e}

Otherwise it is null recurrent or transient

If ™ probability measure, 7 also called stationary distribution since

Xo ~ mimplies that X,, ~ 7 for every n

The stationary distribution is unique
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YW(4) = lim

n—oo

p(d) P (xz, A)

n—oo

= hm/X/P”l(x,dw)K(w,A)
= [ K (w4

since setwise convergence of f uP”(m, ) implies convergence of integrals of
bounded measurable functions. Hence, if a limiting distribution exists, it is an
invariant probability measure; and obviously, if there is a unique invariant probability

measure, the limit v, will be independent of 1+ whenever it exists.
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Insights

Invariant probability measures are important not merely because they
define stationary processes, but also because they turn out to be the

measures which define the long-term or ergodic behavior of the chain.

To understand why this is so, consider P, (X, € ) for a starting distribution 1. If a

limiting measure -y, exists such as
P,(X, €A —.(4)

forall A € B(X), then
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4.5 Ergodicity and convergence

We finally consider: to what is the chain converging?
The invariant distribution 7t natural candidate for the limiting distribution
A fundamental property is ergodicity , or independence of initial conditions.

In the discrete case, a state w is ergodic if

lim |K"(w,w)—7m(w)|=0.

n—oo
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In general , we establish convergence using the total variation norm

1 — pollrv = sup 11 (A) — pa(A)

and we want
| w0 wutan) =
TV
~ sup| [ (e Aputae) () |
A
to be small.
Basics/Irreducible/Recurrent/Invariant/Ergodic/Limits/Quanta/CLT 167

There are difference speeds of convergence
o ergodic (fast enough)
o geometrically ergodic (faster)

o uniformly ergodic (fastest)
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Harris recurrence and ergodicity

If (X,,L) Harris positive recurrent and aperiodic, then

n—0o0

lim H/ K"(x, )pu(dx) —
. TV
W

for every initial distribution

We thus take “Harris positive recurrent and aperiodic” as equivalent to “ergodic”
[Meyn & Tweedie, 1993]

Convergence in total variation implies
lim B, [A(X,)] - E7[A(X)]| = 0

for every bounded function .
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Geometric ergodicity

A ¢-irreducible aperiodic Markov kernel P with invariant distribution 7 is
geometrically ergodic if there exist V' > 1, and constants p < 1, R < oo such
that (n > 1)

1P (x,.) =7 ()llv < RV (x)p",

on {V' < oo} which is full and absorbing.
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Geometric ergodicity implies a lot of important results
e CLT for additive functionals n /2 3" g(X}) and functions |g| < V'

e Rosenthal’s type inequalities
n P
B, |y g(Xp)| <Clp)n??,  glP <2
k=1
e exponential inequalities (for bounded functions and o« small enough)

E. < exp aZg(Xk) < 00
k=1
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The following conditions are equivalent:
e (X)), is uniformly ergodic,
e there exist p < 1 and R < oo such that, forall x € X,
|1P"(x,-) = mllov < Rp"™.
e for some n > 0,
sup || P™(z, ) — 7(*)||rv < 1.
reX

[Meyn and Tweedie, 1993]
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Minoration condition and uniform ergodicity

Under the minoration condition, the kernel K is thus contractant and standard
results in functional analysis shows the existence and the unicity of a fixed point 7.

The previous relation implies that, for all z € X.
1P () = 7llrv < (1—€)"

Such Markov chains are called uniformly ergodic
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4.6 Limit theorems

Ergodicity determines the probabilistic properties of average behavior of the chain.
But also need of statistical inference, made by induction from the observed sample.

If || P} — 7| close to 0, no direct information about

X, ~ P"

We need LLN'’s and CLT's!!!
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Classical LLN’s and CLT’s not directly applicable due to:
o Markovian dependence structure between the observations X;

o Non-stationarity of the sequence
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Central Limit Theorem

To get a CLT, we need more assumptions.
For MCMC, the easiest is reversibility :

A Markov chain (X, ) is reversible if for all n,

Xn+1|Xn+2 =T~ Xn+1|Xn =T

173 Basics/Irreducible/Recurrent/Invariant/Ergodic/Limits/Quanta/CLT 174

Ergodic Theorem

If the Markov chain  (X,) is Harris recurrent, then for any function ~ h with

E|h| < o0,
. 1
lim — E h(X;) = [ h(z)dr(x),
n—oo N “— .
%
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[Green, 1995]
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If the Markov chain  (X,) is Harris recurrent and reversible,

N

3" (h(Xa) —E"[A]) | 5 N(0,43) -

n=1

2=

where
0<? = Eqh(Xo)]

+2 i E,[h(Xo)h(X))] < +oo.
k=1

[Kipnis & Varadhan, 1986]
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In the 90’s, a wealth of contributions on quantitative bounds triggered by MCMC
algorithms to answer questions like: what is the appropriate burn in? or how long
should the sampling continue after burn in?

[Douc, Moulines and Rosenthal, 2001]

[Jones and Hobert, 2001]
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4.7 Quantitative convergence rates

Let P a Markov transition kernel on (X', B(X)), with P positive recurrent and 7 its

stationary distribution

Convergence rate Determine, from the kernel, a sequence B(Z/, n) such that
lvP™ x|l < B(r,n)
where V : X — [1, 00) and for any signed measure i,

[ullv = sup [u(e)|
6|<V
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For MCMC algorithms, kernels are “explicitly” known.
Type of quantities (more or less directly) available:

e Minoration constants
K®(xz,A) > ev(A), foral xz e C,
e Foster-Lyapunov Drift conditions,

KV <AV 4 bl

and goal is to obtain a bound depending explicitly upon €, A, b, &c...
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Coupling

If X ~ pand X’ ~ ' and p A i/ > ev, one can construct two random variables
X and X" such that

X ~ /1,5(/ ~p' and X = X' with probability €

The basic coupling construction
e with probability €, draw Z according to v and set X=X =2

e with probability 1 — ¢, draw X and X' under distributions

(n—ev)/(L—€) and (4" —ev)/(1—¢),

respectively.
[Thorisson, 2000]
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Small set and coupling sets

C C X small set if there exist € > 0 and a probability measure v such that, for all
A€ B(X)
K(z,A) > ev(4), VzeCl. (3)

Small sets always exist when the MC is -irreducible
[Jain and Jamieson, 1967]

For MCMC kernels, small sets in general easy to find.

If C'is a small set, then C' = C' x C'is a coupling set:

V(z,2') € C,VA € B(X), K(z,A)AK(x',A) > ev(A).
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X, X' r.v/s with probability distribution K (x,.) and K (', .), respectively, can be
coupled with probability € if:

Kz, )ANK(2',") > vy (.)
where v, . is a probability measure, or, equivalently,
1K (2, ) = K(2',)lrv < (1 =€)
Define an e-coupling set asaset C' C X x X satisfying :

V(z,2') € C, VA€ B(X), K(x,A)NK(2', A) > vy (A)
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Coupling for Markov chains

P Markov transition kernel on X x X such that, for all (x,2") ¢ C (where C'is an
e-coupling set) and all A € B(X) :

P(z,2; Ax X)=K(x,A) and P(z,2";X x A) = K(a2', A)
For example,
o for (z,2') ¢ C, P(z,2'; A x A') = K(x, A)K (2', A").
e Forall (z,2') € C'andall A, A’ € B(X), define the residual kernel

R(z, 2 Ax X)=(1—€) YK (z,A) — evy o (A))
Rz, ;X x A') = (1 — ) 1 (K (2, A) — evy o (A)).
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Coupling algorithm

e Initialisation Let Xo ~ & and X(j ~ & and setdy = 0.
e After coupling If d,, = 1, then draw X, 11 ~ K(X,,, ), and set
Xy = Xns1.
e Before coupling If d,, = 0 and (X,,, X)) € C,
— with probability €, draw X, 1 = X, | ~ vx, x: andsetd, 1 = 1.

— with probability 1 — €, draw (X, 1, X}, 1) ~ R(X,, X],; ) and set
dn+1 = 0

—1fd, = 0and (X,, X)) ¢ C, then draw

(Xn+17X7,’L+1) ~ P(Xy, X3;).

(Xn, X;L, dn) [where d,, is the bell variable which indicates whether the chains
have coupled or not] is a Markov chain on (X x X x {0, 1}).
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Drift conditions

To exploit the coupling construction, we need to control the hitting time

Moments of the return time to a set C' are most often controlled using
Foster-Lyapunov drift condition

PV <AV +blg, V>1
My = A"*V(Xp)I(tc > k), k > 1is a supermartingale and thus

E.[A7C] < V(z) + bA e (2).

Conversely, if there exists a set C' such that E,, [)FTO} < oo for all z (in a full and
absorbing set), then there exists a drift function verifying the Foster-Lyapunov

conditions.

[Meyn and Tweedie, 1993]
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Coupling inequality

Define the coupling time 1" as
T =inf{k > 1,d;, = 1}
Coupling inequality
sup [EPF(A) — €' PH(A)| < PegrolT > K]
A

[Pitman, 1976; Lindvall, 1992]
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If the drift condition is imposed directly on the joint transition kernel P, there exist
V >1,0< )< 1landasetC suchthat:

PV (z,2") < \V(z,2') Y(z,2') ¢ C
When P(z,2'; A x A’) = K(x, A)K(2', A’), one may consider
V(z,a') = (1/2) (V(z) + V("))

where V' drift function for P (but not necessarily the best choice)
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DMR'01 result

For any distributions £ and &', and any j < k, then:
IEPF() =& PEC)llrv < (1 =€) + NBI T B g0 0V (Xo, X))
where

B=1VA!(1—-e€supRV.
e}
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Minoration

Assume that the kernel density 8 satisfies, for some density q(-), ¢ € (0,1) and a
smallset C' C X,

Rylx) > eq(y) foral ye X and x € C

Then split K into a mixture
R(ylz) =ea(y) + (1 — ) R(ylx)

where SR is residual kernel
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4.8 Renewal and CLT

Given a Markov chain (Xn)n how good an approximation of

Standard MC if CLT

Vi (G, — Ex[g(X)]) % N(0,42)

and there exists an easy-to-compute, consistent estimate of '73...
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Split chain

Let &g, 01, 2, . . . be iid Ber(e). Then the split chain

{(X07 50)a (X17 61)’ (X27 52)7 .. }
is such that, when X; € C, §; determines X 1:

q(z) it 6; =1,

Xig1 ~
i {9‘%(1‘|X1) otherwise

[Regeneration] When (X;,0;) € C'x {1}, X;11 ~q
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Renewals

For Xg ~ q and R successive renewals, define by 71 < ... < Ty the renewal

times.
Then

VR

R
VR (3, ~ Balg(0]) = 2| 5 D (50 = NiExlg(X))

where Ny length of the ¢ th tour, and .S; sum of the g(X;)’s over the ¢ th tour.
Since (N¢, St) areiid and Eq[Sy — Ny E[g(X)]] = 0, if Ny and \S; have finite

2nd moments,
_ d
* VR (4., —Exg) = N(0,72)

e there is a simple, consistent estimator of 'yg
[Mykland & al., 1995; Robert, 1995]
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5 The Metropolis-Hastings Algorithm

MCMC Methods/Oulu/Apr. 19-22

Moment conditions

We need to show that, for the minoration condition, Eq [N7] and E,[S7] are finite.
If

1 the chain is geometrically ergodic, and

2 Ex[|g|*T*] < oo for some «a > 0,

then Eq[N7] < 0o and Eq[S?] < oo.
[Hobert & al., 2002]

Note that drift + minoration ensures geometric ergodicity
[Rosenthal, 1995; Roberts & Tweedie, 1999]

MCMC/Metropolis-Hastings/Examples/Extensions

5.1 Monte Carlo Methods based on Markov Chains

Unnecessary to use a sample from the distribution f to approximate the integral

RGeS

Now we obtain X1, ..., X,, ~ f (approx) without directly simulating from f,
using an ergodic Markov chain with stationary distribution f

194
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For an arbitrary starting value (), an ergodic chain (X (!)) is generated

using a transition kernel with stationary distribution f
e Insures the convergence in distribution of (X(t)) to a random variable from f.
e For a “large enough” T}, X (T0) can be considered as distributed from f

e Produce a dependent sample X (To) , X(TO‘H), ..., which is generated from

£ sufficient for most approximation purposes.
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Algorithm 25 —Metropolis—Hastings—
Given z(*),
1. Generate Y; ~ q(y|z™®).
2. Take
(1) {Yt with prob. p(z(®),Y;),
z® with prob. 1 — p(z®,Y),

where
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5.2 The Metropolis—Hastings algorithm

5.2.1 Basics

The algorithm starts with the objective (target) density

A conditional density
a(ylz)
called the instrumental (or proposal) distribution  , is then chosen.
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Features

e Always accept upwards moves

e Independent of normalizing constants for both f and ¢(-|x) (constants

independent of x)
e Never move to values with f(y) = 0

e The chain (l‘(t))t may take the same value several times in a row, even though

f is a density wrt Lebesgue measure

e The sequence (y;); is usually not a Markov chain
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5.2.2 Convergence properties

1 The M-H Markov chain is reversible , with invariant/stationary density f since it

satisfies the detailed balance condition
| f) K(y,2) = f(z) K(x,y) |

2 As f is a probability measure, the chain is positive recurrent

3If

—
—_
~—

r { () g(XO)
FX@) q(¥i[X®)

that is, the event {X(t“‘l) = X(t)} is possible, then the chain is aperiodic

21 <1

MCMC/MH/Examples/Extensions

5.3 A Collection of Metropolis-Hastings Algorithms

5.3.1 The Independent Case

The instrumental distribution ¢ is independent of X(t), and is denoted g by analogy

with Accept-Reject.
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4 |If
q(y|x) > 0 for every (z,y), (2)

the chain is irreducible
5 For M-H, f-irreducibility implies Harris recurrence
6 Thus, for M-H satisfying (1) and (2)

(a) For h, with E¢|h(X)| < oo,
lim lih(X(t)) _ / h@)df(z)  ae. f.

r t=1

T—o0

(b) and
/ K"z, uldr)— f| =0
TV

for every initial distribution 41, where K™ (z, -) denotes the kernel for

lim ‘

n—oo

transitions.
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Algorithm 26 —Independent Metropolis-Hastings—
Given (),

1 Generate Y; ~ g(y)

2 Take

(V) g(z®) 1}

t+1) _ ) Y, with prob. min{ ,
X = Fa) g(%i)

z(®  otherwise.
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The resulting sample is not iid Example 27 Noisy AR(1)
There can be strong convergence properties: Hidden Markov chain from a regular AR(1) model,
The algorithm produces a uniformly ergodic chain if there exists a constant Tiy1 = PTt + €441 €4 ~ JV(O, 7'2)

M such that
|
f(x) < Mg(x), = €supp f. and observables L,
yilze ~ A (2, 0%)

In this case,

1\" The distribution of x; given x;_1, x and vy is
HKn(J;s')_fHTV < (1_> ) t9 t—1,bt+1 Yt
M 5
e 1 exp — 3 (xr — o1 1) + (Te1 — x)2+T—( —z2)?

and the expected acceptance probability is at least i P 272 t— Plt—1 t+1 — PTe o2 Ye t .

