Amas Processing Status

J.E Campagne (LAL) 3/2/12-Meudon

Data proc. Status

- Calibrator sources analysis
- Abellxyz: zoom freq. band for HI signal
- Noise: introduction to A.S Torrento's talk

Data

- 500 cycles ON-OFF Abell85
- 240 cycles ON-OFF Abell2440
- 900 cycles ON-OFF Abell1205
-Few 3C161, 3C273, NGC4383 runs both ON-OFF \& DR
1 cycle ON-OFF 2 min total: $30 \mathrm{sec} \times 30 \%$ ON $+30 \mathrm{sec} \times 30 \%$ OFF 1 cycle DR ~3min total: 170 sec $\times 30 \% \times$ corr. fact

Data processing on Irods @ CCIN2P3 (short list)

1. Medjan ov, 5120 BAO paq. ON/Gain or OFF/Gain
2. Mean of 5 medians $=>$ med. spectrum (FITS files)
3. Mean on each cycle
fr, For each cycle (ON-OFF)/OFF_f
4. Result of (ON/G-OFF/G)/(OFF/G) ff
5. $\mathrm{G}=\mathrm{Gain}$ med. Filtered 3 MHz
6. $(\mathrm{OFF} / \mathrm{G}) _\mathrm{f}=(\mathrm{OFF} / \mathrm{Gain})$ med. Filtered 2 MHz
7. For each cycle too < (ON-OFF)/OFF_f >ov. [$\mathrm{v}_{1}, \mathrm{v}_{2}$]

Limitation due to batch queue parameters although we are using LONG \& HUGE ! In particular: median filtering limited ~ 5120 paq; cycles with 170 sec (Drift) are the maximum but for ON-OFF it could be non-particable as then we should split the run into individual cycles and we are limited by <20 simultaneous jobs accessing Irods.

Caljbrator Sources 3C273, 3C261, NGC4383

3C161 Drift Scan

158451.171 \& 158452.171

Datía

- 2 runs 2011-12-09
-3C161 : 0:57:21 start
03 cycles/4 available 2-4
-3C161B : 1:11:50
07 cycles/ 9 available 3-9
O 1 cycle $=170$ sec ON-like
- Add the images time-freq. and use the first 30 sec as " 0 "
- No use of DAB

Inage time-Freg.

Peak int. \& Tsys variations: 3C161B

Timing: 8.22kHz

Spectra integrated during the FWHM of the drift.

Differences wrt the 3C273 spectra Polarization?

Callibration

$$
\left(I_{\max }^{\text {Pol } 1}+I_{\max }^{\text {Pol } 2}\right)(a . u) \times C_{\text {mean polar }}=I_{\text {tot }}(J y)
$$

3% from litt. Meas.
(*): be careful this is to be applied to the SUM of the 2 polarizations, not the MEAN

3C273-2011/12/09 ON/OFF \& Drift

158461.171 \& 158462.171

(ON-OFF)/OFF-filtered

plot Raw (ON-OFF)/OFF 3 c 27313 cycles, Ch 0 (blue) Ch 1 (red)

13 cycles 30sec each (30\% eff.)

Drift Scan: I(time, frequency)

Drift Scan: time evolution

2 cycles $170 \sec (*)$ (30\% eff.)
"OFF" done with the first 30 sec

Mean of the band [1405,1415]MHz

Difit Scan: time evolution

3C273DR Drift Scan [1405,1415]MHz all cycles Ch 0 (blue) Ch 1 (red)

Drifit Scan: Frequency

Mean over the time FWHM (absolute value not to be compared to ON-OFF)

Same behavior as ON-OFF

```
-Bridle et al., 1972: I(1400 MHz) : 38.84 (0.70) Jy
- Kühr et al., 1981 & NED
Freq.(MHz) Flux (Jy)
1400 41.28 1.23 Witzel et al. 1971
1400 46.30 2.30 Kellerman et al. }196
1410 45.17 1.07 Wills 1975
1410 MHz 42.00 ... Jy -> Wright et al. 1990, Parkes
1400 MHz 45.0 +/- 5 % Jy -> PAULINY-TOTH et al., }196
1400 MHz 39.62 土 0.38 Jy -> idem
1.4 GHz (ATCA) 35.82 ... Jy -> Tingay et al., 2003, PASJ
1.40 GHz 50100 ...milliJy -> White et al., 1992, 300ft, -> Condon et al. 1985,1986
1.4GHz 54992.1 土 1900.3 milliJy -> Condon et al. 1998, NVSS
```


Our measurement : ~2 x 2.62 au x $11.3 \mathrm{Jy} / \mathrm{au} \sim 59.2 \mathrm{Jy}$

