Milagro: A Wide Field of View Gamma-Ray Telescope

Vlasios Vasileiou University of Maryland

Outline

- Milagro
- Simulation of Milagro
 - Photomultiplier Tube Tests
 - Performance of the simulation
- Gamma-Ray Bursts
 - Milagro's Blind GRB-Search

Milagro: A TeV Gamma-Ray Observatory

- TeV Gamma-Ray Observatory
- Wide field of view (2 sr) & large duty factor (>90 %)
 - Good for observing transients and extended objects and for unbiased complete sky surveys
- Located at the Jemez Mountains near Los Alamos, NM
 - 2630 m altitude
 - 750 g/cm² overburden (73% of Atmosphere)
- ♦ Trigger rate ~1700Hz
 - Almost all triggers from hadron-induced showers
- Two components -> Central Pond + Outrigger Array

The Central Pond

The Outrigger Array

Outrigger Array

- 175 Water tanks spread over 40,000 m²
- Contain water and a downwards facing PMT
- Added 2003
- Improved
 - ✤ Effective area
 - ✤ Angular resolution
 - Energy resolution
 - ✤ Background rejection

Milagro's Performance

- Angular reconstruction accuracy 0.3°-1.4°
- Most of the effective area at TeV energies
 - ∼10³ m² @ 1 TeV
 - ~10 m² @ 100 GeV
- Median energy of triggers ~few TeV (for a Crab-like source)
- Improvement in sensitivity from Gamma-Hadron discrimination + event weighting techniques ~2.5
- Crab-like source
 - Milagro ~8σ/sqrt(year)

Simulation of the Milagro Detector

- CORSIKA
 - Program for detailed simulation of Extensive Air Showers (EAS) initiated by high energy cosmic-ray particles.
 - Provide information about EAS particles at Milagro's altitude
- Physics simulation
 - In our energy range, Corsika's physics package is (we believe) accurate
 - EGS4 for EM interactions
 - FLUKA for low energy hadronic interactions (E<80 GeV)
 - EPOS for higher energy hadronic interactions
 - Theory (Parton-Based Gribov-Regge Theory) + experiment (H1, Zeus, RHIC, SPS) driven

Step 2. Simulation of the detector with GEANT4

- Corsika EAS particle information -> Milagro detector simulation
- GEANT4
 - C++ Simulation Toolkit from CERN
 - Written for the needs of the LHC
 - Powerful, transparent and easily extendable
 - We've debugged and modified it to match our simulation needs (speed + accuracy).
 - *Physics simulation in GEANT4 overall the best available in HEP.*

Step 2. Simulation of the detector with GEANT4

- We found that, correct simulation of the scattering & absorption of Cherenkov photons is essential for the agreement between MC and data
 - Surface reflectivities
 - From experimental measurements, theory, (or guesstimates)
 - Water properties
 - Absorption length by our periodic measurements
 - Scattering
 - Rayleigh (not dominant)
 - *Mie (forward scattering, not included in GEANT4)*
 - Extended GEANT4 physics to include Miescattering of optical photons in the water.

PMT Model

- Full optical simulation of the PMTs
- Reflections/refractions/absorptions are fully simulated for all parts of the PMT
- Using the complex refractive index of the photocathode material and its thickness we can calculate the photocathode absorptivity and reflectivity vs energy and incidence angle.
 - Gives correct detection efficiency vs incidence angle
 - Predicts the increased detection efficiency caused by reflections by the internal parts of the PMT towards the inside surface of the photocathode
- Model adopted from GLG4SIM (Generic Liquid GEANT4 SIMulation) http://neutrino.phys.ksu.edu/~GLG4sim/

Visualization of an event

- 0
- 1 TeV proton from zenith Green -> Cherenkov photons (1/300 thinned)
- *Red* -> *e*-, *e*+ ۵
- Blue -> gammas White -> mu-, mu+ ۲
- ۵

Step 3. Preparing the MC data for analysis

Add noise

- 1 PE noise (dark noise, light leaks etc)
- Overlay hits produced by low energy (non triggering showers) that come in time with the shower that caused the trigger
- Match scaler rates and distribution of the size of hits when non triggered
- Apply Photocathode-Uniformity Corrections

Photocathode-Uniformity Tests

- Hamamatsu R5912 Photomultiplier tube
- 8" semi-spherical bialkali photocathode

- Illuminated various spots on the surface of the photocathode
- Examined PMT properties for each illumination point
 - PMT Efficiency
 - DC light source -> PMT -> Scaler
 - PMT Gain
 - Pulsed light source -> PMT -> Oscilloscope

Gain vs illumination position

Detection efficiency vs illumination position

Step 3. Preparing the MC data for analysis

- The PMT tests showed that the efficiency & gain of the PMT are lower than what we thought
- Effect caused by non-uniformities in the collection efficiency
- Apply these effects to the MC results
 - *Reject PEs based on a position-dependent detection efficiency*
 - Sample a pulse charge for each PE based on the positiondependent pulse-height distributions
- Result -> PMT efficiency reduced
 - Better agreement between MC and data
 - Number of muons produced by the PMTs of the muon layer now agrees with the data
 - PE-scale changed -> Various distributions that depend on the size of the hits changed

Step 3. Preparing the MC data for analysis

- Simulate the electronics
- MC Data ready for analysis using the same algorithms as the ones used for the experimental data.

