MEMO

Authors: J.E Campagne. A.S. Torrentó

Nançay/Amas/4.04.12

Diffusion : R. Ansari, P. Colom, D. Charlet, E. Gérard, Ch. Magneville, J. M. Martin, M. Moniez, J. Pezzani, C. Dumez-Viou

Objet: Electronic noises in the BAO spectra in the protected band [1400, 1427] MHz during the data taking from April 2011 to January 2012.

1 Introduction

We look in detail at the protected band [1400, 1427] MHz to investigate the presence of RFIs (see also ref. Nançay/Amas/16.03.12). We make use of all the statistics obtained for Abell1205 cluster with the BAO electronics, i.e. 1216 cycles from April 2011 to January 2012.

2 Spectra in the [1400, 1427] MHz band

We show in Error! Reference source not found. and Figure 2 the ON/OFF filt and OFF/OFF filt spectra averaged over 1045^{1} cycles for Ch 0 and Ch1, respectively.

Figure 1. ON/OFF filt $($ cyan) and OFF/OFF filt (blue) spectra for $\mathbf{C h} 0$.

[^0]

Figure 2. ON/OFF filt (orange) and OFF/OFF filt (red) spectra for Ch1.

We find RFI lines at the following frequencies:

- 1400 MHz : very thin RFI which we have included in the group of the electronic RFI at $1250+\mathrm{k}^{*} 25 \mathrm{MHz}$. The peak is at $1.5 \mathrm{a} . \mathrm{u}$. (Ch0) and $1.85 \mathrm{a} . \mathrm{u}$. (Ch1) (out of the scale of the plot).
- 1406 MHz : very thin RFI in Ch0, but wide ($1405-1408 \mathrm{MHz}$) and structured in Ch1 with a peak at 1.92 a.u. (out of the scale of the plot).
- 1410 MHz : extremely small line in Ch 0 (almost not visible), it is thin and small in Ch1.
- 1420 MHz : very small thin line only present in Ch1.
- 1420.4 MHz: galactic HI line.
- 1421.38 MHz : very small thin line.
- 1425 MHz : very thin RFI which we have included in the group of the electronic RFI at $1250+\mathrm{k} * 25 \mathrm{MHz}$. It is more important in Ch1 than in Ch0.
- $1427.5-1428.7 \mathrm{MHz}$: group of 3 lines out of the protected band. The first line at 1427.8 MHz is more powerful in the ON spectrum than in the OFF, and it has the same "M" shape as the galactic HI line. The two other lines are thin and they are located at 1428.16 and 1428.56 MHz .

3 Time evolution of line power

In this section we will show the time evolution (vs. cycle number) of the integrated power of all the lines, except the HI galactic line. We indicate in Table 1 the frequency bands where this integration has been performed.

$v_{\text {line }}(\mathrm{MHz})$	$v_{\min }(\mathrm{MHz})$	$v_{\max }(\mathrm{MHz})$
1400	1399	1401
1406	1405	1408
1410	1409.85	1410.25
1420	1419.5	1420.05
1421.38	1421.3	1421.45
1425	1424	1426
1427.8	1427.5	1428.05
1428.16	1428.05	1428.3
1428.56	1428.45	1428.65

Table 1. Frequency bands considered to calculate the integrated power of the different lines.

In the evolution plots, we have taken into account the so-called "bad period" which includes 171 cycles from $7^{\text {th }}$ Aug to $15^{\text {th }}$ Sep 2011. Two phases can be distinguished:

- From $7^{\text {th }}$ Aug to $5^{\text {th }}$ Sep 2011 (from ~ 600 to 730 cycle): the solar noon happens at $\pm 1^{\mathrm{h}}$ from the beginning of the observations, which translates into an increase of the power in both channels at all frequencies.
- From $12^{\text {th }}$ to $15^{\text {th }}$ Sep 2011 (from ~ 730 to 770 cycles): the system has a big problem, still to be determined.
It is also worth mentioning that there is a stability worsening at the end of the data taking (cycle number $>1068,26^{\text {th }}$ Dec 2011) which is also seen in all frequency bands. Its origin has not been identified yet.

Last caution: the dates quoted hereafter to indicate changes on the line integrated power are approximate, as they are restricted to the observations of Abell1205 cluster.