[Mengersen & Tweedie, 1996]
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00 02 04

Use for proposal the 4 (i, w?) distribution, with

-04

Ti_1 + Tt 5 72 : o = = P o
= Qp—— d = . N
Bt =@ 1+ 42 and wj 1T 52
Ratio -
() /qina(x) = exp —(y, — 27)* /20> - m
is bounded 0 o2 o o o

(top) Last 500 realisations of the chain  { X} }x out of 10, 000 iterations;
(bottom) histogram of the chain, compared with the target distribution.
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Example 28 —Cauchy by normal— n
Given a Cauchy (0, 1) distribution, consider a normal .4"(0, 1) proposal . ) i

The Metropolis—Hastings acceptance ratio is =7 r

Dy

Poor perfomances: the proposal distribution has lighter tails than the target Cauchy

and convergence to the stationary distribution is not even geometric! =
[Mengersen & Tweedie, 1996]

Histogram of Markov chain (ft)1§t§5000 against target CK(O, 1) distribution.
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5.3.2 Random walk Metropolis—Hastings

Use the proposal

Y, =X® 4 ¢,

where £, ~ ¢, independent of X ().

The instrumental density is now of the form g(y — «) and the Markov chain is a

random walk if we take g to be symmetric
Range and average of 1000 parallel runs when initialized with a normal

(0, 1002) distribution.
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Algorithm 29 —Random walk Metropolis—
Given z(*)

1 Generate Y; ~ g(y — z(®))

2 Take

X+ — Y;  with prob. min {1, W

x®  otherwise.

MCMC/MH/RWMH/Extensions

Sample statistics

0 0.1 0.5 1.0
mean 0.399 —-0.111 0.10

variance 0.698 1.11  1.06

As § T, we get better histograms and a faster exploration of the support of f.

109
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Example 30 —Random walk normal—

Generate N/ (0, 1) based on the uniform proposal [—4, ]
[Hastings (1970)]

The probability of acceptance is then

p(a®,yy) = exp{(z'"" — y7)/2} A 1.
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Figure 1. Three samples based on U[—4, d] with () § = 0.1, (b) § = 0.5 and (c)
6 = 1.0, superimposed with the convergence of the means (15, 000 simulations).
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Example 31 —Mixture models—

n k
m(0a) o< [T | D pef(@jlue, oe) | 7(6)

j=1 \¢=1
Metropolis-Hastings proposal:

o+ _ 00 +we® ifu® < p®

ot otherwise

where
t) _ 7T(0(t) +w5(t)|l')
- TOTE)

and w scaled for good acceptance rate
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Random walk MCMC output for 7N (1, 1) + 3N (112, 1)

23
1
I
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Random walk sampling (50000 iterations)

. =P . y e
g ) £ B
. 2} ilh. T _.|||
: B[] [[[TTTTTT e
[Celeux & al., 2000]
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Example 32 Likelihood of the probit model

n

[Tew! 8) ®(—y! By

i=1
[Observed likelihood]

Random walk proposal
AU =50 1oy g~ A5(0,%)

where, for instance,
Y=a(YyYT) !
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Likelihood surface and random walk Metropolis-Hastings steps

- —
Convergence properties

Uniform ergodicity prohibited by random walk structure
. At best, geometric ergodicity:
-%jg For a symmetric density  f, log-concave in the tails, and a positive and
7 ) *:'\- symmetric density ¢, the chain (X“‘)) is geometrically ergodic.
[Mengersen & Tweedie, 1996]
0 s 1
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Example 33 Comparison of tail effects

Random-walk Metropolis—Hastings algorithms based on aN(O, 1) instrumental for

the generation of (a) a \V(0, 1) distribution and (b) a distribution with density Example 34 —Cauchy by normal—

-3
¢£m> x (1 + |x|) . Again, Cauchy (5(0, 1) target and Gaussian random walk proposal,
¢ ~ N (€,02), with acceptance probability

N N 14 e

S - ER Overall fit of the Cauchy density by the histogram satisfactory, but poor exploration
= | = | of the tails: 99% quantile of € (0, 1) equal to 3, but no simulation exceeds 14 out of
= | = | 10, 000!

° = e = =0 ° = ey e =0 [Roberts & Tweedie, 2004]

90% confidence envelopes of the means, derived from 500 parallel

independent chains
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Again, lack of geometric ergodicity!
[Mengersen & Tweedie, 1996]

Slow convergence shown by the non-stable range after 10, 000 iterations.

MCMC/MH/RWMH/Extensions

Range of 500 parallel runs for the same setup
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g

Histogram of the 10, 000 first steps of a random walk Metropolis—Hastings

algorithm usinga 4" (&, 1) proposal

MCMC/MH/RWMH/Extensions

Further convergence properties

Under assumptions

e (Al) f is super-exponential, i.e. it is positive with positive continuous first
derivative such that lim | o, n(x)"V log f(x) = —oo where
In words : exponential decay of f in every direction with rate tending to co
e (A2) limsup |, n(z)'m(z) < 0, where m(z) = V f(z)/|V f(z)|.
In words: non degeneracy of the countour manifold
Cryy =1y fly) = f(a)}

(@ is geometrically ergodic, and
V(x) o f(2)~'/? verifies the drift condition
[Jarner & Hansen, 2000]
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Further [further] convergence properties

then,
If P -irreducible and aperiodic, for r = (r(n))nen real-valued non decreasing o1
sequence, such that, forall m, m € N, S(f,C,r):=<sze X,E, Z r(k)h(Xy) p < o0
k=0
r(n4+m) < r(n)r(m), is full and absorbing and for = € S(f,C,r),
and 7(0) = 1, for C a small set, 7o = inf{n > 1, X,, € C},and h > 1, lim r(n)||P™(x,.) — f|l» = 0.
assume B
To—1
sup E, Z r(k)h(Xk) | < oo, [Tuominen & Tweedie, 1994]
zeC k—0
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Comments
[CLT, Rosenthal’s inequality...]  h-ergodicity implies CLT for additive (possibly _ -
unbounded functionals) of the chain (under additional conditions, guaranteeing Alternative conditions
the integrability of the limit), Rosenthal’s inequality (also for functions whose The condition is not really easy to work with...

rowth at infinity is controlled properly) and so on... . . ..
9 y properly) [Possible alternative conditions]

Control of the moments of the return-time The condition implies (because . . .
[ ] plies ( (a) [Tuominen, Tweedie, 1994]  There exists a sequence (Vn)neN,

h 2 1) that Vy, > r(n)h, such that
To—1 n (i) supe Vo < o0,
sup E;[ro(7¢)] < sup E, Z r(k)h(Xy) p < 0o, whererg(n) = r(l)
zeC zeC =0 =0 (i) {Vo =00} C{V4 =00} and
Can be used to derive bounds for the coupling time, an essential step to (iy PVpy1 <V, —r(n)h+br(n)lec.

determine computable bounds, using coupling inequalities
[Roberts & Tweedie, 1998; Fort & Moulines, 2000]
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(b) [Fort2000] IV > f > 1land b < oo, such that sup- V' < oo and

PV (z)+E, {i Ar(k)f(Xk)} < V(z)+blc(x)
k=0

where o is the hitting time on C' and

Ar(k) =r(k) —r(k—1),k > 1and Ar(0) = r(0).

Result (a) < (b) < sup,cc E, {22261 7‘(k7)f(Xk)} < 0.
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5.4.1 Langevin Algorithms

Proposal based on the Langevin diffusion L; is defined by the stochastic differential

equation
1
where B; is the standard Brownian motion

The Langevin diffusion is the only non-explosive diffusion which is reversible with

respectto f.
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5.4 Extensions

There are many other algorithms
o Adaptive Rejection Metropolis Sampling
o Reversible Jump (later!)
o Langevin algorithms

to name a few...

MCMC/Metropolis-Hastings/Examples/Extensions:Langevin

Discretization:

2
2O =20 4 T T log f(a¥) 0z, e~ Ny(0,Iy)

2

where o corresponds to the discretization

Unfortunately, the discretized chain may be be transient, for instance when

lirin |02Vlogf(a:)|x|_1| > 1
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MH correction

Accept the new value Y; with probability

fvy P {‘ [y - ”22V1°gf<m“)>H2/2“2} Al

fa®) exp { |z® - V; — 22V log f(Yt)H2 /202}

Choice of the scaling factor o

Should lead to an acceptance rate of to achieve optimal convergence rates
(when the components of x are uncorrelated)

[Roberts & Rosenthal, 1998]
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Case of the independent Metropolis—Hastings algorithm

Choice of g that maximizes the average acceptance rate
Y X
p = E {min{f()g()7 1}]
f(X) g(Y)

S0 1) iy
2P<g<y>zg<x>>’ R AR

Related to the speed of convergence of

= 3 h(x®)

t=1

to E¢[h(X)] and to the ability of the algorithm to explore any complexity of f
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5.4.2 Optimizing the Acceptance Rate

Problem of choice of the transition kernel from a practical point of view

Most common alternatives:
(a) a fully automated algorithm like ARMS;

(b) an instrumental density g which approximates f, such that f/g is bounded for

uniform ergodicity to apply;
(c) arandom walk

In both cases (b) and (c), the choice of g is critical,
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Practical implementation
Choose a parameterized instrumental distribution g(-|@) and adjusting the

corresponding parameters 6 based on the evaluated acceptance rate

s 2N
PO) = — D Liswoso>Featwo) -
=1

where 1, . .., Z,, sample from f and y1, ..., Y, iid sample from g.
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Example 35 Inverse Gaussian distribution.

Simulation from
f(z]61,62) x 273/2 exp {612 - 9—2 +24/60105 + log \/292} Ir, (2)
z

based on the Gamma distribution Ga(c, 3) with « = (31/02/6;
Since

g9(z)
the maximum is attained at

(a+1/2) —/(a+1/2)%2 + 40:(0; — B)
2(6 — 61) '

@ o g o1/2 exp{(ﬁ—ﬂl)x— 92} ,
x

*_
‘Tﬁ_
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Case of the random walk

Different approach to acceptance rates

A high acceptance rate does not indicate that the algorithm is moving correctly since

it indicates that the random walk is moving too slowly on the surface of f.

It z() and y; are close, i.e. f(x(t)) ~ f(y:) y is accepted with probability

min <sz%)))1> ~1.

For multimodal densities with well separated modes, the negative effect of limited

moves on the surface of f clearly shows.
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The analytical optimization (in 3) of

M(B) = (x5)*7/% exp {(6 —01)a — i;}

is impossible

8 0.2 0.5 0.8 0.9 1 1.1 1.2 1.5
p(B) 022 041 054 0.56 060 0.63 0.64 0.71
E[Z] 1.137 1.158 1.164 1.154 1.133 1.148 1.181 1.148

E[1/Z] 1.116 1.108 1.116 1.115 1.120 1.126 1.095 1.115

(01 = 1.5,65 = 2, and m = 5000).
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If the average acceptance rate is low, the successive values of f (yt) tend to be
small compared with f(x(t)), which means that the random walk moves quickly on
the surface of f since it often reaches the “borders” of the support of f
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Rule of thumb Example 36 Noisy AR(1) contd
In small dimensions, aim at an average acceptance rate of 50%. In large For a Gaussian random walk with scale w small enough, the random walk never
dimensions, at an average acceptance rate of 25%. jumps to the other mode. But if the scale w is sufficiently large, the Markov chain
[Gelman,Gilks and Roberts, 1995] explores both modes and give a satisfactory approximation of the target distribution.
MCMC Methods/Oulu/Apr. 19-22 247 Principle/Data Augmentation/Improper Priors 248

m oW W mw
I

[ A A
S I

Markov chain based on a random walk with scale ~ w = .1. 6 The Gibbs Sampler

WAL 000
I

:
%

Markov <:ha‘i)r‘1~ based on a randofﬁ walk W|th scale w=.d.
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6.1 General Principles

A very specific simulation algorithm based on the target distribution f:

., fp from f

2 Start with the random variable X = (Xy,...,X,)

1 Uses the conditional densities f1, . .

3 Simulate from the conditional densities,

Xilr1, 2o, o Ti1, Tig1, ..., Tp

~ fi(37i|£51,3?2,---,xi—1,$i+17--~,xp)

fori =1,2,...,p.