The verdict...

- Does the simulation match the data?
- Yes and no...
- The data doesn't match the data..
- Over the 7 years Milagro has been collecting data we had many changes:
 - Baffles, broken calibrations, water quality, pond-surface freezing, air accumulating under the cover, PMTs dying, triggering system problems
 - Data properties changing with time

Dealing with the variability of Milagro data

- Solution
 - Identified which experimental parameters changed over time and quantified their influence on the data through simulations
 - Broke up the Milagro data in "epochs"
 - Started using the appropriate simulation configuration for each epoch
 - Applied "rescaling factors" to the data of each epoch to make them more uniform

Simulation performance

- Result
 - Data now, overall more stable over time and especially in the same epoch
 - There is good or excellent agreement between most of the predictions of the MC and the data
 - Agreement between MC and data depends on our knowledge of the state of the experiment -> best agreement with the data of the last years
 - The variables that are harder to match are the ones that change the most in the data -> the ones that are most sensitive to experimental conditions
 - For future analyses we'll try to use the variables we know are stable

Gamma-Hadron Discrimination Parameter

- A4 parameter shows how gamma-like an event is
- Fraction of events passing an A4 cut

Not enough statistics

Point Spread Function

Simulation Performance

- MC gamma-ray rate from the Crab agrees to a factor of 10%
- MC cosmic-ray rate agrees to a factor of ~10%
- Excellent or very good agreement
 - Number of PMTs hit per event
 - Number of Photons detected per event
 - Distribution of the reconstructed core locations
 - Number of photoelectrons a muon creates in the PMTs of the bottom layer
 - Distribution of the reconstructed zenith angles or core locations
 - etc

Gamma-Ray Bursts (and a blind search for them with Milagro)

Gamma-Ray Bursts

- The most bright events in the gamma-ray sky (10⁻⁸ 10⁻³ ergs/cm²)
- Cosmological distances
- Non-thermal spectra
- Prompt emission
 - Duration 10ms to >100sec
 - Bimodal distribution
 - Primarily observed in the keV MeV range
- Followed by an afterglow
 - Exponential decrease in intensity (t⁻¹,t⁻²)
 - Observed in soft X-rays, visible, IR and optical wavelengths

Duration of GRBs from BATSE

- T₉₀ distribution of BATSE bursts
- Bimodal distribution, implies two different kinds of progenitors.

*T90 is the duration encompassing the 5th to the 95th percentiles of the total counts in the energy range 20–2000 keV.

Isotropy of GRBs

- Galactic vs Extra-Galactic
- BATSE found that GRBs are distributed isotropically over the sky.
- A galactic origin for GRBs would likely result in a clustering about the galactic plane.
- Still doesn't exclude an extended galactic halo

2704 BATSE Gamma-Ray Bursts

Meegan et al., Nature 1992

Distance and Energetics

These fluences and redshifts imply an isotropic energy release $E_{iso} \sim 10^{51} - 10^{54}$ ergs from GRBs

Beaming corrections to emitted energy

- There are many reasons to believe that GRB emission is beamed (relativistic beaming, GRB emission mechanism)
- Beaming angle can be measured by breaks in the afterglow lightcurves
- After correcting for the case of a beamed geometry, isotropic energy released ~5*10⁵⁰ergs
- GRB emission now comparable with the emission from supernovae

D. A. Frail. Astro-ph/0311301

BURSTING OUT

HE & VHE Emission from GRBs

• Leptonic origin

- Inverse Compton scattering of synchrotron photons (SSC), X-ray and UV-flare photons and photons from reverse shocks
- Hadronic origin
 - If GRBs create UHECR, then the energetic protons might emit energetic photons via synchrotron emission.
 - 10²⁰eV protons --> up to 300GeV photons
 - π_0 decay
 - π_o production from py or pn collisions in the prompt phase, and subsequent decay of the π_o

High Energy Emission from GRBs

- High Energy Observations
 - EGRET: 0.03-30GeV range
 - Detected photons above 100MeV from 4 GRBs
 - GRB940217: 2 photons at ~3GeV, 1 photon at 18GeV, 90 mins after the prompt emission

Hurley et al., 1994

Signs of VHE Emission

- Combined BATSE and EGRET data from GRB941017
- A distinct high energy component extending to at least 200MeV with no sign of a cutoff.
- Component could possibly continue to GeV energies

Gonzalez, et al., Nature 424, 847 (2003)

Milagrito

 Milagrito: Observation of the BATSE GRB970417 at GeV energies with 3σ significance.