 3C161```
NVSS: 3C273 (levs \(=+/-1,1.4,2,2.8,4 \ldots \mathrm{mJy} / \mathrm{b})\)
```



## NGC4383 ON-OFF

## SCA156855.171 <br> Date 2011-10-22

Cycles 1-15 foreseen but 12-15 only !

## Gains cycle \#13



Gains different shape as I was expecting. But confirmed by Ana that they have changed since $7^{\text {th }}$ July...


## Continuum \& line

## Zoom of HI line

## Continuum: ~ $44.3 \pm 4.1 \mathrm{mJy}$ HI Line:

- width $\sim 213 \mathrm{~km} / \mathrm{s} \sim 1 \mathrm{MHz}$
- int. $48.4 \pm 5.1 \mathrm{Jy}$ km/s ~230mJy
A. Chung et al, VLA IMAGING OF VIRGO SPIRALS IN ATOMIC GAS (VIVA). I., The Astronomical Journal, 138:1741-1816, 2009 December THE ATLAS AND THE Hi PROPERTIES


OK


## The HII line intensity

Integral in the range [1412-1413] MHz

$$
\begin{aligned}
\int H I(\nu) d \nu & =2_{\text {polar }} \times\left(\sum_{i}\left(S_{i}-\text { Conti }_{i}\right)\right) \Delta \nu \\
& =2 \times(447-175) 10^{-3}[a . u] \times 3010^{-3}[\mathrm{MHz}] \times 213[\mathrm{~km} / \mathrm{s} / \mathrm{MHz}] \times C_{\text {mean polar }} \\
& =3.48[a . u . \mathrm{km} / \mathrm{s}] \times C_{\text {mean polar }} \\
& =48.4 \pm 5.1[\mathrm{Jy} . \mathrm{km} / \mathrm{s}]
\end{aligned}
$$

Then

$$
C_{\text {mean polar }}=13.9 \pm 1.5[\mathrm{Jy} / \mathrm{a} . \mathrm{u}]
$$

To be compared to $11.3 \mathrm{Jy} / \mathrm{au}$

Or

# NGC4383 Drift Scan 

## SCA157756.171 <br> Date 2011-11-19

Cycles 2-15

## (I-OFF)/OFF

## OFF/Gain

NGC4383DR Drift Scan $[1405,1415] M H z$ all cycles Ch 0 (blue) Ch 1 ( $r$


NGC4383DR Drift Scan $[1405,1415] \mathrm{MHz}$ all cycles Ch 0 (blue) Ch 1 (


## Continuum evolution



## HI Line evolution



## 3C161

11.3Jy/au $2 \times 810^{-3}(\mathrm{au})=(181 \pm 5) \mathrm{mJy}$ to be compared to $(230 \pm 24 \mathrm{~m}) \mathrm{Jy}$

## Summary

」 3C161 @ 1410MHz gives 11,3 $\pm 0,3 \mathrm{Jy} / \mathrm{au}$
, Overestimation of 3 C 273 continuum
, Underestimation of HI NGC4383

- Close to Ch 1 DAB (Est) calibrated thanks to PKS1127-14 WIBAR DAQ.
- How to calibrate another freq. although the BAO spectra are quite stable in freq.


## Abell|85, 2440, 1205 zoom on HI

## Abell 1205: DAQ stability



## Abel 1205



## Abel|2440



Raw ON/OFF abell2440 ch 0 (blue) Ch 1 (red) 210cycles


Raw OFF/OFF abell2440 Ch 0 (blue) Ch 1 (red) 210cycles


## Abell 85

Raw ON/OFF abell85 Ch 0 (blue) Ch 1 (red) 500cycles




Noise: introduction

## Zoom of the Abell 85 normalized spectra obtained with 500 cycles

## Ch. 0 (On \& Off)/Off_filtered

Abell85 500cycles Ch0 Off/Off_f (blue) On/Off_f (cyan)


## Ch. 1 (On \& Off)/Off_filtered

Abell85 500cycles Ch1 Off/Off_f (red) On/Off_f (orange)


## Some facts

The large oscillations are visible with only few data taking < 1 min .
The small ones need summation so normalized spectra are the gain change... The noises are present on all data: Abell, 3C, NGC.

- The 500 kHz noise was in fact present since Juil. 2010 in the UGC4358 on non normalized spectra for both channels.


Figure 9. Baseline standard deviation as a function of number of cycles per mean value (see text), for the ON-OFF signal integrated in the HI-line side-bands $([1418,1419] \cup[1422,1423] \mathrm{MHz})($ left $)$ and the RFI-protected band $[1400,1420]$ MHz.

Extracted from Abell1205 MEMO 23/11/11

## Data processing on Irods @ CCIN2P3

1. Medfian ov, 5120 BAO paq. ON/Gain or OFF/Gain
2. Mean of 5 medians $=>$ med. spectrum (FITS files)
3. Mean on each cycle
4. For each cycle (ON-OFF)/OFF_f
5. Result of (ON/G-OFF/G)/(OFF/G) $f$
6. $\mathrm{G}=\mathrm{Gain}$ med. Filtered 3 MHz
7. $(\mathrm{OFF} / \mathrm{G}) \_f=$ (OFF/Gain) med. Filtered 2 MHz
8. For each cycle too < (ON-OFF)/OFF_f >ov. [ $\mathrm{v}_{1}, \mathrm{v}_{2}$ ]

## Sigma

## Estis)ation

1. <ON/Gain> $(v) \sim<O F F / G a i n>(v) \sim 1$ (no signal \& def.)
2. О[OFF/OFF_f] $\ll$ [ON/OFF_f] (at leats it is a fact)
3. $\sigma_{\text {med }}=$ med/(ln2 $\left.\sqrt{ } \mathrm{N}_{\mathrm{paq}}\right)$ and med[ON/Gain] ~ med[OFF/Gain] $\sim 1$

$$
\begin{aligned}
& \sigma \approx \frac{\sqrt{2}}{\ln 2} \times \frac{1}{\sqrt{N_{\text {med } / \text { medspec }} \times N_{\text {medspec/ cycle }} \times N_{\text {pad/med }} \times \Delta f}} \\
& 1 \text { cycle }
\end{aligned}
$$

$\sigma(1$ cycle $) \propto 1 / \sqrt{ } \Delta f$ and $\sigma(n$ cycles $) \propto \sigma(1) / \sqrt{n}$

## Evolution of sigma computation

- The sigma may be affected by the noise (see Ana's talk)
$\checkmark$ To avoid artifact we use now the inter quartile range IQR normalized

$$
\sigma \equiv \frac{Q_{3}-Q_{1}}{1.34898}
$$



IQR for Normal dist. with $\sigma=1$

