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Abstract

We consider supergravity with a gravitino lightest supersymmetric particle. The next-to-lightest

supersymmetric particle (NLSP) decays to the gravitino with lifetime naturally in the range 104 −
108 s. However, cosmological constraints exclude lifetimes at the upper end of this range and

disfavor neutralinos as NLSPs, leaving charged sleptons with lifetimes below a year as the natural

NLSP candidates. Decays to gravitinos may therefore be observed by trapping slepton NLSPs in

water tanks placed outside Large Hadron Collider (LHC) and International Linear Collider (ILC)

detectors and draining these tanks periodically to underground reservoirs where slepton decays

may be observed in quiet environments. We consider 0.1, 1, and 10 kton traps and optimize their

shape and placement. We find that the LHC may trap tens to thousands of sleptons per year.

At the ILC, these results may be improved by an order of magnitude in some cases by tuning the

beam energy to produce slow sleptons. Precision studies of slepton decays are therefore possible

and will provide direct observations of gravitational effects at colliders; percent level measurements

of the gravitino mass and Newton’s constant; precise determinations of the gravitino’s contribution

to dark matter and supersymmetry breaking’s contribution to dark energy; quantitative tests of

supergravity relations; and laboratory studies of Big Bang nucleosynthesis and cosmic microwave

background phenomena.

PACS numbers: 04.65.+e, 12.60.Jv, 26.35.+c, 98.80.Es
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I. INTRODUCTION

Weak-scale supersymmetry remains a beautiful framework for resolving the problems of
electroweak symmetry breaking and dark matter [1], and its discovery is among the most
eagerly anticipated events in particle physics. Opportunities for supersymmetry discoveries
and studies at colliders depend largely on which superpartner is the lightest supersymmetric
particle (LSP). In simple supergravity models, supersymmetry is transmitted to standard
model superpartners through gravitational interactions, and supersymmetry is broken at a
high scale. The mass of the gravitino G̃ is

mG̃ =
F√
3M∗

, (1)

and the masses of standard model superpartners are

m̃ ∼ F

M∗

, (2)

where F ∼ (1011 GeV)2 is the supersymmetry breaking scale squared, and M∗ =
(8πGN)−1/2 ≃ 2.4 × 1018 GeV is the reduced Planck scale. The precise ordering of masses
depends on unknown, presumably O(1), constants in Eq. (2). Most supergravity studies
assume that the LSP is a standard model superpartner, such as a slepton or neutralino.

Recently attention has turned to the other logical possibility, namely, that the gravitino
is the LSP [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. In supergravity where supersymmetry breaking
is mediated by gravity, the gravitino has a mass mG̃ ∼ 100 GeV if the superpartner mass
scale is m̃ ∼ 100 GeV. The gravitino couplings are also suppressed by M∗. The gravitino’s
extremely weak interactions imply that it is irrelevant for most supersymmetric processes.
However, if the gravitino is the LSP, the next-to-lightest supersymmetric particle (NLSP)
decays to its standard model partner and a gravitino. The NLSP is a weak-scale particle
decaying gravitationally and so has a natural lifetime of

M2
∗

m̃3
∼ 104 − 108 s , (3)

as will be discussed more fully in Sec. II. This lifetime emerges naturally in this simple
supersymmetric scenario. At the same time, it is outlandishly long by particle physics
standards [13]. It requires a revamping of many aspects of supersymmetric phenomenology
and cosmology and opens up novel opportunities, including the one discussed here.

The gravitino LSP scenario is constrained by cosmological and astrophysical data. The
gravitino is a stable superweakly massive particle (superWIMP) and forms dark matter. Its
production during reheating and by NLSP decays is therefore constrained by measurements
of the non-baryonic cold dark matter density. NLSP decays also deposit electromagnetic [14,
15, 16, 17] and hadronic [18, 19] energy into the universe well after Big Bang nucleosynthesis
(BBN), and so may ruin the successful predictions of standard BBN. These decays may also
distort the cosmic microwave background (CMB) from its observed Planckian spectrum.
Last, photons produced in NLSP decays are subject to bounds on the diffuse photon flux.

The impact of these constraints on the gravitino LSP scenario have been considered
in detail. In addition to the leading two-body NLSP decays to the gravitino [2, 3, 4, 5],
three-body NLSP decays must also be considered when they are the leading contribution to

2



hadronic cascades [7, 8]. The result is that the gravitino LSP scenario is not excluded and,
in fact, all constraints may be satisfied for natural weak-scale NLSP and gravitino masses.

Not all possibilities are allowed, however, and two results are particularly worth noting.
First, neutralino NLSPs are highly disfavored [8, 12]. Neutralinos typically have two-body
decays χ → ZG̃ → qq̄G̃. The resulting hadronic cascades destroy BBN successes, and
exclude this scenario unless such decays are highly suppressed. Kinematic suppression is
not viable, however — if mχ − mG̃ < mZ , the decay χ → γG̃ takes place so late that it
violates bounds on electromagnetic cascades. Neutralino NLSPs are therefore allowed only
when the two-body decays to Z bosons are suppressed dynamically, as when the neutralino
is photino-like, a possibility that is not well-motivated by high energy frameworks. Slepton
and sneutrino NLSPs also produce hadronic energy when they decay, but this occurs only
through three-body decays. These have been analyzed and found to be safe [7, 8]. As a
result, the most natural NLSP candidates are sleptons, particularly the right-handed stau.