Principle/Data Augmentation/Improper Priors

Properties

The full conditionals densities f1, ..., fp are the only densities used for simulation.

Thus, even in a high dimensional problem, all of the simulations may be univariate

The Gibbs sampler is not reversible — with respect to f. However, each of its p
components is. Besides, it can be turned into a reversible sampler, either using the

Random Scan Gibbs sampler (see below) or running instead the (double) sequence

Jirfo-1fpfp-1-- N1
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Algorithm 37 —The Gibbs sampler—
Given x(*) = (wgt), e ,xét)), generate
t+1 t t

1. X1( )~ fl(x1|xé ). .,xz(,));

2. Xét'H) ~ f2(x2|x§t+l), xét), .. ,:C,(,t)),

3 x(t+1

t+1 t+1
i )pr(a:p|x§+ ),...,xz(,jl))

Then X+ — X ~ f
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Example 38 —Bivariate Gibbs sampler—

(X,Y) ~ f(z,y)

Generate a sequence of observations by
Set Xo = xg

Fort =1,2,..., generate

i ~ frix(loe-1)
Xi ~ fxiv(Cly)

where fy|x and fx|y are the conditional distributions



Principle/Data Augmentation/Improper Priors

o (X4, Y?)t, is a Markov chain
o (X¢)¢ and (Y3)¢ individually are Markov chains

o For example, the chain (X} ); has transition density
K(z,2") = /fY|X(y|$)fX\Y($*|y)dy,

with invariant density fx(+)

Principle/Data Augmentation/Improper Priors

Properties of the Gibbs sampler

Formally, a special case of a sequence of 1-D M-H kernels, all with acceptance rate

uniformly equal to 1.

The Gibbs sampler
1 limits the choice of instrumental distributions
2 requires some knowledge of f
3 is, by construction, multidimensional

4 does not apply to problems where the number of parameters varies as the

resulting chain is not irreducible.

253

255
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For the special case

(Xa Y) ~ NQ 0,
the Gibbs sampler is
Given y;, generate
Xiv1lye ~ N(pys, 1 -
Yigi | @y ~ N

Principle:Completion/Data Augmentation/Improper Priors

6.1.1 Completion

The Gibbs sampler can be generalized in much wider generality

A density g is a completion of f if

/Z g(x,z) dz

p?) .

(pzis1, 1= PQ)-

/(@)

254

256
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g should have full conditionals that are easy to simulate for a Gibbs

sampler to be implemented with g rather than f
Forp > 1, write y = (x, z) and denote the conditional densities of
9(y) =91, yp) by
Y1|y27"'7yp ~ gl(y1|y27"'7yp)7
Y2|3/173/37--~;Z/p ~ 92(y2|ylay37"‘7yp)7

9

Yp‘ylv"wyp—l ~ gp(yp‘ylv"'ayp—l)~
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Example 40 —Mixtures all over again—
Hierarchical missing data structure

If
k
X17 v )Xn ~ szf(x|97.)v
i=1

then

and Z is the component indicator associated with observation
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The move from Y (V) to Y (t+1) is defined as follows:

Algorithm 39 —Completion Gibbs sampler—

Given (yit), e z(f’)), simulate

1Y, gy, ui),

2 VD~ go(alyd™ ol oy,

p. Y~ gyt Ly,

Principle:Completion/Data Augmentation/Improper Priors 260

Conditionally on (Z1, ..., Zn) = (21,...,2n) :

T(P1s- s Phs 0155 Ok|1, o T, 21,0, 20)
a1+ni—1 ap+ne—1
o<cpitTtt Ly

xm(01|yr + n1Z1, A\ +n1) .. 7w (Ok|yr + neZr, Ak + k),

with

TLZ'ZZH(ZJ' :Z) et T; = Z x]/nl
J

Jizj=t



Principle:Completion/Data Augmentation/Improper Priors

Corresponding Gibbs sampler

Principle:Completion/Data Augmentation/Improper Priors

T =500

5
5

0
0

T = 1000

T = 2000

5
55

1
1

T = 3000

T = 4000

15
5

1
1

T = 5000

Estimation of the pluggin density for 3 components and T iterations
for 149 observations of acidity levels in lakes in the American North-East
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1. Simulate

0; ~ m(0ily; + niZi, i + ;) (t=1,...,k)
(P1,-- - oK) ~ D(ag +ny, ..., 0 + np)

2. Simulate (j =1,...,n)

k
Zj|$j,p1,...,pk,el,...,ek ~ Zp”]l(zj — Z)

=1

with (i = 1,..., k)

Pij < pi f(x5]0;)

and update n; and T; (i = 1,..., k).
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025

020

0.15

010

005

0.00

Galaxy dataset ( 82 observations) with k£ = 2 components
average density (yellow), and pluggins:
average (tomato), marginal MAP (green), MAP (marroon)
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6.1.2 Random Scan Gibbs sampler

Modification of the above Gibbs sampler where, with probability 1/p, the i-th
component is drawn from f; (z;| X _;)

The Random Scan Gibbs sampler is reversible.

T T T
-1 o 1 2 3

Gibbs sampler stuck at & wrong mode
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6.1.3 Slice sampler Algorithm 41 —Slice sampler—
Simulate
If f(0) can be written as a product (t+1) .
1) P Lowp T~ U, gy ooy
k
Hf7(0)7 K (t+1) ~U ;
i=1 - Yk [0, (6®)]
it can be completed k1. 00D ~ U 4 eq1y, with
k
t+1) _ g, . (t+1) . _
H]I[)Swigfi(e)v A(+ ) _{y7 fl(y) sz ) Z_lv“'zk}'
i=1

leading to the following Gibbs algorithm:
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Representation of a few steps of the slice sampler

[Roberts & Rosenthal, 1998]

Principle:Slice/Data Augmentation/Improper Priors

Example 42 Stochastic volatility core distribution

Difficult part of the stochastic volatility model
m(z) o exp — {o*(z — p)* + B exp(—z)y* + 2} /2,
simplified in exp — {.CL‘2 +a exp(—x)}
Slice sampling means simulation from a uniform distribution on
A= {zjexp— {2 + aexp(—2)} /2 > u} = {z;2° + cexp(—z) < w}
if we set w = —2log u.

Inversion of 2% + avexp(—x) = w needs to be done by trial-and-error.

269 Principle:Slice/Data Augmentation/Improper Priors

270

The slice sampler usually enjoys good theoretical properties (like geometric

ergodicity).

As k increases, the determination of the set At+D) may get increasingly complex.
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272
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i M

Histogram of a Markov chain produced by a slice sampler and target

distribution in overlay.
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6.1.4 Properties of the Gibbs sampler

(Yly}/éa"'>Y;)) Ng(ylv"‘>yp)
If either

(i) g (y;) > Oforeveryi = 1,---,p, implies that g(y1, . . ., y,) > 0, where

. ii) If, in addition, (Y ()) is aperiodic, then
g(l) denotes the marginal distribution of Y, or ® ( ) P

Positivit diti .
[Positivity condition] lim H/ K”(y, -)u(dx) —f -0
.. " . . . n—oo TV
(it) the transition kernel is absolutely continuous with respect to g,
for every initial distribution /.
then the chain is irreducible and positive Harris recurrent.
0 If [ h(y)g(y)dy < oo, then
1 T
lim —Y h(YO)= [h dy ae.g.
im ; 1Y) W)g(y)dy ae. g
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For €* > ¢,,
C={reX;e < f(x)<e}
Slice sampler
is a
€
Properties of X and of f(X}) identical Pr(x,-) > —: ()
€
If f is bounded and supp f is bounded, the simple slice sampler is uniformly where
€x
ergodic. 1(A) = 1/ A(AN L(e))d6
[Mira & Tierney, 1997] & Jo A(L(€))

it L(e) ={z € X; f(x) > €}
[Roberts & Rosenthal, 1998]
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Slice sampler: drift

Under some differentiability and monotonicity conditions, the slice sampler also For any density such that

verifies a drift condition with V' (x) = f(2)~”, is geometrically ergodic, and there

0
exist explicit bounds on the total variation distance €5e A({z € X; f(x) > €}) isnon-increasing
€
[Roberts & Rosenthal, 1998]
then
Example 43 —Exponential Exp(1)— K2 (z,-) — £()| |7y < .0095
Forn > 23, [Roberts & Rosenthal, 1998]
|K™(x,-) — f()|lry < .054865 (0.985015)™ (n — 15.7043)
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1 dimensional run 1 dimensional acf
. \M ‘“W b wmwlmw hgh N‘WM'W
Example 44 —A poor slice sampler— "
Consider 10 dimensional run 10 dimensional acf

flo)=exp{~[lz|l} ~zeR?

10 15 20 25 30

HHHHH‘HHHHHHHHHHHH\
0 2 E) )

Sample runs of log(u) and ACFs for log(u) ( Roberts & Rosenthal, 1999)

Slice sampler equivalent to one-dimensional slice sampler on

20 dimensional acf

) 20

m(z)=24"1e™  2>0

0 20 40 60

WL
100 dimensional acf

) 20 0 40

oron

0100 200 300 400

Poor performances when d large (heavy tails)
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6.1.5 Hammersley-Clifford Theorem

An illustration that conditionals determine the joint distribution

If the joint density g(y1, y2) have conditional distributions g1 (y1|y=2) and

g2(y2|y1), then

B g2(y2|y1)
90 Y2) = T ) o uilo) o

Principle:Hierarchy/Data Augmentation/Improper Priors

6.1.6 Hierarchical models

The Gibbs sampler is particularly well suited to hierarchical models

Example 45 —Hierarchical models in animal epidemiology—

Counts of the number of cases of clinical mastitis in 127 dairy cattle herds over a

one year period.

Number of cases in herd ¢
Xi~PO) i=1,---,m
where )\; is the underlying rate of infection in herd ¢

Lack of independence might manifest itself as overdispersion.

281

283
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General case
Under the positivity condition, the joint distribution g satisfies
p p ] . ! /
gﬁ_,‘ (U!), ‘yilf IR} y@_,‘fm yé’_huﬁ R} y(/p)
(](7/1"~'7y]))O(H P (// ‘/ ) 7 ! )
1 ge; y/z] yéln--:Ué_,-,layfﬁ,s----,ygp
for every permutation £ on {1,2,...,p} andevery y’ € ).
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Modified model

Xi ~ Ga(o, B)
ﬁi ~ Ig((l,b),

The Gibbs sampler corresponds to conditionals

Ai o~ ,/T()‘i‘xa aaﬁi) - ga(‘ri + a, [1 + 1/ﬁ1}71)
Bi ~ w(Bilx,a,a,b,0) =ZG(a +a, [N + 1/0]71)
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Example 46  Experiment where rats are intoxicated by a substance, then treated

by either a placebo or a drug:
LE,‘j ~J\/’(0i,af),
yij ~ N0 +0;,07),

1< <J7, control
1 <3< J?, intoxication

1<j<Jl, treatment

Additional variable w;, equal to 1 if the rat is treated with the drug, and O otherwise.

