MIDDLE LAYER QUICK REFERENCE

Gregory J. Portmann

This is meant to be a quick reference guide. It is not a complete explaination of the
details of each function. Most of the flexibility of each function is not discused. It is
designed so that one can cut/paste from this document directly into the Matlab command
window to do common tasks quickly.

1. Machine State

a.

Units: Hardware or Physics

switch2hw

switch2physics

Each family can be put in either hardware or physics units but it is not
recommended to do this. Spear3 will operate in hardware units for all
applications. One can override the units on the input to many functions. Units
IS not case sensitive.

Mode: Online or Simulate

switch2online

switch2sim

Each family can be put in either online or simulate mode but it is not
recommended to do this. The default mode Spear3 will be online. One can
override the mode on the input to many functions. Mode is not case sensitive.

2. Common flags

P00 oW

'Hardware’ or 'Physics’

'Online’, 'Simulator’, 'Model’, or 'Manual’
'Struct’ or 'Numeric’

'Archive’ or 'NoArchive’

'Display’ or 'NoDisplay’

3. Launch Pad GUI
srsetup is “launch pad” GUI for running commonly use functions.

4. Get/Save orbits

a.

Get an orbit

X = getx; % or x = getam('BPMXx);

y = gety; % or y = getam('BPMy");

Note 1: Use an optional 'Struct' input to return a data structure
Note 2: To graphically view orbits use plotorbit or plotfamily.

Save orbit data to the default directory for orbits
getx('archive’); % or getx archive
gety('archive”); % or gety archive

Get the default Golden and Offset orbits
Xgolden = getgolden('BPMXx'); % Horizontal golden orbit
Ygolden = getgolden('BPMy"); % Vertical golden orbit

Xoffset = getoffset('BPMX"); % Horizontal offset orbit
Yoffset = getoffset('BPMy"); % Vertical offset orbit

. Save the present orbit as the default golden orbit
BPMxGolden = getx('struct’);
BPMyGolden = getx('struct’);
setphysdata('BPMXx', Golden, BPMxGolden);
setphysdata('BPMy', Golden, BPMyGolden);

Save the present orbit as the default offset orbit

BPMOffset = {getx('struct’), gety('struct")};

FileName = getfamilydata('OpsData’, 'BPMOffsetFile");

DirName = getfamilydata('Directory’, 'OpsData’);

save([DirName FileName], ' BPMOffset ');

Note: Usually the offset orbit is determined from the quadrupole centering
program. See the quadrupole centering section below.

Find and save the default BPM standard deviations
[BPMxSigma, BPMySigma] = measbpmsigma('Struct’);
setphysdata('BPMx', 'Sigma’, BPMxSigma);
setphysdata('BPMy', 'Sigma’, BPMySigma);

. Converting between raw control system data and calibrated data
RealData = rawZ2real(Family, RawData, DeviceList)
RawData = real2raw(Family, RealData, DeviceList)

Uses getphysdata to get the actual calibration numbers
Gain = getphysdata('BPMXx', 'Gain’);
Offset = getphysdata('BPMXx', 'Offset’); % or, Offset = getoffset(BPMXx’);

Get/Set magnet settings
a. Get all the horizontal corrector setpoint and monitor values

SP = getsp('HCM";
AM = getam('HCM");

. Set HCM(2,1)=1 and HCM(2,4)=12
setsp(HCM', [1;12], [2 1; 2 4]);

Set all horizontal corrector to zero
setsp('HCM', 0);

Note 1. getfamilylist returns the names of all families.
Note 2: To graphically view magnets setpoints and monitors use plotfamily.

Global orbit correction
(to be written)

Local orbit correction
(to be written)

Get an orbit response matrix
(to be written)

Measure an orbit response matrix (and set as the default)
measbpmresp measures the orbit response matrix. The units for the orbit response
matrix at Spear is always [mm/amp] (hardware units). See help measbpmresp for
more details.

% Defaults for online data

R = measbpmresp;

% is the same as,

R = measbpmresp('BPMx', 'BPMy', 'HCM', 'VCM', [], [], 'Online’, 'Bipolar’,
‘Numeric', 'Archive");

% Defaults when using the model:

R = measbpmresp('Model’);

% is the same as,

R = measbpmresp('BPMx', 'BPMy', 'HCM', 'VCM', [], [], 'Model', Bipolar,
‘Numeric', ‘NoArchive', 'FixedPathLength’, 'Full’);

% Get a response matrix for 3 BPMs and 2 Correctors (w/o saving data)

% The data is usually saved to disk. The 'NoArchive' flag stops this.