Second, cosmological constraints exclude the upper range of lifetimes in Eq. (3) [2, 3].
Very late decays occur in a cold universe where decay products are not effectively thermalized
and so are especially dangerous. For typical thermal relic NLSP abundances, the CMB and
BBN constraints therefore provide an upper bound on NLSP lifetimes, roughly excluding
those above a year.

In passing, we note that the scenario outlined above has a number of other motivations.
One such motivation is from BBN. Late NLSP decays not only pass all BBN constraints,
they may even resolve the leading BBN anomaly by destroying 7Li to bring the predicted
abundance in line with the low values favored by observations [2, 3]. To resolve the 7Li
anomaly, the preferred NLSP lifetime is ∼ 3 × 106 s [5], that is, about a month. A second
motivation follows from considerations of leptogenesis [20]. Gravitinos may be produced
during reheating. If the gravitino is not the LSP, its late decays are dangerous to BBN,
and require reheating temperatures TRH

<∼ 105 GeV to 108 GeV [19], in conflict with the
requirement TRH

>∼ 3 × 109 GeV of thermal leptogenesis [21]. In contrast, in the gravitino
LSP scenario, the gravitino does not decay, and the reheat temperature is bounded only by
the overclosure constraint on the gravitino density. For mG̃ ∼ 100 GeV, reheat temperatures
as high as ∼ 1010 GeV are allowed [22, 23], consistent with thermal leptogenesis [24, 25].
Additional connections between leptogenesis and gravitino LSPs are discussed in Ref. [26].

Given all of these motivations, we investigate here the collider implications of a gravitino
LSP with a charged slepton NLSP with lifetime under (but not much under) a year [27].
In particular, we investigate the possibility of trapping sleptons in material placed just
outside Large Hadron Collider (LHC) or International Linear Collider (ILC) detectors. This
material may then be moved to some quiet location so that slepton decays may be observed
in a relatively background-free environment. Although these objectives may be realized in
many ways, we study here the particularly simple possibility of trapping sleptons in water
tanks which may be drained periodically to underground reservoirs where the slepton decays
may be observed.

In Sec. II we discuss the relevant properties of sleptons in the gravitino LSP scenario.
In Sec. III we discuss our procedure for maximizing the number of sleptons trapped given
a fixed volume of water. This is applied to the cases of the LHC and ILC in Secs. IV and
V, respectively. At the LHC, we find that tens to thousands of sleptons may be trapped
each year, depending on the overall mass scale of supersymmetry. At the ILC, typically
far fewer sleptons are produced. However, by controlling the beam energy, the velocity of
produced sleptons may be tuned to some low value, allowing a large fraction of sleptons to
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be trapped. By exploiting this feature, we find that an order of magnitude more sleptons
may be trapped at the ILC than at the LHC. These results imply that percent level studies
of slepton decays may be possible. Such studies will have fundamental implications for
supergravity, supersymmetry breaking, dark matter, and dark energy. These implications
and our conclusions are discussed in Sec. VI.

II. SLEPTON PROPERTIES IN THE GRAVITINO LSP SCENARIO

A. Slepton Mass

In supergravity with a gravitino LSP, the slepton NLSP is expected to have a weak-scale
mass. Current collider bounds require ml̃ > 99 GeV from null searches for long-lived charged
tracks at LEP II [28].

Cosmology brings additional considerations, however. Gravitinos produced in the late de-
cays of sleptons are superWIMP dark matter. Barring the possibility of entropy production
after slepton freeze out, the gravitino relic density must therefore satisfy

ΩG̃h2 =
mG̃

ml̃

Ωth

l̃
h2 < ΩDMh2 , (4)

where Ωth

l̃
is the slepton’s thermal relic density, and the non-baryonic cold dark matter

density is constrained to the range 0.094 < ΩDMh2 < 0.124. Assuming mG̃ and ml̃ are
not too disparate, this provides an upper bound on the slepton and gravitino masses, since
Ωth

l̃
∝ m2

l̃
. Without special effects, Ωth

l̃
∼ ΩDM for ml̃ ∼ 700 − 1000 GeV. If

m
G̃

m
l̃

>∼ 0.1, the

overclosure constraint requires superpartner masses below about 3 TeV.
On the other hand, a particularly attractive possibility is that gravitino superWIMPs

are most or even all of the non-baryonic dark matter. Although not a strict requirement,
one might therefore prefer ΩG̃ ≈ ΩDM. The decay to the gravitino only reduces the relic
density. Without special effects, then, overclosure requires ml̃

>∼ 700 − 1000 GeV. Such
heavy sleptons will be difficult to explore at the LHC and are kinematically inaccessible in
the first stage of the ILC.