3.1 RFI in the protected band

3.1.1 1400 MHz

We show in Figure 3 a zoom of the spectrum around this line for Ch0 (left) and Ch1 (right).

Figure 3. RFI line at 1400 MHz in ch 0 (left) and Ch1 (right).

In Figure 4 we show the time evolution of the integrated power of this line. Remember that the steady increase of the signal at ~ 700 cycle is seen in all frequency bands considered, not only in RFI lines, and it corresponds to the solar noon happening $\pm 1^{\text {h }}$ before/after the beginning of the observations.

Until beginning of July 2011 (~ 380 cycle), this line has more power in Ch1 than in Ch0. After this date, it is Ch0 who shows more power than Ch1.

In Ch0, this line shows up from $15^{\text {th }}$ Apr to $2^{\text {nd }}$ May 2011, then it nearly disappears until the $7^{\text {th }}$ Jul 2011, where it reactivates in two distinct periods: $7^{\text {th }}-25^{\text {th }}$ Jul 2011 (from ~ 380 to 550 cycle) and $25^{\text {th }} \mathrm{Jul}-18^{\text {th }}$ Aug 2011 (from ~ 550 to 650 cycle), the first having more mean power than the second. We remark the "disappearance" of the line in this second period, on $22^{\text {nd }}$ Aug 2011.

In Ch1, before July 2011, the power first increases in steps and then makes a dramatic rise on $28^{\text {th }}$ Apr. After this date it decreases continuously until the $8^{\text {th }}$ May 2011 (cycle number ~ 225), after having had a burst on $2^{\text {nd }}$ May 2011. After the $8^{\text {th }}$ May 2011 we find a period where the mean power is smaller than in the previous period. In this case the power varies in steps (i.e. run-basis), and we emphasize the burst on $15^{\text {th }}$ Jun 2011.

After the "bad period" (around ~ 770 cycle), the line remains more or less quiet and it reactivates on $16^{\text {th }}$ Nov 2011 (~ 950 cycle) in both channels. In Ch0 the power increases again on $26^{\text {th }}$ Dec 2011 (~ 1060 cycle).

Figure 4. Integrated power of the $1400-\mathrm{MHz}$ line vs. cycle number.

3.1.2 1406 MHz

We show in Figure 5 a zoom of the spectrum around this line for Ch0 (left) and Ch1 (right).

Figure 5. RFI line at 1406 MHz in Ch 0 (left) and Ch1 (right).

In Figure 6 we plot the time evolution of the integrated power of this line. We see that it is always present in Ch1 and absent in Ch0, except the $17^{\text {th }}$ Oct 2011, where it "jumps" from Ch1 to Ch0 reaching at this channel the same level it had in Ch1. At the beginning of July, the power in Ch1 has stepped up.

Figure 6. Integrated power of the $1406-\mathrm{MHz}$ line vs. cycle number.

3.1.3 $1410 \mathbf{M H z}$

We show in Figure 7 a zoom of the spectrum around this line for Ch0 (left) and Ch1 (right). Remember that this spectrum has been averaged over 1045 cycles, so in Ch 0 the line has almost disappeared. We notice a (smaller) second peak at 1410.12 MHz , but we have not followed its time evolution.

Figure 7. RFI line at 1410 MHz in Ch 0 (left) and Ch1 (right).

In Figure 8 we show the time evolution of the integrated power of the line at 1410 MHz . We observe that this line more stable in Ch1 than in Ch 0 . It shows in both channels an increase in activity at the beginning of the "bad period", from $7^{\text {th }}$ to $18^{\text {th }}$ Aug 2011.

Figure 8. Integrated power of the $1410-\mathrm{MHz}$ line vs. cycle number.

3.1.4 $1420 \mathbf{M H z}$

We show in Figure 9 a zoom of the spectrum around this line for Ch0 (left) and Ch1 (right).

Figure 9. RFI line at 1420 MHz in $\mathbf{C h} 0$ (left) and Ch1 (right). The big line at 1420.4 MHz is the galactic HI .

In Figure 10 we show the time evolution of the integrated power of this line. In general, the power from the OFF spectrum is greater than that from the ON spectrum (hence we have values of the $\mathrm{ON} / \mathrm{OFF}_{\text {filt }}<1$). This is more evident in Ch 0 (especially for cycle number < 340, i.e. from April to June 2011), and in both channels after the "bad period" ($15^{\text {th }}$ September 2011).