Events detected by Milagrito

Atkins et al., 2000

Absorption of VHE Photons

- Absorption at the source
 - GRB Fireball very dense --> opaque to higher energy photons
 - $\gamma\gamma \rightarrow e^+e^-$ dominates
 - Very high bulk Lorentz factors can lower the opacity

Absorption of VHE Photons

- Absorption from the Infrared portion of the Extra-Galactic Background Light (EBL)
 - $\gamma_{VHE} + \gamma_{IR} >e^-e^+$
 - Limits the "volume" of the observable universe in GeV-TeV energies

Effects of IR Absorption

Why Study the Very High Enery Emission?

- Resolve the contribution of the VHE gamma-ray emission to the total emitted energy
- Constrain the hadronic component of the GRB fireball and the potential for emission of ultra high energy Cosmic Rays and Neutrinoes
- Provide unique info about the compactness, the emission region size, the dynamics (Lorentz factors)
- Understand the progenitor in order to understand the local environment that hosts GRB population
- Probe the EBL at high redshifts -> galaxy formation and evolution history
- Tests of Lorentz invariance

The Blind Search for Gamma-Ray Bursts

Number of events Milagro can detect from a GRB

GRB Searches with Milagro

- Triggered Searches -> Search in coincidence with a trigger from an external instrument
 - *E*>100 GeV -> Using reconstructed events (blind or triggered)
 - *E*<100 GeV -> Using the scalers (hit rates of individual PMTs)
- Blind search (this one)
 - Search the entire Milagro data set for a significant excess above the background.
 - Unknowns: location, start time, and duration.
 - This search is also sensitive to any kind of transient VHE emission (primordial black hole evaporation, soft gamma-ray repeaters etc.)
 - Can be used to trigger other detectors
 - A version of this search analyzes the online data in real time and is set to send GCN alerts in case an interesting event is detected.

Search algorithm

- Search blindly over multiple durations (160ms to 6 mins), start time and location.
- For the 1_{st} duration , say T_{DUR}
 - Start at $t=t_o$
 - Make a finely binned (0.2° bins) skymap (RA-Dec) with the events from $t_{start} = t_0$ to $t_{stop} = t_0 + T_{DUR}$
 - Scan a "search bin" over that map
 - Calculate expected # of background events
 - Count events in the bin
 - Calculate Poisson probability that the measured number of events is just a fluctuation of the background
 - Move bin by 0.6° and repeat until all the map is scanned
 - Create a new map with t_{start} and t_{stop} advanced by 0.1* T_{DUR}
- Do the same for all durations
- Do the same for all times

Search Details

- Optimizations
 - Sensitivity
 - Optimize bin size vs duration and zenith angle
 - Speed
 - Sample more finely around a location in the sky (every 0.2° instead of every 0.6°) in case a low probability is found
 - An alternative search algorithm for very low durations (dur<0.2sec)
 - Instead of scanning the search bin all over each skymap,
 - Make a table of the locations where more than 2 events are present
 - Evaluate just these locations
 - Speed optimizations help with sensitivity too because we can afford the time to search more finely in the duration space.

Trials and Probability Thresholds

- Large data set + oversampling \rightarrow large number of trials
 - For the 1 second search this yields $\sim 10^{13}$ trials per year.
 - Use data to find the effective number of trials and then adjust the detection thresholds.

Pre-trials probability for a 5σ detection

Calculation includes number of trials from sampling in space/time, total duration searched and number of durations searched

Loss of sensitivity due to the big number of trials

Ratio of events required for a 5σ detection 99% of the time

Optimum bin in the Gaussian regime

• Define N_{Bin} the number of events in a bin, \hat{N}_{BG} the expected number of events in that bin, N_s and N_{BG} the actual number of signal and background events in that bin and S the significance of that search.

$$\mathbf{S} \equiv \frac{N_{Bin} - \hat{N}_{BG}}{\sigma(\hat{N}_{BG})} = \frac{(N_S + N_{BG}) - \hat{N}_{BG}}{\sigma(\hat{N}_{BG})} \simeq \frac{N_S + \hat{N}_{BG} - \hat{N}_{BG}}{\sqrt{\hat{N}_{BG}}} = \frac{N_S}{\sqrt{\hat{N}_{BG}}}$$

- Say we apply a cut or a change in the search method that introduces some efficiency of keeping the background (Eff_{BG}) and signal (Eff_S) events.
- The new significance will be:

$$\mathbf{S}' = \frac{N_S \cdot Eff_S}{\sqrt{\hat{N}_{BG}} \cdot Eff_{BG}} = \frac{N_S}{\sqrt{\hat{N}_{BG}}} \cdot \frac{Eff_S}{\sqrt{Eff_{BG}}} = \mathbf{S} \cdot \frac{Eff_S}{\sqrt{Eff_{BG}}}$$

• To find the optimum cut or search configuration we maximize the ratio

Optimum bin size in the Gaussian regime

 In this case Eff_{BG}(w) is proportional to the area of the bin and Eff_S(w) comes from the point spread function of the detector.