Just as in conventional neutralino dark matter scenarios, however, there are supplemen-
tary mechanisms for gravitino production. One such mechanism is co-annihilation. If a
neutralino χ is just slightly heavier than the slepton, it will freeze out with the slepton and
later decay to the slepton, adding its thermal relic density to the slepton’s. This allows
supersymmetric models with much lower slepton masses to produce the correct gravitino
superWIMP dark matter density. For example, in minimal supergravity with A0 = 0,
tan β = 10, and µ > 0, the desired relic density may be achieved near the τ̃ LSP–χ LSP
border at M1/2 = 300 GeV, where mτ̃ ≈ mχ ≈ 120 GeV [29]. Alternatively, gravitinos may
be produced during reheating. For reheating temperatures TRH ∼ 109 GeV, as might be
preferred for leptogenesis as discussed above, gravitinos may again be all of the non-baryonic
dark matter for slepton masses as low as 120 GeV [12]. It is clear that such effects may be
very important. We will consider a variety of slepton masses below, including those within
reach of a first stage ILC. We reiterate that all of these considerations depend on the as-
sumption that gravitinos make up all of the dark matter. From a purely particle physics
viewpoint, this is clearly optional — some other particle, such as the axion, may be the dark
matter. In this case, gravitino LSPs and light NLSP sleptons are perfectly possible without
any additional restrictions.

4



B. Slepton Lifetime

The width for the decay of a slepton to a gravitino is

Γ(l̃ → lG̃) =
1

48πM2
∗

m5

l̃

m2

G̃

[

1 −
m2

G̃

m2

l̃

]4

, (5)

assuming the lepton mass is negligible. This decay width depends on only the slepton mass,
the gravitino mass, and the Planck mass. In many supersymmetric decays, dynamics brings
a dependence on many supersymmetry parameters. In contrast, as decays to the gravitino
are gravitational, dynamics is determined by masses, and so no additional parameters enter.
In particular, there is no dependence on left-right mixing or flavor mixing in the slepton
sector.

C. Slepton Range in Matter

Last, it will be crucial to this study to know the range of sleptons in matter. Charged
particles passing through matter lose energy by emitting radiation and by ionizing atoms.
At lower energies, ionization dominates the energy loss, while at high energies, radiation is
the dominant effect. As we will see below, it is unreasonable to expect to stop sleptons with
momenta much larger than their rest mass. For the present case, then, ionization losses are
dominant, and radiation is negligible.

The average energy loss due to ionization is given by the Bethe-Bloch equation. The low
energy approximation to the Bethe-Bloch equation may be derived [30] by first calculating
the classical cross section for a collision with fixed impact parameter and energy loss. One
then integrates the impact parameter from the Compton wavelength of the free electron as
seen by the charged particle to a maximal impact parameter where the particle cannot “see”
the electron in the time that it passes by the atom. A more refined treatment yields the
Bethe-Bloch equation [31]

dE

dx
= Kz2 Z

A

1

β2



ln





2mec
2β2γ2

I
√

1 + 2meγ
M

+ m2
e

M2



− β2 − δ

2



 , (6)

where dE/dx is the energy loss per g cm−2, K = 0.307075 MeV g−1 cm2, and me is the
electron mass. The material is characterized by its atomic charge Z in units of e; its average
nucleon number A; and its mean ionization energy I, which is given for various elements in
Ref. [31]. The incoming particle has mass M , charge z in units of e, velocity β, and dilation
factor γ = (1 − β2)−1/2.

The parameter δ accounts for the fact that incoming particles polarize the surrounding
medium. At high energies, this effect may be included by setting

δ = Θ(E − E0)

[

ln

(

E2

M2
− 1

)

+ ln

(

h̄ωp

I

)

− 1

2

]

, (7)

where ωp is the plasma frequency, and E0 is the energy at which the effect of polarization
is significant. This correction is typically significant for βγ >∼ 10. We include this effect,
although, as we will see, sleptons that may be trapped in a reasonably sized detector have
βγ < 1, and so this effect is also irrelevant for the final results of this study.
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TABLE I: Range parameters for lead and water, assuming a 219 GeV slepton.

Material δM (MeV) I (eV) E0 (TeV) h̄ωp (eV)

Lead 110 820 4.4 61

Water 220 75 1.3 21

At low momentum, corrections to Eq. (6) arise from the fact that electrons in matter are
bound to atoms. This implies that there is transverse momentum in the collision (Bloch
corrections) and that the electron may have momentum comparable to the incident particle
(shell corrections). These corrections are significant only when the momentum of the incom-
ing particle is comparable to the electron momentum. As discussed below, we will neglect
contributions to the slepton range from very low velocities. For O(100) GeV sleptons trav-
eling at the velocities we include, the Bloch and shell corrections may be safely neglected.
The Barkas effect, which introduces a dependence on the sign of the charge of the incoming
particle is also significant only for very low β, and may be safely neglected for the velocities
we include.

The Bethe-Bloch equation Eq. (6) with δ as given in Eq. (7) is accurate down to β ∼ 0.05.
Below this velocity, experimental data are fit by parameterization schemes. We do not have
this luxury because, of course, there are as yet no experimental data for sleptons. Although
we could use the parameterizations adopted for standard model particles, it has been found
that the heavier the particle the worse these models are at describing the low momentum
behavior [32].

Rather than grapple with how sleptons should behave at β < 0.05, we adopt the following
procedure for determining the slepton range in matter. For a certain low velocity, dE/dx
in Eq. (6) peaks and then rapidly drops to zero. We denote this velocity βpeak; its value is
typically ∼ 0.01. At βpeak, the value of dE/dx is very high, and we expect that the distance
the slepton travels as it slows from βpeak to thermal equilibrium is negligible relative to the
distance it traveled in slowing down from its initial velocity to βpeak. We further take the
continuous slowing down approximation. With these assumptions, the range R in g cm−2

for a slepton with energy E ′ is

R(E ′) =
1

K

A

Z

∫ E′

M+δM
dE

M2

E2 − 1

ln
(

2mec2

I
E2

−M2√
M2+2Eme+m2

e

)

+
(

M2

E2 − 1
)

− δ
, (8)

where δ is given in Eq. (7), and M + δM is the energy at which the slepton has velocity
βpeak. The values used for δM , I, E0, and h̄ωp for the particular case of a 219 GeV slepton
are given in Table I.