Figure 10. Integrated power of the $1420-\mathrm{MHz}$ line vs. cycle number.

3.1.5 $\mathbf{1 4 2 1 . 3 8} \mathbf{M H z}$

We show in Figure 11 a zoom of the spectrum around this line for Ch 0 (left) and Ch1 (right).

Figure 11. RFI line at 1421.38 MHz in Ch 0 (left) and Ch1 (right). The big line at 1420.4 MHz is the galactic HI .

In Figure 12 we show the time evolution of the integrated power of this line. Similarly to the previous line, the ON spectrum is less powerful than the OFF specially for cycle number <200 (up to $3^{\text {rd }}$ May 2011). Right afterwards there is a "burst" of activity on $5^{\text {th }}$ May 2011, and then the situation "normalizes" to mean ~ 1 being more stable in Ch0 than in Ch1.

The origin of this line has been recently identified (email communication from P . Colom). The culprit is the Nançay radio heliograph (RH), which has several clock frequencies around 5 MHz . These frequencies are multiplied by 80 (for the sky frequencies of the RH , ranging from 150 to $\sim 500 \mathrm{MHz}$) and by 3 (if we take the $3^{\text {rd }}$ harmonic), giving a RFI line with frequency of 1421.397 MHz . The width of the line is $\sim 200 \mathrm{~Hz}$, but here we see a width of $\sim 60 \mathrm{kHz}(=2 \mathrm{BAO}$ channels of 30 kHz$)$ as it has fallen in the middle of two channels.

Figure 12. Integrated power of the $1421.38-\mathrm{MHz}$ line vs. cycle number.

3.1.6 1425 MHz

We show in Figure 13 a zoom of the spectrum around this line for Ch 0 (left) and Ch1 (right).

Figure 13. RFI line at 1425 MHz in $\mathbf{C h} 0$ (left) and Ch1 (right).

In Figure 14 we show the time evolution of the integrated power of this line. In Ch0 there is no remarkable feature. In Ch1 we see a "bumpy" increase from $26^{\text {th }}$ April to $2^{\text {nd }}$ May 2011 (cycles from 90 to 170). Also in this channel, the level decreases slightly at the beginning of July 2011.

Figure 14. Integrated power of the $1425-\mathrm{MHz}$ line vs. cycle number.

3.2 RFI next to the protected band

For completeness of this study, we have also investigated the lines just next to the protected band, at frequencies $1427.8,1428.16$ and 1428.56 MHz . We show in Figure 15 a zoom of the spectrum around these lines for Ch0 (left) and Ch1 (right).

Figure 15. RFI lines at $1427.8 \mathrm{MHz}, 1428.16 \mathrm{MHz}$ and 1428.56 MHz in $\mathbf{C h} 0$ (left) and Ch1 (right).

As previously done with the lines in the protected band, we show below the plots of the integrated power vs. cycle number. Note that contrary to the previous plots, which all have the same scaling, here we have set automatic scaling to see more in detail each case.

3.2.1 $1427.8 \mathbf{M H z}$

In Figure 16 and Figure 17 (zoom of the first one) we show the time evolution of the integrated power of this line. In Figure 16 we focus on the big peaks. In Ch0 this happens in the last 5 cycles of the run on $5^{\text {th }}$ Oct 2011 (cycle ~ 840). In Ch1, this happens in the last 3 cycles of the run taken on $22^{\text {nd }}$ Sep 2011 (cycle ~ 800) and in the 2 first cycles of run on $26^{\text {th }}$ Dec 2011 (cycle ~1088).

Figure 16. Integrated power of the $1427.8-\mathrm{MHz}$ line vs. cycle number. Note the different scaling of the plots to appreciate the height of the biggest peaks.