Principle:Hierarchy/Data Augmentation/Improper Priors

Conditional decompositions

Easy decomposition of the posterior distribution

For instance, if
9|91 N7T1(9|91), 91 N’/TQ(Ql),

then

w(0|x) = /@ w (0|01, x)7(01|x) dby,

285 Principle:Hierarchy/Data Augmentation/Improper Priors 286

Prior distributions (1 <4 < T),
eiNN(,Uﬁ,O-g)a 5iNN(ﬂ570§)7

and
2 2
& ~N(up,op) or & ~N(up,op),

depending on whether the ith rat is treated with a placebo or a drug.
Hyperparameters of the model,

Ho, s, Py WD, 0¢cy0qa,0t,00,05,0P,0D ,
associated with Jeffreys’ noninformative priors.
Alternative prior

2 2
Ji ~ pN (ps1,051) + (1 = p)N (ps2, 052),

allows for two possible levels of intoxication.
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where

f(x|0)m1(60161)
(06, x) = ITLIPL
mialt) = [ fao)m el s,

S)
7T(91|:E) _ ml(xwl)ﬂ-Q(el)’
m(z)
m(x) = mq (m\&l)m (91) d01

CF1
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Moreover, this decomposition works for the posterior moments, that is, for every

function h,

E™[h(0)]x] = B %) [E™ [1(0)]61, ],
where
E™ [h(0)|61, 2] = / h(0)7 (|61, x) db.
e

Principle:Hierarchy/Data Augmentation/Improper Priors

Local conditioning property

For the hierarchical model

77(9) = / T (9‘91)7’(2(9”92) s 7Tn,+1(en,) d&l s d9,n+1.
P ®1X... @n

7['(0,L'|2L', 9, 61, e ,(7,1,) = ﬂ(ej‘eqj,l, 07;+1)

with the convention 6y = 6 and 6,1 = 0.
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Example 47 (Example 46 continued) The posterior distribution of the complete

parameter vector is given by

77((01-,61-,@-)2-,#9, ceesOcyenn |D) XX
I

T {exp—{(0: — p6)* /205 + (6: — ps)? /203 }

=1

Je e
[T exp —{(xi; — 0:)? /2023 ] exp —{(i; — 0 — 6:)*/202}
j=1 j=1

:
H exp —{(zij — 0i — i — fi)2/20t2}}
1T exo—{(& — np)*/208} T] exp —{(& — 1p)*/20D}

B DI s, R Sy S R T S | I-1 —Ip—1 —Ip—1
e E'L i Oa Zz i O_t Zz i (0.00.6) I 1O-D D O.P P ,
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Example 48 (Example 46 continued) The full conditional distributions

correspond to standard distributions and Gibbs sampling applies.
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g g
S 3 =1
~— o - 8
(=) -
[=3 b= (==} o
g 5 = =
=)
— ol o o
N
= = ol ||I|||I||||‘||” |‘|||||||||I|I|I|u.. I PO I ||||I||I||||||| |” | |||||||||I||II..|..........
A 2000 4000 6000 8000 10000 AR 2000 4000 6000 8000 10000 1.0 1.2 1.4 1.6 1.8 20 22 24 -40 -35 -3.0 -25 -20 -15
control intoxication
=2 —
=3 o~ 8
2 S = 3
=1 < =
< =N 1= S
= — S S
g = g s
=210 g g
(=3 | -~
Su S = o
o 2000 4000 6000 8000 10000 o 2000 4000 6000 8000 10000 o II III gl III Il“
P R — il ([T o — el ..
-1 o 1 2 o 1 2 3
placebo drug
Convergence of the posterior means
Posteriors of the effects
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6.2 Data Augmentation

s HD Hnp UD — Up
Probability 1.00 0.9998 0.94 0.985

The Gibbs sampler with only two steps is particularly useful

Confidence  [-3.48,-2.17] [0.94.2.50] [-0.17,1.24] [0.14,2.20] Algorithm 49 —Data Augmentation—

Given y®),
Posterior probabilities of significant effects
1. Simulate Yl(H_l) ~ g1 (yl\yét)) ;

2. simulate Y3 T ~ g3(yalyi™+Y) .
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Convergence is ensured

(V1,Y2)® = (V,Ya)~yg
Yl(t) N Yl ~ 91
) N

Principle/Data Augmentation/Improper Priors

Feature Observations with 4 passages and more are grouped

If observations are Poisson P (), the likelihood is

f()\|x1, e ,.1‘5)
3\ 13
)\’L
o e—34TA\128455x2+25x3 [ 1 _ 64\2 s ’
7!
i=0
which can be difficult to work with.
With a prior w(\) = 1/, complete the vector (y1, . . ., y13) of the 13 units

larger than 4

297
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Example 50 —Grouped counting data—

360 consecutive records of the number of passages per unit time.

Number of
passages 0 1 2

Number of
observations 139 128 55 25 13

3 4 ormore
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Algorithm 51 —Poisson-Gamma Gibbs—

1. Simulate Y;(t) ~ P(AE-1) Iy>y ¢=1,...,13
2. Simulate
13
2D~ Ga 313+ 4", 360

=l

The Bayes estimator

1 T 13 ®
T 1 (t
1) 360th::1 33+l1yZ

converges quite rapidly



Principle/Data Augmentation/Improper Priors

105

1004
00 20 30 4

. .lllIIIIIIl“l“lIIII-II..
0.9 1.0 1.1 1.

lambda

108

2

102

10

Principle/Data Augmentation:Rao-Blackwell/Improper Priors

Then
o Both estimators converge to E[h(Y7)]
o Both are unbiased,

o and

var <E [h(Yl)|Y2(t), " Y;ﬂD < var(h(Y1)),

so 0, is uniformly better (for Data Augmentation)
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6.2.1 Rao-Blackwellization

. ,yp)(t),t =1,2,...T is the output from a Gibbs sampler

Jo = % g h <y§t)) - / h(y1)g(y1)dy

and is unbiased. The Rao-Blackwellization replaces dq with its conditional

If <y13y2) o

expectation
1 T
_ (t) t
b= D E{h(Yl)|y2 I
t=1
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Some examples of Rao-Blackwellization

e For the bivariate normal
(Xa Y)/ ~ N )

the Gibbs sampler is based upon

Xy ~ Npy, 1-p%
Yz ~ N(pz, 1-p%.



Principle/Data Augmentation:Rao-Blackwell/Improper Priors

To estimate 4 = E(X) we could use

P i X
o T i=1
or its Rao-Blackwellized version
1 & AR RRA
=7 EXOW Y= 13 ov O,

which satisfies 03 /o3 = -5 > 1.

Principle/Data Augmentation:Rao-Blackwell/Improper Priors

Another substantial benefit of Rao-Blackwellization is in the approximation of
densities of different components of ¢y without nonparametric density estimation
methods.

The estimator

1 T
STyl 5 # ) — giwe),
t=1

M|

and is unbiased.
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e For the Poisson-Gamma Gibbs sampler, we could estimate A\ with

1 T
:*E: ()
do Tt:1>\,

but we instead used the Rao-Blackwellized version

1 DG i
T = T Z EAD |z, 2, ... ,x5,y§ ),yé),...,yg )]
t=1
1 13
- 313 1
3607 2
t=1 =1
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6.2.2 The Duality Principle

Ties together the properties of the two Markov chains in Data Augmentation

Consider a Markov chain (X)) and a sequence (Y () of random variables

generated from the conditional distributions

XO® ~ w(aly™)
YOO, 40~ g,y 0)

Properties
o Ifthe chain (Y (V) is ergodic then so is (X ®))
o The conclusion holds for geometric or uniform ergodicity.

o The chain (Y(t)) can be discrete, and the chain (X(t)) can be continuous.
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6.3 Improper Priors

Example 52 —Conditional exponential distributions—

For the model

Unsuspected danger resulting from careless use of MCMC algorithms: It can
P 9 9 9 Xi|ze ~ Exp(xe) , Xalzy ~ Exp(x1)

happen that
the only candidate f(x1,z2) for the joint density is
o all conditional distributions are well defined,

. N . f(z1,22) o exp(—x122),
o all conditional distributions may be simulated from, but...

. N - but
o the system of conditional distributions may not correspond to any joint

distribution / f(ll 1‘2)(11‘1(11132 =00
. . . ) o (C) These conditionals do not correspond to a joint probability distribution
Warning The problem is due to careless use of the Gibbs sampler in a situation for

which the underlying assumptions are violated
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The conditional distributions
Example 53 —Improper random effects—

For a random effect model, J(‘ )
2 2 Yi — 1 ) _o\—1
oy, p 0,7~ N|——%,(Jr %40 ,
Yi=ptaitey, i=1,...,01 j=1,..J ity <J+7'20_2 ( ) )
N|05ay702,7'2 ~ N(g_aaTQ/JI)a

where
OtiNN(O,O'2) andeij NN(O,TQ), 02|a,,u,y,72 ~ Ig 1/27(1/2)2 0512 )
i
the Jeffreys (improper) prior for the parameters (i, o and T is
lapy, 0~ TG 11/2,(1/2)Y ) (g — i — ) |

(2]

1
71—(“’0-277—2) = o272’

are well-defined and a Gibbs sampling can be easily implemented in this setting.
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Evolution of (1.(*)) and corresponding histogram
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Final notes on impropriety

The improper posterior Markov chain

cannot be positive recurrent

The major task in such settings is to find indicators that flag that something is wrong.

However, the output of an “improper” Gibbs sampler may not differ from a positive
recurrent Markov chain.

Example The random effects model was initially treated in Gelfand et al. (1990) as
a legitimate model

313 Principle/Data Augmentation/Improper Priors 314

The figure shows the sequence of the ,u(t) and the corresponding histogram for
1000 iterations. The trend of the sequence and the histogram do not indicate that
the corresponding “joint distribution” does not exist

315 MCMC Methods/Oulu/Apr. 19-22 316

7 MCMC tools for variable dimension problems
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7.1 Introduction

There exist setups where

One of the things we do not know is the number of things we do

not know

Intro/Green/Point Pro

Many areas of application
e variable selection
e change point(s) determination
® image analysis
e graphical models and expert systems
e variable dimension models

e causal inference

[Peter Green]
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Bayesian Model Choice

Typical in model choice settings

319 Intro/Green/Point Pro

320

Example 54 —Mixture modelling—

Benchmark dataset: Speed of galaxies

20

10

05

00

[Roeder, 1990; Richardson & Green, 1997]
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Modelling by a mixture model
Mi:aj~ > palN(pe,op)  (G=1,...,82)

i?

Intro/Green/Point Pro

Formally over:

1. Compute

/fL 2(6,)(6;)d6
Zp]/ 3 (216;)75(0;)d6,

2. Take largest p(9M;|x) to determine model, or use

ooy [ So(aley )00

pMi|z) =

as predictive

[Different decision theoretic perspectives]
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Bayesian variable dimension model

A variable dimension model is defined as a collection of models (k = 1...., K),
My = {f(10k); O € Ok},

associated with a collection of priors on the parameters of these models,

ﬂ-k(ak) )

and a prior distribution on the indices of these models,

{o(k),k=1,...,K}.
Alternative notation:

(Mg, O1) = o(k) w1 (Or)

323 Intro/Green/Point Pro

Difficulties

e (formal) inference level [see above]

e parameter space representation
o= @or.
k

[even if there are parameters common to several models]

e (practical) inference level:
model separation, interpretation, overfitting, prior modelling, prior coherence

e computational level:

infinity of models, moves between models, predictive computation

322
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7.2 Green’s method

Setting up a proper measure—theoretic framework for designing moves between
models My,
[Green, 1995]

Create a Ron$H =, {k} x O such that

/A/Bﬁ(x,dy)ﬂ(:r)dx—/jBAR(y’dx)ﬂ(y)dy

for the invariant density 7 [z is of the form (k, AN

Intro/Green/Point Pro

Special case

When contemplating a move between two models, 2)t; and 915, the Markov chain
being in state 61 € 9y, denote by R1_.2(01, df) and Ra_,1 (02, d0) the

corresponding kernels, under the detailed balance condition
7T(d91) Rl_,g (91, d@) = 7T(d92) .ﬁg_,l(eg, d9) s

and take, wiog, dim(9tz) > dim(M1y).
Proposal expressed as

02 == \Ijl—>2 (017 Ul—»Q)

where v1_,2 is a random variable of dimension dim(9%2) — dim (90, ), generated

as

V1—2 ~ <P1—>2(1/1—>2) .

325
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Write £ as
A, B) =Y / Pa(2,4) (2 dy) + () 5(2)

where q,, (z, dy) is a transition measure to model 9,,, and p,,, (z, y) the

corresponding acceptance probability.

Introduce a measure &, (dz, dy) on $2 and impose on
7(dz)qm (z, dy) to be absolutely continuous wrt &,,,,

() dgm (2, dy)

= x
Then
pm(z,y) = min {1, Wm}
gm(z,9y)
ensures reversibility
Intro/Green/Point Pro 328

In this case, q12(61, df2) has density

OV _,9(01,v1-2) -

8(917 /UIHQ)

S01—>2 (Ul—>2)

)

by the Jacobian rule.

If probability zoq_,o of choosing move to s while in 9JT;, acceptance probability
reduces to

alb,v12) =1A

(Mo, 02) wa—1 ‘ OV _9(61,v1-2)
W(mh@l)”ﬂlﬁz 991—>2(’1/‘1ﬂ2) 0(917?/‘1—>2)
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Interpretation (1)

The representation puts us back in a fixed dimension setting:
e Iy x Yy_,o and M5 in one-to-one relation.

e regular Metropolis—Hastings move from the couple (01, 1)1%2) to 2 when
stationary distributions are (91, 01) X p1_2(v1_2) and 7w(Ma, H2), and
when proposal distribution is deterministic (??)

Intro/Green/Point Pro

Interpretation (2): saturation

[Brooks, Giudici, Roberts, 2003]

Consider series of models M; (¢ = 1,. .., k) such that
max dim(9M;) = npax < 00
Parameter of model 0; then completed with an auxiliary variable U; such that
dim(6;, u;) = nmax and  U; ~ q;(u;)
Posit the following joint distribution for [augmented] model 90;

(M, 0;) qi(u;)

329
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Consider, instead, that the proposals

Oy ~ N (Uq_5(61,v1-2),€) and Uy _o(b1,v12) ~ N(bs,¢)

Reciprocal proposal has density

exp {*(92 — ‘1’1—>2(917111—>2))2/25} o ‘3‘I’1ﬁ2(91,v1ﬁ2)

V2me 0(01,v1-2)

by the Jacobian rule.
Thus Metropolis—Hastings acceptance probability is

(My, 02) ‘3‘1’1H2(91,U1H2)
7(M1,61) pr1o2(vis2) 0(61,v1-2)

1A

Does not depend on €: Let £ goto 0

Intro/Green/Point Pro

: no varying dimension anymore since (91-, ui) of fixed dimension.
Three stage MCMC update:
1 Update the current value of the parameter, 6;;
2 Update u; conditional on 6;;

3 Update the current model from 9J1; to Z)Jlj using the bijection

(05,uj) = Wi (0;,u;)

330
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Example 55 —Mixture of normal distributions—

k
. ) . 2 Additional Birth and Death moves for empty components (created from the prior
M, pjkN<,U'Jk7 o k)
) J
j=1 distribution)
[Richardson & Green, 1997] Equivalent
Moves: (i) Split
(i) Split ui,ug,uz ~ U(0,1)
Pj(k+1) = U1Djk
Djk = Djkt1) T PG (k+1) (T)
Hik+1) = U2Hjk
PikMik = Pj(k+1)Hj(k+1) T PG+1)(k+1) H(G+1) (k+1) 5 B 9
o2 = g 2 T 2 Tj(k+1) = U0k
PjkO5k = Pjk+1)%5k+1) T PG+ (R+1)0(j4+1) (k+1)
(i) Merge (reverse)
Intro/Green/Point Pro 335 Intro/Green/Point Pro 336
Histogram of k

Normalised enzyme dataset

00 01 02 03 04

Rawplot of k

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

Figure 2: Histogram and rawplot of 100, 000 k's produced by RIMCMC under the
imposed constraint k& < 5.
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Example 56 —Hidden Markov model—

wi; = Wij/zwi27
1

ViXe =i ~ N(u,o7).