The Bethe-Bloch equation gives an average value of the stopping power, but there are
always fluctuations about these values. For thin materials the most probable energy loss
may be very different from the mean energy loss [31]. However, if the path length in material
is large enough, the energy loss distribution is Gaussian. The criterion for Gaussianity has
been found in Ref. [33] to be

κ =
K
2

Z
A

1
β2 ρx

T
> 10 , (9)

where

T =
2mec

2β2γ2

√

1 + 2meγ
M

+ m2
e

M2

, (10)
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FIG. 1: The range to mass ratio R/M as a function of p/M = βγ (left), and, for the specific case

of a slepton with mass 219 GeV, the range as a function of energy (right). Results are given for

water (solid) and lead (dashed).

and x is the path length. For LHC and ILC detectors, κ >∼ O(100). Given that the energy
distribution of produced sleptons is not wildly fluctuating, inclusion of this Gaussian range
distribution will have a negligible impact on our results, and we do not include it.

Using the procedure described above, the range to mass ratios R/M for lead and water
are given in Fig. 1. These results agree beautifully with published results [31]. The range as
a function of energy for the particular case of a slepton with mass 219 GeV is also given. A
slepton with this mass and energy 240 GeV (250 GeV) travels about 10 meters (21 meters)
in water before stopping.

III. SLEPTON TRAP OPTIMIZATION

We will consider the possibility of trapping sleptons in water placed just outside a collider
detector. Of course, any material may be used, and our analysis, at the level we have pursued
it, is valid for any material. We consider water to be promising, however, as it is potentially
feasible to increase the concentration of sleptons and/or move it to a place where slepton
decays may be observed in a background-free environment.

We would like to optimize the placement and shape of the water tank. If the gravitino
LSP scenario is realized in nature, given the implications described in Sec. VI, we consider
the importance of slepton trapping studies to be sufficient to enlarge detector halls. We
therefore do not consider constraints from existing detector halls in considering trap geome-
tries. Even with this simplification, however, a detailed discussion of optimization requires
careful accounting of the various LHC and ILC detector component geometries, costs, and
other factors.

Rather than undertake such a detailed study, we consider here a simple detector model
to highlight the physics that may be explored in more detail in following studies. We
characterize the properties of the inner detector by two parameters: rin, the distance from
the interaction point (IP) to the outside of the detector, and rwe

in =
∫

ρ dl, the density-
weighted distance between the IP and the outside of the detector, typically measured in
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rin

d

Interaction Point

(cos
1

2

FIG. 2: Diagram of the slepton trap geometry. The trap is assumed to be a spherical shell with

inner radius rin, and depth d as shown. The angular parameters 1
2
∆ (cos θ) and ∆φ of Eq. (11) are

also indicated.

meters water equivalent (mwe). We will assume that rin and rwe
in are independent of polar

angle θ and azimuthal angle φ; that is, we model the inner detector as spherically symmetric
in both size and material depth.

The amount of energy lost by a slepton traveling through a detector is determined by
rwe
in . (For realistic detector sizes, the tracks of sleptons with sufficient energy to pass through

the detector have negligible curvature.) The radius of the LHC detectors is approximately
12λI in the direction perpendicular to the beam line, where λI is the nuclear interaction
length [34, 35]. This number depends on rapidity, but we take this minimal value for
our spherical detector. The ILC detector is expected to be slightly smaller, but sheets of
lead or other material can always be used to increase the effective radius to that of the
LHC detectors. As we will see, this may be advantageous. Given these considerations, we
assume for this study that the energy loss at the LHC and ILC is approximately that of a
particle traveling through 12λI of water. Since λI = 83.6 g cm−2 for liquid water, this sets
rwe
in = 10 mwe.

The number of trapped sleptons is, of course, maximized by placing the water tank
as close to the IP as possible.1 In addition, as we will see, the polar angle distribution
of slow sleptons, that is, those that have a chance of being trapped, is either uniform or
peaked perpendicular to the beam line at polar angle θ = π/2. To optimize the water tank
placement, then, we consider the family of tank geometries specified by

rin < r < rin + d

| cos θ| <
1

2
∆(cos θ)

0 < φ < ∆φ , (11)

where (r, θ, φ) are polar coordinates centered on the IP, and d is the tank’s radial depth.

1 This assumes that no additional material is added between the detector and the trap. It may be advanta-

geous to place the trap farther away if a material that slows sleptons is added between the detector and

the trap. An example is discussed in Sec. V.
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FIG. 3: The depth d in meters of a 1 kton water trap in the (∆(cos θ),∆φ) plane for rin = 10 m.