In the zoom on Figure 17 we can observe two different periods of activity:

- Before August 2011 (cycle <600): calm period with small increases of power on $15^{\text {th }}$ Apr 2011 (cycle <17), $19^{\text {th }}-26^{\text {th }}$ April 2011 (cycles 66-97), $7^{\text {th }}-31^{\text {st }}$ May 2011 (cycles 185-257) and $122^{\text {th }}$ Jun 2011 (cycles 289-310).
- After august 2011 (cycle >600): this is a period of great activity, especially on Ch1, up to the $27^{\text {th }}$ Nov 2011 (cycles 600-909). After this date, the power is reduced, just having a "burst" on $26^{\text {th }}$ Dec 2011 followed by several peaks until $28^{\text {th }}$ Dec 2011 (cycles 1063-1117).

Figure 17. Integrated power of the $1427.8-\mathrm{MHz}$ line vs. cycle number. Zoom on the less powerful peaks.

3.2.2 1428.16 MHz

In Figure 18 we show the time evolution of the integrated power of this line, which "appears" at the beginning of July 2011. The line shows more power in Ch1 than Ch0, excepting the 4 last cycles on $5^{\text {th }}$ Oct 2011, where it "jumps" from Ch1 to Ch0. During the following run, on $17^{\text {th }}$ Oct 2011, the level is still higher in Ch0 than in Ch1. From $19^{\text {th }}$ Oct 2011 on, we recover the initial trend.

Figure 18. Integrated power of the $1428.16-\mathrm{MHz}$ line vs. cycle number. Note the different scaling of the plots.

3.2.3 1428.56 MHz

We see in Figure 19 that this line is a bit more active in Ch1 than in Ch0, but without great differences (note the different scaling of the plots). It presents a great power increase in both channels on $30^{\text {th }}$ May 2011 (~ 230 cycles), on $12^{\text {th }}$ Jun 2011 (~ 300 cycles), and only on Ch0 in the $1^{\text {st }}$ cycle on $17^{\text {th }}$ Oct 2011 (~ 840 cycles).
There are other periods with small power increase in both channels on $19^{\text {th }}$ Apr 2011 (~ 65 cycles), in the period $20^{\text {th }}-27^{\text {th }}$ Jul 2011 (cycles 467-572), on $29^{\text {th }}$ Oct 2011
(~ 910 cycles) and on $26^{\text {th }}$ Dec 2011 (~ 1070 cycles). Only for Ch 0 we have also a small increase in the period $10^{\text {th }}-22^{\text {nd }}$ Aug 2011 ($\sim 630-680$ cycles), and only for Ch1 in the first cycles of $24^{\text {th }} \operatorname{Sep} 2011$ (~ 800 cycles).

Figure 19. Integrated power of the $1428.56-\mathrm{MHz}$ line vs. cycle number. Note the different scaling of the plots.

4 Conclusions

We have reported the existence of RFI lines in the protected frequency band [1400, 1427] MHz. For each line we have studied the time evolution of the integrated power, and extracted the dates where there are changes in the lines' power, to help with working out its origin. We have done the same work for some lines just next to the protected band, between 1427 and 1428 MHz . We summarise these dates in Table 2. Just keep in mind that these dates have been obtained from Abell1205 observations, thus they are approximate. Unless indicated, the comments refer to both channels. Remember that it has already noticed that at the beginning of July 2011, after an intervention in Nançay to install 3 servers for FAN ($4^{\text {th }}$ Jul 2011) , the power of
several RFI lines (not only those in the protected band) has experienced major changes.