Intro/Green/Point Pro 339

Move to split component j, into j1 and jo:
Wij, = Wiz, i, Wijy, = wij, (L—¢&), & ~U(0,1);
Wi j = Wi & Wiy = wj.j/&, & ~ log N(0,1);
similar ideas give wj, ;, etc.;
iy = Wy, = 305.€u, iy = Hj, + 304,60, € ~N(0,1);

05 =03 &, 05, =07 /&5 & ~1ogN(0,1).

[Robert & al., 2000]

Intro/Green/Point Pro
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Figure 3: DAG representation of a simple hidden Markov model
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Figure 4: Upper panel: First 40,000 values of k for S&P 500 data, plotted every 20th sweep.

Middle panel: estimated posterior distribution of k for S&P 500 data as a function of number

of sweeps. Lower panel: o1 and o2 in first 20,000 sweeps with k = 2 for S&P 500 data.
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AR(p) reversible jump algorithm

Example 57 —Autoregressive model—
Uniform priors for the real and complex roots )\j,
Typical setting for model choice: determine order p of AR(p) model

1 1 1
Consider the (less standard) representation 1791 11 H *H|>\,-,\<1 H *H\Ai|<1
|k/2] +1 2 T
X ER i €R
P
H (1 — )\iB) Xi=¢, e~ /\/(0, 02) and (purely birth-and-death) proposals based on these priors
i=1
® k— k+1
where the \;’s are within the unit circle if complex and within [—1, 1] if real.
® k— k+2
[Huerta and West, 1998]
Roots [may] change drastically from one p to the other. ¢ k—kl
® k— k-2
Intro/Green/Point Pro 343 Intro/Green/Point Pro 344

H
=
=
=
%
=

] 7.3 Birth and Death processes

0123
0123455
02658
L

Use of an alternative methodology based on a Birth—-&-Death (point) process
[Preston, 1976; Ripley, 1977; Geyer & Mgller, 1994; Stevens, 1999]

Idea: Create a Markov chain in continuous time, i.e. a Markov jump process,

moving between models 91, by births (to increase the dimension), deaths (to

. o . . ) decrease the dimension), and other moves.
Figure 5: Reversible jump algorithm based on an AR(3) simulated dataset of 530 points

(upper left) with true parameters «; (—0.1,0.3, —0.4) and 0 = 1. First histogram associ-
ated with p, the following histograms with the «;'s, for different values of p, and of o2, Final

graph: scatterplot of the complex roots. One before last: evolution of a1, a2, 3.
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Time till next modification (jump) is exponentially distributed with rate depending on

current state

Remember: if &1, ..., &, are exponentially distributed, &; ~ £(\;), Balance condition
Sufficient to have detailed balance
2 L(0)7(0)q(0,0") = L(0')n(6")q(6',0) foral 6,6

Difference with MH-MCMC : Whenever a jump occurs, the corresponding move is for 7(6) o< L(0)m(0) to be stationary.

always accepted. Acceptance probabilities replaced with holding times. Here q(O, 0/) rate of moving from state 6 to o

Implausible configurations Possibility to add splitmerge and fixed-k processes if balance condition satisfied.

L(0)7(0) < 1

die quickly.

Intro/Green/Point Pro 347 Intro/Green/Point Pro

Example 58 —Mixture modelling (cont'd)—

Stephen’s original modelling:

e Representation as a (marked) point process e Balance condition

o= {0y (.09 (k + 1) d@ U (p, (1,0)) L@ {p, (1,0)}) = 2o L(@) 70

(k+1)

J
with

Birth rate A\ (constant) @\ {p.( ") = 6,(@)
d(®\ Py, (15, 05) 1) = 0;(P

e Case of Poisson prior k ~ Poi(A1)

Birth proposal from the prior

e Death rate 0, (®) for removal of point j
o L(P . R

e Death proposal removes component and modifies weights 5]-((I>) =22 ( \ {p], (,u] ’ U])})
A L(®)

e Overall death rate

6;(®) = 6(®)

Jj=1
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Stephen'’s original algorithm:
Forv=20,1,---,V
t—wv
Runtilt > v+ 1
L(®|®;) Ao

1. Compute §,(P) = @) N

[5
2. §(®) — Zaj@j),f — Ao +6(®), u ~U([0,1])

3.t — t—ulog(u)

Intro/Green/Point Pro

Rescaling time

In discrete-time RIMCMC, let the time unit be l/N, put

ﬁk:/\k/N and (Sk:l—)\k/N

As N — 00, each birth proposal will be accepted, and having k components births

occur according to a Poisson process with rate \;, while component (w, gb) dies

with rate
: 1 . a1
]\}11(1)0 Nogi1 X il x min(A~", 1)
1 b
= lim N « likelihood ratio—1 x (w, 9)
Nooo k4 Okr1 (1 —w)k—t

A b
= likelihood ratio ™" x kjl “a Ewl;ﬂ)_y

Hence “"RIMCMC —BDMCMC". This holds more generally.

349

351
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4. With probability § (®) /&
Remove component j with probability 0, (®) /6 (P)

k—k-—1
pe < pe/(1—p;) (£ #7)
Otherwise,

Add component j from the prior 7 (1, 0;)
p; ~ Be(y, k)
pe — pe(1 —p;) (L#7)
k—Fk+1
5. Run I MCMC(k, 3, p)

Intro/Green/Point Pro 352

Example 59 —HMM models (cont'd)—

Implementation of the split-and-combine rule of Richardson and Green (1997) in

continuous time

Move to split component j, into 71 and ja:
wij, = Wij, €, wij, = wij. (1—€), € ~U(0,1);
wirj = Wi.i&is Wiaj = wig /& &~ 1og N(0,1);
similar ideas give wj, j, etc.;
fjy = M, — 304, €us  Mjy = Hj, + 304,64, €u ~ N(0,1);

ol = U?*fg, ol = 012»*/50., & ~log N (0,1).

J1 J2
[Cappé & al, 2001]
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Wind intensity in Athens

05

0.4
I

03

0.2
I
2
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Figure 6: Histogram and rawplot of 500 wind intensities in Athens

Intro/Green/Point Pro

n

00 02 04 06 08 10

Figure 8: MCMC sequence of the probabilities 7; of the stationary distribution (top)
and the parameters o (bottom) of the three components when conditioningon k = 3
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Number of states

el s

Log likelihood values

Number of moves

il T

s 1 15 » E B o 00 1000 1500 2000 2500
ey nsams

0 20

Figure 7: MCMC output on k (histogram and rawplot), corresponding loglikelihood
values (histogram and rawplot), and number of moves (histogram and rawplot)
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Figure 9: MCMC evaluation of the marginal density of the dataset (dashes), com-
pared with R nonparametric density estimate (solid lines).
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Even closer to RIMCM

Exponential (random) sampling is not necessary, nor is continuous time!

Estimator of 1 T, time of the n-th jump of {6(¢) } with Ty = 0

J= /g(&)ﬂ(@)de 2 {6,,} jump chain of states visited by {6(¢)}
by 3 A(0) total rate of {6(¢) } leaving state 6
N -
5= 1 Z 9(0(r)) Then holding time T}, — T}, of {6(¢)} in its n-th state 6,, exponential rv with rate
- 3 ~
N 49 A(0r)
where {6(t)} continuous time MCMC process and 71, . . . , Ty sampling instants.
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Example 60 —Mixture modelling (cont'd)—

Comparison of RIMCMC and CTMCMC in the Galaxy dataset

Rao—-Blackwellisation i
[Cappé & al., 2001]

If sampling interval goes to 0, limiting case

A~

N
1 ~ e Same proposals (same C code
joo - TN E g(en—l)(Tn 7Tn—1) brop ( )
n=1

o Moves proposed in equal proportions by both samplers (setting the probability
PF of proposing a fixed k move in RIMCMC equal to the rate 77F at which

Rao—Blackwellisation argument: replace fJ’ with
g P o0 fixed k moves are proposed in CTMCMC, and likewise P2 = n® for the birth

N N
- 1 0, 1 ~ ~ moves)
J= Ti Z M - Ti Z E[Tn - Tnfl | anl] g(anl) .
N = Mbn-1) N = e Rao—Blackwellisation
Only simulate jumps and store average holding times! e Number of jumps (number of visited
configurations) in CTMCMC == number of iterations

of RIMCMC
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e |f one algorithm performs poorly, so does the other. (For RIMCMC

manifested as small A’s—birth proposals are rarely accepted—while for
BDMCMC manifested as large §’s—new components are indeed born but die

again quickly.)
e No significant difference between samplers for birth and death only
e CTMCMC slightly better than RIMCMC with split-and-combine moves
e Marginal advantage in accuracy for split-and-combine addition

e For split-and-combine moves, computation time associated with one step of

continuous time simulation is about 5 times longer than for reversible jump

posterior probability

posterior probability
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Figure 11: Galaxy dataset, box plot for the estimated posterior on k obtained from 500 inde-
pendent runs: Top RIMCMC and bottom, CTMCMC. The number of iterations varies from 5
000 (left plots) to 50 000 (right plots).

8 Population Monte Carlo

k

Figure 10: Galaxy dataset, box plot for the estimated posterior on k obtained from 200 inde-
pendent runs: RIMCMC (top) and BDMCMC (bottom). The number of iterations varies from 5
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8.1 Adaptive MCMC

Algorithms trained on-line usually invalid:

using the whole past of the “chain” implies that this is not a Markov chain any longer!

Adaptation/Importance/Dynamo/PMC/Mixtures/lon channel 367

Invalid scheme:

e when range of initial values too small, the 0(1)'s cannot converge to the target

distribution and concentrates on too small a support.

e long-range dependence on past values modifies the distribution of the

sequence.

e using past simulations to create a non-parametric approximation to the target

distribution does not work either

Adaptation/Importance/Dynamo/PMC/Mixtures/lon channel

Example 61 —Poly ¢ distribution—
t-distribution 7 (3, 6, 1) sample (21, . .., Z,) and flat prior 7(6) = 1
Try fit a normal proposal from empirical mean and variance of the chain so far,

t t

1 . 1 .
e = n Z@(z) and 0—t2 — n Z(e(z) _ 'ut)Z )

i=1 =1

Metropolis—Hastings algorithm with acceptance probability

f[ [ + (25— GW] T oxp (e — 092207
L vt (@ - 62 exp— (i — €)2/207

where & ~ N (pt, o2).

Adaptation/Importance/Dynamo/PMC/Mixtures/lon channel

4500 05 115

I
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wouwe

0
1
S Y |

Figure 12: Adaptive scheme for a sample of 10 2; ~ 75 and initial variances of
(top) 0.1, (middle) 0.5, and (bottom) 2.5.
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Figure 13: Comparison of the distribution of an adaptive scheme sample of 25, 000

points with initial variance of 2.5 and of the target distribution.

Adaptation/Importance/Dynamo/PMC/Mixtures/lon channel

Warning

One should not constantly adapt the proposal on past performances of the

chain.

Either adaptation ceases after a period of burnin

or the adaptive scheme must be theoretically assess on its own right.
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T T T T T T T T 1
o 10000 20000 so0000 —1.s —o.s o.s 1.0 1.5

Ierations =Y

Figure 14: Sample produced by 50,000 iterations of a nonparametric adaptive
MCMC scheme and comparison of its distribution with the target distribution.
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8.2 Importance sampling revisited

Approximation of integrals

by unbiased estimators

A~ 1
J= n Z o0;h(z;)
i=1
when
Pretn B a(z)  ana g %I
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Dependent extension

For densities f and g, and importance weight

w(z) = f(z)/g(x),

for any kernel K (z, ") with stationary distribution f,

/ w(z) K (z,') g(z)de = f(a).

[McEachern, Clyde, and Liu, 1999]

Adaptive/Importance/Dynamo/PMC/Mixtures/lon channel

Drawback The weights do not change!

If x has small weight
w(z) = f(x)/g(x),
then
¥~ K(x,x)

keeps this small weight.