This geometry is illustrated in Fig. 2. All sleptons with range less than rwe
in are trapped

in the detector. However, all sleptons with range between rwe
in and rwe

in + d, and polar and
azimuthal angles in the ranges given in Eq. (11) are caught in the water tank.2 The water
tank volume is

V =
1

3

[

(rin + d)3 − r3
in

]

∆(cos θ)∆φ . (12)

In summary, the number of trapped sleptons is

N(V, ∆(cos θ), ∆φ, rin, r
we
in ) , (13)

where the first four parameters determine the depth d through Eq. (12). Sample depths for
a 1 kton trap (V = 1000 m3we) are shown in Fig. 3. In the following sections, we fix rin and
rwe
in to appropriate values and choose three representative sizes V . We then scan over all

possible values of ∆(cos θ) and ∆φ to maximize N . In this way, we determine the optimal
shape for the water tank and the maximal number of sleptons that may be trapped.

IV. SLEPTON TRAPPING AT THE LHC

The LHC is scheduled to collide protons with protons at
√

s = 14 TeV beginning in
2007-08. Its initial luminosity is expected to be 10 fb−1/yr, growing to 100 fb−1/yr. We
present results below for 100 fb−1, a high luminosity year.

The ATLAS and CMS detectors are cylindrical with radii 10 m and 8 m, respectively.
As explained in Sec. III, we choose rin = 10 m and rwe

in = 10 mwe. Although we consider
only ATLAS and CMS, other detectors could provide promising opportunities. For example,
LHCb is an asymmetric detector and allows for smaller values of rwe

in and rin. This may make
improved results possible and is a possibility well worth considering.

In the gravitino LSP scenario, all supersymmetry events produce two long-lived NLSP
sleptons. The dominant source of NLSPs at hadron colliders is typically pair production

2 In practice, for the Monte-Carlo simulations below, we smooth distributions in φ by including all events

that pass the r and cos θ cuts with weight ∆φ/2π.
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FIG. 4: Representative superpartner masses as a function of M1/2 in minimal supergravity with

fixed m0 = 0, A0 = 0, tan β = 10, and µ > 0. The supersymmetry parameter µ, which governs the

Higgsino masses, is also shown.

of strongly interacting superpartners. The number of trapped sleptons is therefore model-
dependent in a complicated way, as it depends not only on the slepton mass but also sensi-
tively on the masses of colored superpartners and their cascade decay patterns.

Here we consider minimal supergravity with the following parameters:

m0 = 0 , M1/2 = 300 − 900 GeV , A0 = 0 , tan β = 10 , µ > 0 . (14)

When the gravitino is not the LSP, this is in the excluded “stau LSP” region. In the present
scenario with a gravitino LSP, however, these models are allowed, and this one-dimensional
family of models provides a simple set with which we can explore the prospects for trapping
sleptons at the LHC. The lower bound on M1/2 is determined by the requirement of a stau
NLSP. The number of trapped staus rapidly diminishes as M1/2 increases, and the upper
bound on M1/2 is roughly where only a few staus may be trapped per year. The superpartner
spectra for various M1/2 in these models are given in Fig. 4.

The mass spectra of Fig. 4 are calculated by ISASUSY 7.69 with top mass mt =
175 GeV [36]. We have also used this package to generate LHC events. 100,000 non-
standard model events were generated for minimal supergravity models with the parameters
given above and M1/2 varying from 300 GeV to 900 GeV in 100 GeV increments. Helic-
ity correlations are not included in ISAJET. However, there are typically several steps in
decay chains leading to the NLSP, and so we do not expect helicity correlations to have a
significant impact on the NLSP distributions or on our final results.

In Fig. 5, we show the energy distribution of NLSP staus for the M1/2 = 600 GeV.
Although many staus are produced, most of these are extremely energetic and impossible to
stop in a reasonable distance. Of course, a trap could be set up far from the IP so that the
intervening earth slows down the slepton, but such a trap would be too far away to have a
reasonable solid angle coverage for any realistic volume V .

The cos θ distribution at M1/2 = 600 GeV is shown in Fig. 6. Given all produced NLSPs,
the distribution is strongly peaked in the beam directions. However, imposing a cut on
energy, we find that the slow staus are produced roughly isotropically. Thus, for those staus
that we might reasonably hope to be trapped, any polar angle is as good as any other. Given
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FIG. 5: The energy distribution of NLSP staus produced at the LHC for integrated luminosity

100 fb−1 and minimal supergravity with m0 = 0, M1/2 = 600 GeV, A0 = 0, tan β = 10, and µ > 0.

The NLSP stau mass is 219 GeV.

FIG. 6: The cos θ distribution of NLSP staus produced at the LHC for integrated luminosity

100 fb−1 and minimal supergravity with m0 = 0, M1/2 = 600 GeV, A0 = 0, tan β = 10, µ > 0. The

NLSP stau mass is 219 GeV. Distributions are given for all staus, Eτ̃ < 290 GeV (R < 100 mwe),

and Eτ̃ < 240 GeV (R < 10 mwe). The total distribution is strongly peaked along the beam

directions, but slow sleptons are produced isotropically.

the reality that LHC detectors are cylindrical, however, the closest a trap may be placed to
the IP is at cos θ = 0, justifying our choice of centering our trap geometries at cos θ = 0, as
parameterized in Eq. (11).

The number of trapped sleptons for optimized trap shape and placement and various trap
volumes is given in Fig. 7. The trap is optimized as described in Sec. III: we scan over all
possible ∆(cos θ) and ∆φ, and find the combination that maximizes the number of sleptons
that stop in the trap.