Optimum bin in the Poisson regime

- For small statistics (shorter durations) Gaussian statistics cannot be used
 - The above equations cannot be applied
- Use Poisson statistics to calculate the significance or the probability corresponding to a measurement
 - Optimize the bin size by finding the one that minimizes the chance probability P_c
 - You can always go back and calculate the significance from the probability:

$$P_c(n) = \int_n^\infty \frac{dy}{\sqrt{2\pi}} \exp\left(\frac{-y^2}{2}\right)$$
$$n \simeq \sqrt{-2 * \ln(P_C)}$$

Optimizing the bin size

0.3sec duration, 15°-30° zenith angle,

Improvement in Detection Probability

Detection probabilities for t=0.3sec

Optimum bin size

Improvement in sensitivity

- Searched 4 years of Milagro data, (5/15/2003) to 54234 (5/14/2007)
 - Fixed bin size
 - No significant events have been detected.
 - Results presented at the ICRC
- New search underway with optimized bin size
 - Finishing in about a week
- Generate meaningful physics results
 - Set upper limits on the VHE emission from GRBs
 - Analyze any significant events detected

From Milagro to GLAST

GRBs

- 200 MeV 300 GeV emission (answer questions of slide #42)
- Very distant GRBs (z>~6)
 - Trace evolution of the universe (SFR, metallicity, intergalactic medium, IR background..)
- Diffuse Galactic Gamma-Ray Emission
 - Measurements + GALPROP
 - Understand diffusion and acceleration of cosmic rays in our galaxy
 - Measure density of gas and radiation fields in various locations
 - Obtain a background model for point-source searches
 - Let us measure the extra-galactic diffuse gamma-ray emission
 - Origin of the GeV excess seen by EGRET

From Milagro to GLAST

- Diffuse Extra-Galactic Gamma-Ray Emission
 - Resolve thousands of AGNs and other point sources -> constrain their contribution to the extra-galactic diffuse emission
 - Try to find the sources of the remaining truly diffuse component
 - WIMPs? Primordial-Black Holes (PBH)?
 - Excellent energy resolution -> spectral signatures
- Dark Matter
 - WIMPs, PBH
 - Anyone care about axions?
 - Recent papers propose methods of searching for axion-like particles in the gamma-ray data
 - Axion-photon inter-conversions can increase the transparency of the universe to GeV-TeV gamma-rays (test by examining the GeV cutoffs of very distant sources)
 - Axion-photon inter-conversions can supress finite energy bands in the MeV-GeV spectra of certain sources (AGNs & radiogalaxies)

Cosmic Gamma-Ray Detectors

High Sensitivity HESS, MAGIC, CANGAROO, VERITAS

Energy range GeV-TeV Large Effective Area (>10⁴ m²) Excellent Background Rejection (>99%) Excellent Angular Resolution (<0.1°) Good Energy Resolution (~20%) Small Duty Cycle (10%) & Aperture (0.003sr)

'High Resolution Energy Spectra
'High Quality Studies of Known Sources
'Deep Surveys of Limited Regions of Sky
'Source Location and Morphology

Low Energy Threshold EGRET/LAT

Energy range MeV - GeV Small Effective Area "Background Free" Moderate Angular Resolution Excellent Energy Resolution (~10%) Large Duty Cycle & Aperture

'Unbiased Complete Sky Survey
 'AGN Physics
 'Transients (GRBs, AGN's)

Large Aperture/High Duty Cycle Milagro, Tibet, ARGO, HAWC(?)

Energy Range GeV-TeV Large Effective Area Good Background Rejection (>90%) Good Angular Resolution (0.3° - 0.7°) Energy Resolution (~50%) Large Duty Cycle (>90%) and Aperture (2 sr)

·Unbiased Complete Sky Survey

Extended sources

Transients (GRB's, AGNs)

'Solar physics/space weather

Fluence Sensitivity

- Integrated fluence from 50GeV-100TeV
- For Milagro, this the fluence that reaches the earth (post IR absorption)
- If the GeV-TeV fluence from a nearby burst is comparable to the keV-MeV fluence of BATSE bursts, Milagro should detect the event

Optimizing the bin size

Medium Scale Anisotropy of the TeV Sky