Adaptive/Importance/Dynamo/PMC/Mixtures/lon channel 374

Consequence: An importance sample transformed by MCMC transitions keeps its

weights

Unbiasedness preservation:

EWw(X)h(X)] = / (@) h(a) K (2, 2) g(x) d da’

I
=
-
=
s’
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Dynamic extension

As in Markov Chain Monte Carlo (MCMC) algorithms, introduction of a temporal

dimension :

and

is still unbiased for
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Reason why:

(X ®)

)y "\ )
E[“X ) aXOXED)

= X ﬂ-(x) x X
= [ hle) T ) atw) oy

- / h(z) 7(z) do

for any distribution g on X =1

Adaptive/Importance/Dynamo/PMC/Mixtures/lon channel

8.3 Dynamic sampling

More global dynamic schemes with random weights

377

379
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Variance decomposition

Furthermore,
- IS (1)) (- (1)
var (Jt) = E_l var <Qi h(x; )) ,

()

i

(t)

if var (Qi ) exists, because the x,; "’s are conditionally uncorrelated

()

7

)

Note: Decomposition still valid for correlated x; *'s when incorporating weights g,
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(a) Self-regenerative chains
[Sahu & Zhigljavsky, 1998; Gasemyr, 2002]

Proposal

Y~ ply) o< ply)
and target distribution () o< 7(y)
Ratios

w(r) =mn(z)/p(zr)  and  &(z)=7(2)/p(r)

Unknown Known

Acceptance function
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Geometric jumps

If
Y ~ p(y)
and
WIY =y ~9(aly)),
then

Xe==Xeyw1 =Y # Xppw

defines a Markov chain with stationary distribution 7

Adaptive/Importance/Dynamo/PMC/Mixtures/lon channel

Generalisation

[Gasemyr, 2002]
Proposal density p(y) and probability ¢(y) of accepting a jump.

Sequence of random weights W,, such that

Y, ~ p(y)
Vo ~ Bla(yn))
S~ Geo(a(yn))
W, = V.S,
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e Valid for any choice of s [k small = large variance and k large = slow

convergence]
e Only depends on current value [Difference with Metropolis]
e Random integer weight VW [Similarity with Metropolis]
e Saves on the rejections: always accept [Difference with Metropolis]

e Introduces geometric noise compared with importance sampling
2 2 N2
05z =2075+ (1/K)ox

e Can be used with a sequence of proposals pg and constants Ky [Adaptativity]
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Validation: If
p(y)aly )
[ rW)a(y)dy
chain (X;) associated with the sequence (Y, Wn) by

o(y) =

Vi=X1= =X w,_1,Yo = X14w, =
is a Markov chain with transition

K(z,y) = a(x)¢(y)

and point mass at y = x with weight 1 — a/(x).



Adaptive/Importance/Dynamo/PMC/Mixtures/lon channel 385

Necessary and sufficient condition

T is stationary for (X ) if
a(y) = q(y)/(km(y)/p(y)) = q(y)/(rw(y)) @)

for some constant ~.
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Variance of

2 [ LD )y - (/)2
[Cramer-Wold/Slutsky]

Still worse than importance sampling.
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Implies that
EW"Y™ =y] = kw(y) .
[Importance sampling]
Special case: a(y) = 1/(1 + kw(y)) of Sahu and Zhigljavski (2001)

Constraint on k: for a(y) < 1, kK must be such that

p(y)a(y)

) "

Reverse of accept-reject conditions
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(b) Dynamic weighting
[Wong & Liang, 1997; Liu, Liang & Wong, 2001; Liang, 2002]

Simultaneous generation of points and weights, (9,5, wt), under the constraint

E[wt|9t] X 77(0,5) (6)

Same use as importance sampling weights
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Liang's Dynamic Importance Sampling:

1 Generate y ~ K (z,y) and compute

m(y)K(y, x)
m(z)K(z,y)

2 Generate u ~ U(0, 1) and take

)
{(y (14 46)o/a) ifu<a,
(z,(14+6)w/(l —a) otherwise

where a = o/(0 +0), 0 = 6(z,w), and § > 0 constant or
independent rv

Adaptive/Importance/Dynamo/PMC/Mixtures/lon channel

= (1+6) {W(x’)/co K(2',z)dx + cmr(x’)}
=2(1+ 6)com(x’),
where c¢q proportionality constant

Expansion phenomenon

Elwi 1] = 2(1 + 6)Efw]
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Preserves the equilibrium equation (6):

If g— and g4 denote the distributions of the augmented variable (X, W) before the
step and after the step, respectively, then

oo
/ W g+(x',w') dw'’ =
0

/(1 +9) [o(w, z,2") + 0] g—(z,w) K (x, x,)g(w,—x,x/) dr dw

o(w,z,z') 4+ 0
w(o(w,2’,z) +0) , 0
+/(1+5) 7 g_(x,w)K(m,z)Wdzdw
= (1+5){/wg(w,w)dedw

+ /wg_(x’,w) K(2',2)dz dw}
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R-move
[Liang, 2002]

6 =0andf =1, and thus

(x/,w/):{(yag+1) ifu < o/(0+1),

(z,w(o+1)) otherwise,

[Importance sampling]



Adaptive/Importance/Dynamo/PMC/Mixtures/lon channel

W -move

0 =0,thusa = 1 and

(2, 0") = (y,0) .

)-move
[Liu & al, 2001]

(y,0V o) ifu<lAp/b,

(z,aw)  otherwise,

@)= {

with @ > 1 either a constant or an independent random variable.
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e Geometric structure of the weights

Pr(R, = 0) = —L .
Wi+1
and
Pr(R; = 0) = wirleny) g

wer(ze, ye) + 67
for the R scheme

e Number of steps T before an acceptance (a jump) such that

PI’(TZt) = P(R1:0,...,Rt,1:0)
t—1 Wi

= E L | o E[1/w].

12 | Bl

Jj=0
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Notes:

e Updating step in Q and R schemes written as
(Tt41,wet1) = {@e, we /Pr(Ry = 0)}
with probability Pr(R; = 0) and
(Te41,wi1) = {Yer1, wir (T4, yer1) /Pr(Ry = 1)}
with probability Pr(R; = 1), where Ry is the move indicator and

Yer1 ~ K(zg,y)
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Alternative scheme

Preservation of weight expectation:
(Teg1,wit1) = (x4, qwe /Pr(Ry = 0))
with probability Pr(R; = 0) and
(@e+1,wir1) = Wer1, (1 — aw)wrr (@, yegr) [Pr(Re = 1))

with probability Pr(R; = 1).
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Then

PF(T:t) = P(R1:O,...,Rt_1:0,Rt:1)

t—1
; _ Y
= K HC\{]' wj (1*@070% 17"(1'07 t)
j=0 UJj+1 Wt

which is equal to
a1 = @)Elw, r(z, Yy) /wi]

when «a; constant and deterministic.
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8.4 Population Monte Carlo

Pros and cons of Imp’Samp. vs. MCMC
e Production of a sample (IS) vs. of a Markov chain (MCMC)

e Dependence on importance function (IS) vs. on previous value (MCMC)

Unbiasedness (IS) vs. convergence to the true distribution (MCMC)

Variance control (IS) vs. learning costs (MCMC)
e Recycling of past simulations (IS) vs. progressive adaptability (MCMC)

e Processing of moving targets (IS) vs. handling large dimensional problems
(MCMC)

e Non-asymptotic validity (IS) vs. difficult asymptotia for adaptive
algorithms (MCMC)

397
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Example
Choose a function 0 < (3(+,-) < 1 and to take, while in (x, wp),

(z1,w1) = (yl, M(l - 5(9607?/1))

Oé(d?o, 1/1)

with probability

. A
min(1, wor(zo,y1)) = a(zo,y1)
and
wo
(z1,w1) = (xo, — X ﬁ(xo,y1)>
1 — afxo,y1)
with probability 1 — a(zg, y1).
Adaptive/Importance/Dynamo/PMC/Mixtures/lon channel 400
Population Monte Carlo
Idea Simulate from the product distribution
n
7@ (@, ) = [[ (@)
i=1

and apply dynamic importance sampling to the sample

x®) = (xgt), . ,azgf))
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The importance distribution of the sample x(®)

qt(x(t) |X(t—1>)

401

can depend on the previous sample xt=1 in any possible way as long as marginal

distributions
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Special case

n

gir(x) = / 0o (x0) dx )

0O x) = T au (@ x)

In that case,

var (3,) = ni

i=1

[Independent proposals]

403
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can be expressed to build importance weights
(t)
m(z;’)

(t))

Qit =
qit (Il

Note: Using the marginal distributions creates correlation terms in the variance of

J; but reduces the overall variance varJ; by a Rao—Blackwellisation argument

Adaptive/Importance/Dynamo/PMC/Mixtures/lon channel

because
E[on(x") o"n(x")]
() m(x;)
= [ h(x; h(x;
J M) e iy e
qit(xi|x(t71>) qjt(z; x=D) da; dx; g(x(tfl))dx(tfl)

whatever the distribution g on x(t=1)

402
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Normalising constants

In general, 7 is unscaled and
(®)
;" X

scaled so that
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Resampling

Over iterations (in t), weights are multiplied, resulting in degeneracy of the sample
01 = 1, while g2, . . . negligible

Use instead Rubin’s (1987) systematic resampling: at each iteration resample the

.CL'gt)'S according to their weight Q(-t)

, ~ and reset the weights to 1

405
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e Loss of the unbiasedness property and the variance decomposition

e Normalising constant can be estimated by

1 t n
me Yy

m(
=1 i=1 Qir(

z{")
z7)

e Variance decomposition (approximately) recovered if zo;_1 used instead
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PMCA: Population Monte Carlo Algorithm

Fort=1,...,T

Fori=1,...,n,

(a) Select the generating distribution g;¢(-)

(b) Generate xz(»t) ~ Git()

(c) Compute gz(-t) = W(xgt))/%‘t(xgt))
()

Normalise the o; *’s to sum up to 1

t
Resample n values from the xE )

weights Q(t)

K2

's with replacement, using the
, to create the sample (xgt), ... ,xﬁf))
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Links with particle filters

e Usually setting where m = 714 changes with ¢: Population Monte Carlo also

adapts to this case

e Gilks and Berzuini (2001) produce iterated samples with (SIR) resampling

steps, and add an MCMC step: this step must use a 7 invariant kernel

e Chopin (2001) uses iterated importance sampling to handle large datasets: this
is a special case of PMC where the g;;'s are the posterior distributions

associated with a portion k; of the observed dataset

e Stavropoulos and Titterington’s (1999) smooth bootstrap, and Warnes’ (2001)
kernel coupler use nonparametric kernels on the previous importance sample to

build an improved proposal: this is a special case of PMC

Adaptive/Importance/Dynamo/PMC/Mixtures/lon channel

Population Monte Carlo Algorithm

Step 0: Initialisation

Forj =1,...,n = pm, choose (,ul)( ) s (pa )(0)
Fork=1,...,p,setry =m

Step i: Update (i =1,...,1)
Fork=1,...,p,

1 generate a sample of size 1, as

(1) ~ N ()™ o) and ()~ N () o)

2 compute the weights

f( ’(ul ’ )W( V() ))

¥ ((ul)ﬁ-’) ‘(m)f Y ) ( ‘ (-iil) ,Uk;)

05 X

409 Adaptive/Importance/Dynamo/PMC/Mixtures/lon channel

8.5 Mixtures of distributions

Observation of an iid sample X = (:El, R 7

(1 =p)N(p2, 0

pj\/’(u170-2) +

with p # 1/2 and & > 0 known.

Usual (0, a2 /) prior on 11 and fi:

(1, p2]x) o

411 Adaptive/Importance/Dynamo/PMC/Mixtures/lon channel

Resample the ((ul)y) ; (ug)](-i)) _using the weights g;,
j

Fork=1,...,p

update 7 as the number of elements generated with variance v which

have been resampled.

410

412
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Details
After an arbitrary initialisation, use of the previous (importance) sample (after

resampling) to build random walk proposals,

N (@)= vy)

J

with a multiscale variance v; within a predetermined set of p scales ranging from
102 down to 10~3, whose importance is proportional to its survival rate in the

resampling step.

Adaptive/Importance/Dynamo/PMC/Mixtures/lon channel

Figure 16: Log-posterior distribution and sample of means
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Resampling
1111

Resamping
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Figure 15: (u.left) Number of resampled points for v; = 5 (darker) and v, = 2;
(u.right) Number of resampled points for the other variances; (m.left) Variance of the
J1’s along iterations; (m.right) Average of the fi1’s over iterations; (l.left) Variance of

the uo’s along iterations; (l.right) Average of the simulated fio's over iterations.
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8.6 lon Channel Modelling

Formalised representation of ion exchanges between neurons as neurotransmission

regulators.

lon channel can be in one of several states, each state corresponding to a given

electric intensity.