We find that only a small fraction of produced sleptons can be trapped. For example,
for M1/2 = 600 GeV, 4.2 × 104 NLSP sleptons are produced, but only 260, 40, and 9 are
trapped in water tanks of size 10, 1, and 0.1 kton, respectively. For all models considered,
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FIG. 7: The number of sleptons trapped per year at the LHC in water tanks of size 10 kton (solid),

1 kton (dot-dashed), and 0.1 kton (dashed). The total number of sleptons produced is also shown

(upper dotted), along with the number of sleptons trapped in the LHC detector (lower dotted).

The water tank shape and placement have been optimized as described in the text. These results

assume luminosity 100 fb−1/ yr, rin = 10 m, rwe
in = 10 mwe, and minimal supergravity models with

M1/2 = 300, 400, . . . , 900 GeV, m0 = 0, A0 = 0, tan β = 10, and µ > 0.

the 10 kton trap is optimized for ∆(cos θ) = ∆φ/π = 2; for this large volume, the trap
is sufficiently deep that there is little be gained by making the trap deeper at the expense
of solid angle coverage. For V = 1 kton, the number of trapped sleptons is optimized by
traps with less-than-maximal angular coverage and depths of d ≈ 4 m. Note that, because
slow sleptons are produced isotropically, the number of trapped sleptons depends, to a good
approximation, on ∆(cos θ) and ∆φ only through their product ∆(cos θ)∆φ.

Despite the low efficiency for trapping, so many NLSPs are produced at the LHC that
significant numbers of NLSPs may still be trapped. As anticipated, the results are heavily
dependent on the overall scale of superpartner masses. For V = 10 kton and mNLSP =
100−300 GeV, the number of trapped sleptons varies from O(104) to O(10). For the lighter
sleptons considered, these results imply that sufficient numbers of sleptons may be trapped
to do precision studies of slepton decay properties. Assuming that slepton decays may be
observed in a background-free environment, we expect percent level measurements of slepton
decay widths.

Note that for all M1/2, a larger number of sleptons range out in our spherically symmetric
LHC detector than can be trapped in even the 10 kton water trap. For M1/2 = 600 GeV,
700 are trapped in the LHC detector itself. The LHC detector has a large volume and
benefits from the fact that it begins at the IP and so has a large angular coverage without
sacrificing depth. Unfortunately, it is not clear to what extent these sleptons may be used —
their decays are out of time, occur away from the IP, and take place in an environment with
significant cosmic ray background. Given the large number of sleptons that are automatically
trapped in the LHC detector itself, however, it is certainly worthwhile to explore ways to
exploit them.
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V. SLEPTON TRAPPING AT THE ILC

In its first stage, the ILC will collide electrons and positrons with center of mass energies
up to 500 GeV. In this first stage, the luminosity has been estimated to be 340 fb−1/yr for
the TESLA design [37] and 220 fb−1/yr for the NLC/JLC [38]. For this study, we assume
luminosity 300 fb−1/yr. As in the LHC analysis above, we present results for one year of
running.

At present ILC detectors are expected to be slightly smaller than their LHC counterparts.
To be conservative, we assume rin = 10 m and rwe

in = 10 mwe, the same parameters we
assumed in the LHC case. Of course, if the detector is smaller than this, it can always be
supplemented by adding plates of lead, for example, to mock up these parameters. As we
will see, in the ILC case, such an approach may in fact enhance our results very significantly.

At the ILC, scanning over supersymmetry models with a broad range of superpartner
mass scales, as done in the LHC analysis above, is not particularly informative. Models
with heavy superpartners are simply out of reach, and no sleptons may be produced, much
less trapped. On the other hand, for models with superpartners within reach, the ILC beam
energy may be tuned to optimize the number of trapped sleptons, to some extent offsetting
variations in the scale of superpartner masses in these models. As we will see, the crucial
feature is not the exact mass of the slepton NLSP, but rather the presence of other nearly
degenerate superpartner states.

For the ILC, then, we limit our analysis to two models. In the first, which we denote
“NLSP only,” the only superpartner within reach of the ILC is an NLSP τ̃R with mass 219
GeV. This is representative of the minimal case where the gravitino LSP scenario may be
probed at the ILC. Of course, in many realistic models, there are a number of other super-
partners, notably other sleptons, fairly degenerate with the NLSP. We therefore consider
also a second model, which we denote “mSUGRA,” which is minimal supergravity with
M1/2 = 600 GeV, A0 = 0, tanβ = 10, and µ > 0. This model contains not only the 219 GeV
τ̃R of the “NLSP only” model, but also right-handed selectrons, right-handed smuons, and
a neutralino within the kinematic reach of a 500 GeV ILC. The mSUGRA model is one of
the family of models considered previously in the LHC analysis, allowing us to compare the
LHC and ILC at one particular model point. Because it contains the “NLSP only” model
as a subset, it also allows us to see the effect of having other accessible and fairly degenerate
superpartners. The accessible standard model superpartners of the two models and their
masses are:

mχ 242.9 GeV

mẽR
, mµ̃R

227.2 GeV

mτ̃R
219.3 GeV } NLSP only















mSUGRA (15)

We generate 104 non-standard model ILC events for the mSUGRA model with ISASUSY
7.69 with mt = 175 GeV [36]. Events for the “NLSP only” model are compiled by selecting
the prompt stau events from this event sample. We choose beam width 0.12 mm, and
beamstrahlung parameter Υ = 0.1072, and allow the subprocess energy to vary over the
entire range from 2mNLSP to

√
s.