RFI line (MHz)	Date	Comments
1400	$15^{\text {th }} \mathrm{Apr}-2^{\text {nd }}$ May 2011	Appears in Ch0
	$28^{\text {th }}$ Apr 2011	Dramatic rise in Ch1
	$2^{\text {nd }}$ May 2011	Burst in Ch1
	$8^{\text {th }}$ May 2011	Power decrease in Ch1
	$15^{\text {th }}$ Jun 2011	Burst in Ch1
	$7{ }^{\text {th }}$ Jul 2011	Reactivates in Ch 0 ; quiet in Ch 1
	$25^{\text {th }}$ Jul 2011	Power decrease, Ch0
	$22^{\text {nd }}$ Aug 2011	Quiet in Ch0
	$16^{\text {th }}$ Nov 2011	Reactivates
1406	Beginning Jul 2011	Increase of power in Ch1
	$17^{\text {th }}$ Oct 2011	"Jump" from Ch1 to Ch0
1410	$7^{\text {th }}-18^{\text {th }}$ Aug 2011	Burst
1420	Apr - Jun 2011	OFF more powerful than ON, Ch0
	$>15{ }^{\text {th }}$ Sep 2011	OFF more powerful than ON
1421.38	$<3{ }^{\text {rd }}$ May 2011	OFF more powerful than ON
	$5^{\text {th }}$ May 2011	Burst
1425	$\begin{aligned} & 26^{\text {th }} \text { Apr }-2^{\text {nd }} \text { May } 2011 \\ & <\text { Beginning Jul } 2011 \end{aligned}$	"Bumpy" power increase, Ch1 Power steps up, Ch1
1427.8	$<$ Aug 2011 (15 $5^{\text {th }}$ Apr, $19^{\text {th }}$ -	Small power increase
	$26^{\text {th }}$ Apr, $7^{\text {th }}-31^{\text {st }}$ May, $12^{\text {th }}$	
	Jun)	
	$7^{\text {th }}$ Sep $-27^{\text {th }}$ Nov	Big activity, esp. Ch1
	$26^{\text {th }}$ Dec $2011\left(-28^{\text {th }}\right.$ Dec)	Burst (+ decreasing activity)
1428.16	Beginning July 2011	Shows up, Ch1 > Ch0
	$\begin{aligned} & 15^{\text {th }} \text { Oct } 2011 \text { (last } 4 \text { cycles) } \\ & \left(-17^{\text {hh }}\right. \text { Oct) } \end{aligned}$	Burst + jump from Ch1 to Ch0 (+ decreasing activity)
1428.56	$19^{\text {th }}$ Apr 2011	Small power increase
	$30^{\text {th }}$ May 2011	Burst
	$12^{\text {th }}$ Jun 2011	Burst
	$20^{\text {th }}-27^{\text {th }}$ Jul 2011	Small power increase
	$10^{\text {th }}-22^{\text {nd }}$ Aug 2011	Small power increase, Ch0
	$24^{\text {th }}$ Sep 2011 (first cycles)	Small power increase, Ch1
	$17^{\text {th }}$ Oct 2011	Burst, Ch0 (first cycle)
	$29^{\text {th }}$ Oct 2011	Small power increase
	$26^{\text {th }}$ Dec 2011	Small power increase

Table 2. List of dates which mark a change in the power of the RFI lines quoted.

5 Appendix B. List of observations.

We include the list of observations done at Nançay by user no. 230, where the run date can be related to the corresponding scan number. This list is the output of the script lstnco230 in the baotest/work directory in Nançay. We have kept all the observations, not only those of Abell 1205, to facilitate traceability. Note that the time is reversed, i.e. the most recent observations will be listed first.
MAP \#241 px 40x1s HI M3C1 1320.8MHz Abe MAP \#259 px 40x1s HI M3C1 1320.8MHz Abe
 MAP \#259 px 40x1s HI M3C1 1320.8MHz Abe

 วqV zHW8*0Z\&I IDEN IH s[x0t xd 6¢z\# dVW MAP \#259 ROBIN 1140MHz nocha nomir imm

 MAP \#241 px 40x1s HI M3C1 1320.8MHz Abe
 MAP \#241 px 40x1s HI M3C1 1320.8MHz Abe

 MAP \#241 px 40x1s HI M3C1 1320.8MHz Abe
MAP \#241 px 40x1s HI M3C1 1320.8 MHz Abe

 SOU \#1124 ABELL1205SOU \#1124 ABELL1205
SOU \#1124 ABELL1205 SOU \#1391 ABELL1205SOU \#1391 ABELL1205-
SOU \#1391 ABELL1205 SOU \#1124 ABELL1205SOU \#1124 ABELL1205-