Indirect observation of these intensities: patch clamp recordings, ie intensity

variations.
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A hidden semi-Markov model

Observablesy = (yt)lgth directed by a hidden Gamma (indicator) process
X = (l“t)lgth

2
el e NN(Mac“U )
Hidden process such that
djt1 =tjp1 —tj ~ Ga(si, \i)

ifory = ifortj <t< tj+1
[Ball et al., Carpenter et al., Hodgson, 1999]
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Our assumptions

e The durations d; are integers
— generalisation of HMM: geometric vs. negative binomial
— identifiability issue
e 5o and s; are integers and uniformon {1,..., S}
— generalisation of HMM: exponential vs. sum of exponentials

— alternative to duplicate states
[Carpenter et al., Hodgson and Green, 1999]

— alternative to variable dimension modelling

e Observables independent , given the x's

417

419
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Figure 17: Simulated sample of size 4000
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Prior modelling

1o, K1

~

418

420
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Instrumental distribution
m(wW]y,x9)) Gibbs like:

((1r - fv),y)Q B («'y)?
Vo (%1

T 1
o ?ly,x ~G §+n7 <2> 2v+ 1py” —

TV (90 — 7(1T_x)/y)2 TU1 (00 — ””/—y)Q

Vo V1

+
Vo + T v+ T
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7 g conditional distribution of a (pseudo) hidden Markov chain X given the
observables y and constructed via the forward—backward formula for the pseudo

transition
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(1T —J])Iy—‘re(ﬂ' o?
vo+T Tvg 4T

/L()’y,fll’,()j NN(

2

'y +6
P G

Ul+T ”U1+7’

ifvg = (1p — x)/ lrandv; = 2’17 and
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Motivations

1

Importance sampling bypasses exact simulation of the hidden process
(xt)lgtST, using a pseudo-HMM, and avoids recourse to variable dimension
models

Provides unrestricted moves between configurations of the process (xt)l <t<T-

Iterated importance sampling provides progressive selection of the most
relevant particles [Berzuini et al., 1997]

Metropolis—Hastings scheme based on the same proposal does not work so well

Produces a sample in the parameter space close to an iid sample from the true
posterior distribution

Can be tuned on-the-run while remaining valid.
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Population Monte Carlo Algorithm

Step 0. Generate (j = 1,...,J)
1w ~7(w)
2 x9 = (@ )i<rzr ~ ma(xly, )
compute the weights (j = 1,...,J)
m(w?,x"y)
m(w s (x ]y, w@)

05 X

resample the (w(7), X(_j))j using the weights g,
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Results

00 03 06
Ll

T T T T
o 1000 2000 3000 4000

L MR TG L L L

o 1000 2000 3000 4000

00 06

Figure 18: (top) Histograms of residuals after fit by averaged pi,,, ; (middle) Simulated
sample of size 4000 against fitted averaged 115, ; (bottom) Probability of allocation to
first state for each observation
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Stepi. (i =1,...) Generate (j = 1,...,.J)
1wt~ m(wly,x?)
2 ng) = (xgj))lgth ~ g (x]y,w)
compute the weights (j = 1,...,J)

(@@, xP|y)

7wy, xD ) (xP |y, w)

05 X

resample the (w(j), xg))j using the weights ¢;, and take X(j) = xg)

G=1,...,J).
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Population Monte Carlo

Adaptive algorithm: self-improvement of the importance sampler

Long-term behaviour of the algorithm?

stopping rule?

426

428
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s L L i L L L1 —— Degeneracy

. Percentage of relevant particles less than 10% on average

<2 I, R AN ] TR O
G INRNECte. 1111111111 S e I 1111 [ SO

‘ |
yimiy
Rl

r 1

Figure 19: Successive fits for 2000 observations 2000 particles and 1, 2, 5 and 10 Figure 20: (left) Variance of the weights o, and (right) Number of particles with de-
iterations. scendants along 100 iterations, for 4000 observations and 1000 particles.
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Comparison with Hastings—Metropolis

Uses exactly the same proposal in an HM framework

g ,

s

_ MCMC Algorithm

s | Stepi (1 =1,...,J)

& e Generate w(¥ ~ 7(w|y,x(Y)

o : 5 - 5 s o Generate x* ~ mzr (x[y, w"), u ~ U([0,1])

and take
Figure 21: Representation of the sequence of descendents (yellow) and ancestors . x* it < ey m(x" D jw@y)
. . x() = = ma(yw®) [ D yw®)
(blue) for 4000 observations and 1000 particles. )
x(=1D " otherwise
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Performances
e Poor overall performances/mixing abilities
e Degenerates (to single state) if started at random 8.7 Stochastic volatility

e Requires a sequential burnin (n = 100, 200, . . .) and even...

e No visible improvement over population Monte Carlo .
Simplest model

yr = Bexp (2:/2) € , e ~N(0,1)

with AR(1) log-variance process

04 05 08 10

0 o0

4
I

Zt4+1 IQOZt‘FO"LLt, Ut NN(O,l)

2
I

0
I

4 Observed likelihood unavailable in closed from.

2

Figure 22: 5000 MCMC iterations

Adaptation/Importance/Dynamo/PMC/Mixtures/lon channel/StoVol 435 Adaptation/Importance/Dynamo/PMC/Mixtures/lon channel/StoVol 436

Lack of robustness:

Necessary MCMC completion by the missing data z (of the same dimension as the the MCMC algorithm may fail to converge for long series or extreme values of the

data) parameters (3 and (.

[Jacquier, Polson & Rossi, 1994; Kim, Chib and Shephard, 1998] Very sensitive to the generation of the missing data

May well fail to converge even when initialized at the true parameter values.
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Posterior distributions for ﬁQ and o2 conditional on the x4's and z¢’s both inverse

Gamma distributions with (n — 1) /2 shape parameters and

n

ny exp(—z:)/2 and Z (z¢ — cpzt_l)Q /2

t=2

scales

Adaptation/Importance/Dynamo/PMC/Mixtures/lon channel/StoVol

Simulation of z; |y, ¢, 0 (2 < t < n — 1), proportional to
exp {—0.5 (1 + @2) (z¢ — ,u,g)2 /02 —0.5exp (—2¢) yf/ﬂ2 — O.5zt} ,

where iy = @ (21 + zi41) /(1 + ©°).
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Conditional distribution of ¢ proportional to

n—1 n
v1— @2 exp — (apz Z th — 2902232’151) /202 H}—l,l[(@) »
t=2 t=2

and standard proposal truncated normal on | — 1, 1] with mean and variance

n n—1 n—1
E ztzt,l/g zt2 and 02/5 zt2
t=2 t=2 t=2
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Solution:

Expand exp (—zt) by a Taylor expansion around fi;.

Normal proposal with mean

(14 ¢%) pe/o? +0.5exp (—pe) y7 (1 + ) /8% — 0.5
(14 ¢?) /o2 +0.5exp (—pue) y7 /52

and variance
1/{(1+¢?) Jo® +05exp (—pe) yi /57 -

438
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Figure 23: Weekly (upper) and daily (lower) simulated datasets with n. = 1000
observations 1; (black) and volatilities z; (red).
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o
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800 1000

Figure 25: Weekly dataset: estimation of the stochastic volatility (in black the true

volatility and in red the MCMC estimation based on the last 5000 iterations).
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Figure 24: Weekly dataset: evolution of the MCMC samples for the three parameters

terations

(left) and convergence of the MCMC estimators (right).
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Figure 26: Daily dataset: same legend as Figure 24.
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Figure 27: Daily dataset: same legend as Figure 25.
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Weekly dataset: evolution over iterations of the Rao—Blackwellised PMC
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Run a PMC sampler with exactly the same proposals as completion MCMC
Results:
Better parameter estimates and volatility reconstruction for PMC than for MCMC
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Figure 29: Weekly dataset: estimation of the stochastic volatility (in black the true
volatility and in red the PMC estimation based on the 10th iteration weighted PMC
sample).
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Figure 30: Daily dataset: same legend as Figure 28.. Figure 31: Daily dataset: same legend as Figure 29.
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9.1 Propp and Wilson’s

9 Perfect simulation
Difficulty devising MCMC stopping rules:
when should one stop an MCMC algorithm?!
[Robert, 1995, 1998]



Prop/Slice/Kac’s

Coupling from the past (CFTP): rather than start at ¢ = 0 and wait till £ = 400,

startat { = —oo and wait till £ = 0
[Propp & Wilson, 1996]

CFTP Algorithm

1 Start from the m possible values at time —¢
2 Run the m chains till time O (coupling allowed)
3 Check if the chains are equal at time 0

4 If not, start further back: ¢ < 2 * ¢, using the same random numbers at time

already simulated

Prop/Slice/Kac’s

Example 62 —Beta-Binomial—
0 ~ Beta(a, 5) and X0 ~ Bin(n,0),

with joint density

7T($, 9) o <TL> 0x+a—1(1 _ e)n—x-‘rﬁ—l

x

and posterior density

0|z ~ Beta(a + x,B+n — 1)

Gibbs sampler

1 6p41 ~Beta(aw+ ¢, 8+ 1 — 2¢)

2 Xt+1 ~ Bin(n79t+1).

453 Prop/Slice/Kac’s 454

Random mappings

Equivalent formulation

Fort=—1,—-2,...,
1 Simulate a random mapping 1; from each state to its successor

2 Compose with the more recent random mappings, 1y t' > ¢
Uy = W10

3 Check if Wy is constant

455 Prop/Slice/Kac’s 456

Transition kernel

n
F((@eg1,00100) (2, 01)) o < >9E”1+a+mt1
Tt41

(1 _ 9)ﬁ+2n—zt—xt+1 -1
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n=2a=2and =4

State space

Transition probabilities

Pr(0—0) = .583,
Pr(l—0) = .417,
Pr(2—0) = .278,

Prop/Slice/Kac’s

Begin at time ¢ = —1 and draw Uy. Suppose Uy € (.833,.917).

X =1{0,1,2}.

Pr(0 — 1) = .333,
Pr(l1— 1) = .417,
Pr(2+— 1) = .444,

Pr(0 — 2) = .083,
Pr(1+— 2) =.167,
Pr(2+— 2) = .278

Prop/Slice/Kac’s 458
2 2 2 2
1& 1 1§ 1
0—0 0—20
upp1 < .278 w1 € (.278,.417)
2 2 2 2
\ \
1— 1 1— 1
0—0 O/ 0

ui+1 € (1417,.583) w41 € (.583,.722)

2— 2 2— 2 2— 2

1— 1 1/ 1 17 1
O/ 0 O/ 0] 0] 0
upp1 € ((722,.833) w1 € (.833,.917) w1 > 917

All possible transitions for the
Beta-Binomial(2,2,4) example

Prop/Slice/Kac’s 460

The chains have not coalesced, so go to time t = —2 and draw U_. Suppose

U_, € (.278,417).

~ 7
NSNS
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The chains have still not coalesced so go to time ¢ = —3. Suppose
U_q € (.278,.417).

5 Extension to continuous chains

2 2 2
\ [Murdoch & Green, 1998]

0 ~0 >0 0 e Multigamma coupling

e Find a discretization of the continuum of states (renewal, small set,

accept-reject, &tc...)

e Run CFTP for a finite number of chains
All chains have coalesced into Xy = 1. We accept X as a draw from 7 . Note
that even though the chains have coalesced at £ = —1, we do not accept
X_1 = 0asadraw from 7.

Prop/Slice/Kac’s 463 Prop/Slice/Kac’s

Data Augmentation Gibbs sampler:

At iteration t:

1 Generate n iid (0, 1) rv's uY’), R uEp
Example 63 —Mixture models— 2 Derive the indicator variables th) as zl-(t) = 0 iff
Simplest possible mixture structure u(t) _ p(tfnfo(quz)
to= (=) £ (s 1 — pt=1)
po(a) + (1= p)fa(a), Pt )

and compute
with uniform (or Beta) prior on p.

it = 3720

i=1

3 simulate p() ~ Be(n 4+ 1 —m® 1 +m®).
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Corresponding CFTP :

465 Prop/Slice/Kac’s 466

At iteration —%:

1

2

sy Un

Partition [0, 1) into intervals [q[;], q[j+1])-

For each [q

(_*t) (_*t)

0] ,q[]H]), generate

Generate 7 iid uniform rv's ugft) ul™.

P\ ~ Be(n—j+ 1,5 +1).

(=t (=t

Foreachj =0,1,...,n,7; — P,

For(=1,0<T,0++) 7“](._'5'%) — p,(;t"'[’) with & such that

Stop if the r

—t40—1
rT T el

(0)

J

(—t+£)

(K]

(—t+5)]
[k+1]

s (0 < 7 < n) areall equal. Otherwise, t «— 2 x t.

Duality Principle and marginalisation

Finite number of starting chains more obvious in the finite state space!

Equivalent version based on the simulations of the (n 4 1) chains m® started from all
possible valuesm = 0,...,n

Prop/Slice/Kac’s

1.0

08

n = 495

10

467 Prop/Slice/Kac’s 468

Coupling between chains

Follows from the Be(m + 1,n — m + 1) representation:

a 1 Generate n + 2 iid exponential Exp(1) Vs w1, . . ., Wny2.
S <~ 2 Take

m-+1

= ~ Z wi
=1
p= n+2
-60 -40 -20 o 0.0 0.2 0.4 0.6 0.8 1.0 i—=1

(10000 iterations)
Figure 32: Simulation of n. = 495 iid rv's from .33\ (3.2, 3.2) + .67 A'(1.4, 1.4) and Fxplanation: - Pool of exponentials w; common to all chains

coalescence att = —73.
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Monotonicity & CFTP

Assumption of a partial or total ordering on the states
e Quest: maximal/majorizing and minimal/minorizing elements, Oand 1
e Request: Monotone transitions (Stochastic versus effective)

e Conquest: Run only the chains that start from 0and 1

Reduces the number of chains to examine to 2 (or more) Often delicate to implement in

continuous settings

[Kendall & Mgller, 1999a,b,...]

Works in the 2 component mixture case (thanks to Beta representation trick!)

Prop/Slice/Kac’s

CFTP can be implemented as for k = 2
But (n + 2)(n + 1)/2 different values of (n1, n2, n3) to consider

No obvious monotone structure

469

471
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Case k =3

Gibbs sampler:

1 Generate U1, ..., u, ~ U(0,1).

2 Take

¥ , p1fi(w:)
" ZH (UI = p1fi(xi) + p2fa () +p3f3(-777i)> ’

ny =y {H (“i > oifi(@) +££Ej§ +P8-f3(“))

i=1

n

oI (m - p1f1(xi) 4 p2fo(wi) )}

= pufi(xi) + pafa(ai) + psfa(z:)

andnz =n —ni — no.