In the “NLSP only” model, the NLSP staus are produced through e+e− → γ, Z →
τ̃+τ̃−. The stau energy distribution is therefore given by the beam energy modified by
initial state radiation (ISR) and beamstrahlung. An example with

√
s = 500 GeV is given

in Fig. 8. The stau polar angle distribution is also given in Fig. 8. Despite ISR and
beamstrahlung, it retains the sin2 θ shape of the parton-level process. The best place to
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FIG. 8: Energy (left) and cos θ (right) distributions for NLSP staus produced at the ILC assuming

the “NLSP only” model, in which the only accessible superpartner is the NLSP stau with mass

219 GeV. Results are for
√

s = 500 GeV and integrated luminosity 300 fb−1.

FIG. 9: The number of sleptons trapped per year at the ILC in 10 kton (solid), 1 kton (dot-

dashed), and 0.1 kton (dashed) water traps. The total number of sleptons produced is also shown

(upper dotted) along with the number of sleptons trapped in the ILC detector (lower dotted). The

trap shape and placement have been optimized, and we assume rin = 10 m and rwe
in = 10 mwe,

luminosity 300 fb−1/yr and the NLSP only model, where the only accessible superpartner is a 219

GeV NLSP stau.

trap sleptons is therefore perpendicular to the beam line, justifying our choice of centering
our trap geometries at cos θ = 0, as parameterized in Eq. (11).

The number of trapped sleptons for various trap sizes as a function of center-of-mass
energy

√
s is given in Fig. 9. For

√
s < 475 GeV, no staus escape the ILC detector. At√

s = 475 GeV, however, sleptons in the sharp peak of the energy distribution escape the
ILC detector and may be caught in a fairly thin water tank placed just outside the ILC
detector.

As evident in Fig. 9, for the 1 and 0.1 kton water traps, the number of trapped staus is

14



FIG. 10: The number of trapped staus at the ILC in the (∆(cos θ),∆φ) plane for the “NLSP only”

model,
√

s = 475 GeV, and integrated luminosity 300 fb−1/yr.

maximized when the beam energy is tuned to produce staus that just barely emerge from the
ILC detector. The dependence on trap parameters is illustrated in Fig. 10. The optimized
trap configuration has ∆(cos θ) ≈ 1 and ∆φ = 2π; because the stau distribution is peaked
at cos θ = 0, it is beneficial to sacrifice coverage at high rapidity to make the trap deeper.
For a 10 kton trap, the trap is sufficiently thick that the best results are achieved for slightly
higher beam energies where more of the ISR/beamstrahlung tail may be caught. For a 10
kton trap, we find that the optimal trap configuration has ∆(cos θ) ≈ 2 and ∆φ = 2π.

For all trap sizes, however, the number of trapped sleptons is maximized for beam energies
near the 475 GeV threshold. The tunable beam energy and well-defined initial state are well-
known virtues of the ILC, but these are exploited in a qualitatively novel way here to produce
slow NLSP sleptons that may be easily caught. Relative to the case at the LHC, a much
larger fraction of the produced staus can be caught. For example, of the 2650 staus produced
at

√
s = 482 GeV in a year, 2000 staus may be trapped in an optimized 10 kton water trap!

Such results imply promising prospects for slepton trapping even in the minimal case when
the only superpartner accessible at the ILC is the NLSP slepton.

Before considering the mSUGRA model, we note that the number of produced staus
continues to rise well beyond its value at

√
s = 475 GeV. This suggests that our results may

be improved significantly by placing some dense material between the ILC detector and the
water tank. By adding material depth to the ILC detector, the threshold at which sleptons
just barely emerge is moved to higher

√
s where the stau pair production cross section is

higher. For a dense material, such as lead, this can be achieved without increasing rin much.
Such a strategy may in any case be required to smooth out variations in rwe

in inherent in
realistic detectors. Although we have not investigated this in detail, we expect that a large
enhancement may be possible.

We now turn to the mSUGRA model. In this model, NLSP staus may again be
produced directly, but now they may also be produced in several other ways: first, by
e+e− → ẽ+ẽ−, µ̃+µ̃− followed by ẽ → eτ̃ τ and µ̃ → µτ̃τ , and second, by e+e− → χχ, fol-
lowed by χ → τ̃ τ , or through the cascade χ → ẽ, µ̃ → τ̃ . The energy and cos θ distributions

15



FIG. 11: Energy (left) and cos θ (right) distributions for NLSP staus produced at the ILC in the

mSUGRA model with m0 = 0, M1/2 = 600 GeV, A0 = 0, tan β = 10, µ > 0. Results are for√
s = 500 GeV and integrated luminosity 300 fb−1/yr.

of NLSP staus in the mSUGRA model are shown in Fig. 11.3 As evident in Fig. 11, the
additional sources of staus increase the total number of staus significantly, but just as signif-
icant, the cascade decays produce a broad and flat tail in the energy distribution extending
nearly down to mτ̃ . The cos θ distribution is nevertheless still peaked at cos θ = 0.