 SOU \#1391 ABELL1205 SOU \#1125 ABELL0085
SOU \#1124 ABELL1205SOU \#1 124 ABELL1205
 SOU \#1124 ABELL1205

 SOU \#1124 ABELL1205-会 SOU \#1125 ABELL0085
 SOU \#1125 ABELL0085 SOU \#1124 ABELL1205SOU \#1124 ABELL1205

 ત் ભ்

MAP \#241 px 40x1s HI M3C1 1320.8MHz Abe

 MAP \#241 px 40x1s HI M3C1 1320.8MHz Abe MAP \#241 px 40x1s HI M3C1 1320.8MHz Abe MAP \#241
 MAP \#239 px 40x1s HI M3C1 1346.2MHz Abe MAP \#239 px 40x1s HI M3C1 1346.2MHz Abe MAP \#247 px60s 1301 MHz ROACH EWGD (from MAP \#239 px 40x1s HI M3C1 1346.2MHz Abe MAP +239 px 40x1s HI M3Cl 1346.2MHz Abe MAP \#247 px60s 1301MHz ROACH EWGD (from MAP \#239 px 40x1s HI M3C1 1346.2MHz Abe
 MAP \#241 px 40x1s HI M3C1 1320.8MHz Abe MAP \#239 px 40x1s HI M3C1 1346.2MHz Abe MAP \#241 px 40x1s HI M3C1 1320.8MHz Abe

 MAP \#239 px 40x1s HI M3C1 1346.2MHz Abe

 MAP \#239 px 40x1s HI M3C1 1346.2MHz Abe

 MAP \#241 px 40x1s HI M3C1 1320.8MHz Abe

 | 0 |
| :--- | :--- |

MAP \#241 px 40x1s HI M3C1 1320.8MHz Abe MAP \#241 px 40x1s HI M3C1 1320.8MHz Abe MAP \#241 px 40x1s HI M3C1 1320.8MHz Abe MAP \#239 px 40x1s HI M3C1 1346.2MHz Abe MAP \#241 px 40x1s HI M3C1 1320.8MHz Abe MAP \#244 px 40x1s HI M3C1 1304.2MHz Abe MAP \#239 px 40x1s HI M3C1 1346.2MHz Abe

 MAP \#241 px 40x1s HI M3C1 1320.8MHz Abe MAP \#244 px 40x1s HI M3C1 1304.2MHz Abe

 MAP \#244 px 40x1s HI M3C1 1304.2MHz Abe

 MAP \#244 px 40x1s HI M3C1 1304.2MHz Abe

 MAP \#244 px 40x1s HI M3C1 1304.2MHz Abe əq* zHW8.0ZEI IOEW IH s [x0t xd Itて\# dVW

MAP \＃241 px 40x1s HI M3C1 1320．8MHz Abe MAP \＃241 px 40x1s HI M3C1 1320．8MHz Abe MAP \＃239 px 40x1s HI M3C1 1346．2MHz Abe MAP \＃241 px 40x1s HI M3C1 1320．8MHz Abe əqV zHW8＊0てE I IDEN IH s［x0t xd Itて\＃dVW
 MAP \＃244 px 40x1s HI M3C1 1304．2MHz Abe
 MAP \＃241 px 40x1s HI M3C1 1320．8MHz Abe MAP \＃241 px 40x1s HI M3C1 1320．8MHz Abe

 วqV ZHW8＊0ZEI IDEW IH s［x0t xd Itて\＃dVW MAP \＃239 px 40x1s HI M3C1 1346．2MHz Abe
 MAP \＃244 px 40x1s HI M3C1 1304．2MHz Abe วqも ZHW8＊0ZEI IDEN IH s［x0t xd Itz\＃dVN MAP \＃241 px 40x1s HI M3C1 1320．8MHz Abe

 əqУ zHWで切 MAP \＃241 px 40x1s HI M3C1 1320．8MHz Abe əqV zHW8．0Z\＆LIDEW IH s［x0t xd Itて\＃dVW əq＊ZHW8＊0ZE I IDEN IH sIx0t xd Itて\＃dVW

 əqV ZHW8＂0ZEI IJEN IH sIx0t xd ItZ\＃dVN

 NbrCyc＝ 19 －SOU \＃1124 ABELL1205
会
 SOU \＃1124 ABELL1205
SOU \＃1125 ABELL0085 SOU \＃1123 ABELL2440

 SOU \＃1125 ABELL0085－
SOU \＃1124 ABELL1205－ SOU \＃1 125 ABELL0085

 SOU \＃1125 ABELL0085
 SOU \＃1124 ABELL1205 SOU \＃1124 ABELL1205－

 SOU \＃1123 ABELL2440 ∞
0
0
0
0
0
0
0
开
0
0
0

[^0]: ${ }^{1}$ We have dismissed here 171 cycles from the "bad period", see next section.