3 Generate (p1,p2,p3) ~ D(n1 + 1,n2 + 1,n3 + 1).

Prop/Slice/Kac’s

Towards coupling

Representation of the Dirichlet D(n1 + 1,n2 + 1,3 + 1) distribution : if
Wity .- - 7u}1(n+1),(U21, N ,(U3(n+1) ~ 51’]9(1) 5

then

ni+1l na+1 ng+l
Doiag Wi Doioy wai Do) wsi
)

3 n;+1 3 PPES I n; 11
j=1 24i=1 Jt j=1 Zsi=1 Ji j=1 £ai=1 Ji
D1 oit1 Wi Dy Doit1 Wit Djeq Daiml W
isaD(n1+1,n2+ 1,n3 4+ 1) rv.

Common pool of 3(n 4 1) exponential rv's.
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Lozenge monotonicity

The image of the triangle
T = {(n1,n2);n1 +n2 < n}

by Gibbs is contained in the lozenge

L={(n1,n2);n; <ni <n1, n2 >0, ng <n—n1—n2 <Nz},
where
n, is min n; over the images of the left border of T
e T3 is the ng coordinate of the image of (0, 0),
e 71 is the nq coordinate of the image of (n, 0),

® ngis min n3 over the images of the diagonal of 7 .

[Hobert & al., 1999]

Prop/Slice/Kac’s 475

30
30

20
20

10

Figure 33: Sample of n = 35 observations from .23N(2.2,1.44) +
62N (1.4,0.49) + .15N (0.6, 0.64)

Prop/Slice/Kac’s 474

Lozenge monotonicity (explained)

For a fixed no,

no+1 ni+1 n—ni—ng+1 ni+1
2 3
P2 _ Z W2 Z wi; and 22— w3; Z Wi
D1 i=1 i=1 p1 i=1 i=1
are both decreasing in 1.
Sois
n —1
;) + T;
mi :ZE wi < [1+P2f2( i) +p3fs( 1)] )
P p1fi(xi)
Prop/Slice/Kac’s 476

Lozenge monotonicity (preserved)

The image of L is contained in
L' = {(m1,m2);m; <mi <m1,me >0, mg < ms <ms},
where
e m, is minni over the images of the left border {n; = n,}
e 71 is max n; over the images of the right border {n1 = 7 }
® Mg is min n3 over the images of the upper border {n3 = @3}

e T3 is max ng of the images of the lower border {n3 = T3}
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N Lozenge monotonicity (completed)

30
/

HERN e Envelope result: generation of the images of all points on the borders of £
. N [Kendall, 1998]

e O(n) complexity versus O(n?) for brute force CFTP

e Checking for coalescence of the borders only : almost perfect !

10
10

e Extension to kK = 4 underway

[Machida, 1999]

o 10 20 30 o 10 20 30
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Interruptable version

o . :

: i : : For impatient users: if we just stop runs that take “too long”, this gives biased results
‘ . mmmmm{ﬂl@m _ S e — Fill's algorithm:

ﬁ }\ \Rﬁ. 1 Choose arbitrary time 1" and set z7 = z

i.x [ [ J 2 Generate X1 _ 1|z, X7 _2|v7_1, ..., Xo|71 from the reversed chain
e e e 3 Generate (U |0, 2], ... [Up|zr—r, 27]

i\ }\\5 }h\,} 4 Begin chains in all states at 7' = 0 and use common Uy, ..., Ur to update all
‘L\ ‘L\ L\J chains

e E E E e e T e e s e T e e e 5 If the chains have coalesced in z by T', accept xq as a draw from 7

Figure 34: n = 63 observations from .12 NV'(1.1,0.49) + .76 \/(3.2,0.25) + § Otherwise begin again, possibly with new "and z.

12N (2.5,0.09)

[Fill, 1996]
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Proof
Need to prove Pr[Xy = z|Cr(z)] = 7(z)
Pr[Xo = z|Cr(2)] = _ KT (z,2)/KT(x,2)
Pr[z — z] Pr[Cr(z)|x — 2] > KT (2,2) /KT (2!, 2)’
> Prlz — 2] Pr[Cr(z)|z" — 2]

Using detailed balance,

Now for every x’

KT (2,2)/ K" (2, 2) = 7(2)/x(2),
Pr[Cr(2)|2" — 2] =

Pr(Cir (=) anda’ — 2] _ Pr{Cr(:)] e
r[Cr(z)and2’ — z]  Pr[Cr(z m(z)/m(z)
Pr[z’ — 2] Prlx’ — 2]’ Pr[Xo = z[Cr(2)] = S (@) /() = ().

and, since Pr[z’ — 2] = KT'(2/, 2),

KT(z,2) Pr[Cr(2)]/ KT (z, 2)
Pr[ Xy =
o =dCr B = S KT a) PO (KT )
Prop/Slice/Kac’s 483 Prop/Slice/Kac’s 484
Suppose
Example 64 —Beta-Binomial—
Choose T' = 3 and X7 = 2. 2 2 2 2

Reversible chain, so /
1 \ 1 1 1
XQ‘X?) =2 ~ BetaBin(2,4,4) /

X1|X2 =1 ~ BetaBin(2,3,5)
Xo|X1 =2 ~ BetaBin(2,4,4)
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Xo =1,

X1=0, X2:]. and X3:2

imply

Uy ~U(0,.417), U, ~ U(.583,.917), Us ~ U(.833,1)

Prop/Slice/Kac’s

9.2 Slice sampling

Remember that slice sampling associated with 7 amounts to simulation from

and u ~ U([0,1])

U({w; m(w) = ur(wo)})

485

487

Prop/Slice/Kac’s

Suppose
Uy € (.278,.417) U, € (.833,.917) Uz > 917

Begin chains in states 0, 1 and 2.

~2

L
.

/)

t=20 t=1 t=2 t=3

The chains coalesce in X3 = 2; so we accept Xo = 1 as a draw from 7.

Prop/Slice/Kac's

Properties

Slice samplers do not require normalising constants
Slice samplers induce a natural order

If 7'('(&)1) < 7'('(&)2)

Ay ={w; 7(w) > ur(wa)} C A1 = {w; 7(w) > ur(wr)}

Slice samplers induce a natural discretization of continuous state space
[Mira, Mgller & Roberts, 2001]
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Slice samplers preserve monotonicity

1 Start from 0 = arg min 7(w) and 1 = arg max 7 (w)
2 Generate U_¢, . . ., Uy
3 Get the successive images of Ofort = =T,...,0

)

4 Check if those are acceptable as successive images of 1
If not, generate the corresponding images

Prop/Slice/Kac’s

Duality principle

Dual marginalization: integrate out the parameters (¢, p) in

n

2,0 | x ~x(0,p) [ [ pe. (i | 6-,)

=1

Easily done in conjugate (exponential) settings.

489
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But slice samplers are real hard to implement: for instance,

n k

U0 T pif(ai| ) > e

i=1j5=1

is impossible to simulate

Prop/Slice/Kac's

Use the slice sampler on the marginal posterior of z
e Finite state space
e Link with Rao—Blackwellisation

e Perfect sampling on z equivalent to perfect sampling on 6

490

492
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Example 65 —Exponential example ( k& = 2, p known)

Joint distribution

n k
Hp(lfz”)(l —pi)Ti A, exp(—As, ;) H )\?ﬁl exp(—A;5;)
i=1

j=1
leads to

T(awg+mno— DTy +ny — 1)
(ﬁo + So)u()Jr'rL() (61 + 51)(%1+n1 ’

z|x~p"(1l—-p™

Prop/Slice/Kac’s

T T T T T T
-30 -25 -20 -15 -10 -5

t

Fixed ng, 40 observations

493 Prop/Slice/Kac's 494

e Closed form computable expression (up to constant)
e Factorises through (10, s ), sufficient statistic
e Maximum 1 and minimum O can be derived

But... slice sampler still difficult to implement

because of number of values of s : (:U)

Still, feasible for small values of n (n < 40)

495 Prop/Slice/Kac's 496

Perfect sampling is possible!

Idea: Use Breyer and Roberts’ (1999) automatic coupling:

If
)y . m(ye) a(z$" lye)
~ T ifuy < — 5%
MO R aWler’) e < 20w )
;Ugt) otherwise.
generate

() ,.(t)
if w, < m(ye) a(z5 |7y )’
JiétJrl) _ Yt t > () qlye|zD) @

mg’) otherwise.
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Theorem In the special case

if (x

if (

(t)
1

(t)
2

) starts from

) starts from

q(ylz) = h(y),

0 = argmin/h,

1 = argmax/h,

the coupling (7) preserves the ordering.

[Now, this is a result from Corcoran and Tweedie!!!]

Prop/Slice/Kac’s

elinond

Coupling history

ooooo

Corresponding likelihoods

497
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Example When state space X’ compact,

use for h the uniform distribution on X’.
Extremal elements 0 and 1 then induced by 7 only.

Implementation: start from arbitrary value for xgo) and keep proposing for

RO

Prop/Slice/Kac's 500

Back to Basics!

When X compact, and 7(z) < 7(1), independent Metropolis—Hasting coupling is

accept-reject , based on uniform proposals
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Reason:

When coupling occurs, .’L’ét) = Yy,

7(yt) m(y:)
(1) max m

and therefore the chain is in stationnary regime at coupling time.

This extends to the general case, with accept—reject based on proposal h.

Prop/Slice/Kac’s 503

9.3 Kacs' formula

Consider two Markov kernels K7 and Ko

What of the mixture
K3 =pKi+(1—-p)Ky?

Prop/Slice/Kac's 502

In this case, the accept—reject algorithm could have been conceived independently
from perfect sampling (?)
while Fill's (1998) algorithm is an accept-reject algorithm in disguise, but it could not

have been conceived independently from perfect sampling

Prop/Slice/Kac’s 504

Stability (1)

If K1 and K5 are recurrent kernels, the mixture kernel K3 is recurrent.
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Stationary measure
Stability (2)

If 1y = 7o and K3 is positive recurrent, 71 is its stationary distribution.
If K1 and K5 define positive recurrent chains with the same potential

function V/, thatis, there existasmallset C, A < 1,V > 1 and V bounded Otherwise...
on C such that Special case: K is aniid kernel 1. Then
Ek, [V (z)ly] = AV (y) + blc(y)

then the mixture kernel K3 is also positive recurrent.

Kg = P71 + (1 —p)KQ

Prop/Slice/Kac’s 507 Prop/Slice/Kac’s 508

Special special case: K3 is uniformly ergodic:

K3($>y) ZEV(Z/)7 VIEX>
No assumption on K5 (it can even be transient!) but, still, Mixture decomposition:
Theorem 3 K3 is positive recurrent with stationary distribution Ks(zy) = ev(y)+(1—2) K (x,ly)_— ev(y)
+o0 €
T3 = Z(l —p)ip Pimy = ev(y) + (1 —e)Ka(z,y)
i=0

Representation of the stationary distribution:

when Piﬂ'l is the transform of 71 under 7 transitions using K.
2 +o0

Ze(l —&)'Pyv,

1=0

where P; is associated with Ko
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1 Simulate g ~ v, w ~ Geo(e).

2 Run the transition 11 ~ Ko(zt,y) t =0, ,w —1,
and take x,.

[Murdoch and Green, 1998]

Prop/Slice/Kac’s

Introduction of the split chain * = {(X,,, ;) }», on X x {0, 1}, with transition
kernel
+(1—e)(1-0)] Ks(x, A c
P'[(x,0), A x §] = (1=2)(1 =) Ks(w,A) = ¢

[0+ (1 — e)(1 — 6)] Koz, A) z€C

and

6+ (1—¢e)(1—-0)]Kz(x,A) x¢C

P'[(x,1), A x 8] =
€6 + (1 — &) (1 — 8)] v(A) zeC

where § € {0, 1} (renewal indicator)
[Athreya and Ney, 1984]

Then o := C' X {1} is an accessible atom

509
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General case

Minorizing condition

Ks(x,y) > ev(y)lc(z) [MNRZ]

Splitting decomposition

K3(m>y)

{evtn) + 1 -0 BEDZO 1) 4 Koo ien 0

{ev(y) + (1 — &) Ka(z,y) He(y) + Ks(x, y)loe(y)

[Nummelin, 1984]

K is the depleted measure of K3

Prop/Slice/Kac’s

1 Simulate X,, ~ K3(2xp,_1, )

2 Simulate d,,—1 conditional on (Z,,—1, Z,)

EV(Tn
Pr(énfl = 1|$n717$n) = [(3(;(;(1):[‘)
n—1 n

[Mykland, Tierney and Yu, 1995]
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General Mixture Representation

Let 7, be the first return time to «

To =min{n >1:(X,,d,) € a} .

and

Pr(-) and E,(-),

[0
probability and expectation conditional on (X, dp) € o
Tail renewal time T'™*

Pr(T* = 1) = PrEiT(aT j £

If the chain is recurrent, E(Y(Ta) < 0

513
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Theorem 4 |If (Xn)n is p-irreducible, aperiodic, and Harris recurrent with
invariant probability distribution 7, with a minorization condition [MNRZ], then

m(A) = i Pr(N, € A)Pr(T" =t)

where N; is equal in distribution to X given X ~ v(-) and given no
regenerations before time ¢.
Follows from Kac'’s theorem

1

— >
m(A) E () ; Pro(Xy € A, 74 > t)

Can be extended to stationary measures