The number of trapped staus per year for the mSUGRA model are given in Fig. 12. The
presence of additional accessible superpartner states has a significant impact — for all trap
sizes considered, large numbers of staus may be trapped even for beam energies well above
475 GeV. This is a consequence of the broad energy distribution of NLSP staus, which in
turn follows from the existence of other fairly degenerate superpartners.

In the mSUGRA case, we may also compare these ILC results directly with results from
the LHC analysis given above. The LHC results for M1/2 = 600 GeV from Sec. IV are given
by the lines marked “LHC” in Fig. 12. Comparing results of similarly-sized water traps, we
find that for this particular model, the ILC will be able to trap a factor of ∼ 10 more staus
than the LHC. Again, for the reasons discussed above, a significant enhancement of these
ILC results may be possible if one considers inserting lead between the ILC detector and the
water trap, and as many as O(104) staus may be trapped by reasonably sized water traps
using this more general approach.

VI. IMPLICATIONS AND CONCLUSIONS

Although the implications of supergravity for cosmology and particle physics have been
considered in great detail for decades, most work has been centered on scenarios in which
the LSP is a standard model superpartner. Here we have explored the gravitino LSP sce-
nario. Recent work has found significant cosmological motivations for this possibility, as

3 Helicity correlations between production and decay are not included in our event generation. These are,

of course, absent for scalar particles, but may modify both the energy and cos θ distributions for staus

produced through χ pair production.
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FIG. 12: The number of sleptons trapped per year at the ILC in 10 kton (solid), 1 kton (dot-dashed),

and 0.1 kton (dashed) water traps. The total number of sleptons produced is also shown (upper

dotted) along with the number of sleptons trapped in the ILC detector (lower dotted). The trap

shape and placement have been optimized, and we assume rin = 10 m and rwe
in = 10 mwe, luminosity

300 fb−1/yr and the mSUGRA model with m0 = 0, M1/2 = 600 GeV, A0 = 0, tan β = 10, µ > 0.

For comparison, the number of trapped staus at the LHC for various trap volumes is also shown.

the gravitino may explain dark matter, and the scenario may resolve current difficulties in
Big Bang nucleosynthesis and with leptogenesis. We considered here a novel implication for
collider physics, namely that NLSP sleptons may be collected in water traps before their
decays to the gravitino. These sleptons may then be concentrated and transported to some
quiet environment where their decays may be studied in detail.

By optimizing the water trap shape and placement and considering a variety of sizes, we
have first explored the prospects for trapping sleptons at the LHC. The number that may
be trapped is highly model-dependent. For minimal supergravity with m0 = 0, we find that
as many as 104 staus may be stopped in a 10 kton trap when the sleptons have mass around
100 GeV. This is as light as is allowed by current bounds. For a less optimistic scenario, say,
with 219 GeV staus, hundreds and tens of sleptons may be trapped each year in 10 kton
and 1 kton traps, respectively.

These results may be improved significantly if long-lived NLSP sleptons are kinematically
accessible at the ILC. For the identical case with 219 GeV sleptons discussed above, O(1000)
sleptons may be trapped each year in a 10 kton trap. If only the NLSP is accessible, this
result may be achieved by tuning the beam energy so that produced NLSPs barely escape
the ILC detector. The ability to prepare initial states with well-known energies and the
flexibility to tune this energy are well-known advantages of the ILC. Here, these features are
exploited in a qualitatively new way to produce slow sleptons that are easily captured.

If there are additional superpartner states accessible at the ILC, even tuning the beam
energy is not necessary. The cascade decays of other superpartner states produce a broad
distribution of slepton energies, and so for a broad range of beam energies, some sleptons
will be captured in the trap. We have noted also that, by considering the slightly more
general possibility of placing lead or other dense material between the ILC detector and the
slepton trap, an order of magnitude enhancement may be possible, allowing up to O(104)
sleptons to be trapped per ILC year.
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The analysis here is valid with minor revisions for traps composed of any material. For
concreteness, however, we have considered traps composed of water tanks, with the ex-
pectation that sleptons caught in water will be easily concentrated and/or moved to quiet
environments.

These results imply that high precision studies of slepton decays may be possible. There
are many significant implications of such studies. These have been considered in detail
in Refs. [6, 10]. Briefly, simply by counting the number of slepton decays as a function
of time, the slepton lifetime may be determined with high accuracy. Given thousands of
sleptons, we expect a determination at the few percent level. The slepton decay width of
Eq. (5) is a simple function of the slepton and gravitino masses, and the slepton mass will
be constrained by analysis of the collider event kinematics, a measurement of the slepton
width therefore implies a high precision measurement of the gravitino mass and, through
Eq. (1), the supersymmetry breaking scale F . Such measurements will provide precision
determinations of the relic density of superWIMP gravitino dark matter, the contribution
of supersymmetry breaking to vacuum energy, and the opportunity for laboratory studies
of late decay phenomena relevant for Big Bang nucleosynthesis and the cosmic microwave
background.

The gravitino mass may also be determined, although not necessarily on an event-by-
event basis, by measuring the energy of slepton decay products. This provides a consistency
check. Alternatively, these two methods, when combined, determine not only mG̃, but also
the Planck mass M∗. This then provides a precision measurement of Newton’s constant on
unprecedentedly small scales, and the opportunity for a quantitative test of supergravity
relations.
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The possibility of transporting trapped sleptons to a low background environment, and the
material-independent analysis of optimizing trap shape and placement, both discussed at
length here, were not addressed.
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