R1 = measbpmresp('BPMXx’, [1 1;2 2;6 3], 'BPMy', [1 1;2 2;6 3], ' HCM', [1 1; 1 3],
'VCM', [1 1; 1 2], 'NoArchive');

% Get a the same data from the model

% The default for the model is not to save data to disk.

R2 = measbpmresp('BPMx', [1 1;2 2;6 3], 'BPMY', [1 1,2 2;6 3], 'HCM', [1 1; 1 3],
'VCM', [1 1; 1 2], 'Model’);

% Compare a column (ie, a corrector magnet response)
plot(R2(:,1) - R1(:,1));

% Get a the same data from the model w/ a FixedMomentum, Linear model
R2 = measbpmresp('BPMx', 'BPMy', 'HCM', [1 1; 1 3], 'VCM', [1 1; 1 2],
'FixedMomentum’, 'Linear', ‘Model');

10.

11.

12,

The default filename and directory is,
<DataRoot>\Response\BPM\BPMRespMat<Date><Time>.mat

To make this file the default operational file, copy it to:
<OpsData>\GoldenBPMResp.mat

Prepare a LOCO input file

LOCO requires an orbit response matrix and the standard deviations of the BPM
difference orbits. Measure a new orbit response matrix with measbpmres and new
BPM standard deviations measbpmsigma. Combine the output from these functions
with makelocoinput. (this function is still under development)

Get/Set/Step RF frequency
(to be written)

Get/Save/Plot Dispersion

The dispersion is measured with the measdisp function. The orbit shift verses RF or
momentum will be plotted. The default units for dispersion are change in orbit per
change in RF frequency [mm/MHz] (hardware units at Spear). However, one can
select units of change in orbit per change in momentum [meters/(dp/p)] (physics
units at Spear) by adding 'Physics' or 'Zeta' to the input line. A structure output is
selected by adding 'Struct' to the input line. The fields of the structure are similar to
a response matrix structure (delta orbit for a delta change in RF frequency). Use
plotdisp to plot a past measurement. See help measdisp for more details.

% Measure the dispersion (vector output)
[Dx, Dy] = measdisp;

% Measure the dispersion (structure output)
[Dx, Dy] = measdisp('Struct’);

% Measure the dispersion in physics units [1/(dp/p)]
[Dx, Dy] = measdisp ('Struct’, 'Physics’);

% Measure the dispersion and archive (output is optional)
measdisp (‘Archive’);

% Measure and plot the dispersion

% No outputs or 'Display' on the input line will automatically plot
[Dx, Dy] = measdisp('Display");

measdisp;

% Plot using plotdisp function
[Dx, Dy] = measdisp('Struct’);
plotdisp(Dx, Dy);

13.

% Model dispersion (override the Mode to Simulate)
[Dx, Dy] = measdisp('Simulate’);

% Model dispersion (calls AT directly)
[Dx, Dy] = measdisp('Model"); % calls modeldisp

Tune

Get/Set/Step tunes
% Measure the tune and return a 2x1 vector
Tune = gettune;

% Measure the tune and return a structure
Tune = gettune('Struct’);

Measure a tune response matrix (and set as the default)

meastuneresp measures the tune response matrix. The units for the tune response
matrix at Spear is [Fractional Tune/Amp] (hardware units). See help meastuneresp
for more details.

The default filename and directory is,
<DataRoot>\Response\Tune\TuneRespMat<Date><Time>.mat

To make this file the default operational file, copy it to:
<OpsData>\GoldenTuneResp.mat

Step the tune and get the tune response matrix
To change the tune by [-.05; .05], simple use the steptune command.
steptune([-.05; .05]);

The steptune function can easily be done manually:

% Measure the tune (just to check the result)
Tunel = gettune,

% Get the chromaticity response matrix for SF and SD
m = gettuneresp;

% Compute the delta SF and SD and apply the correction
DeltaAmps = inv(m) * [-.05; .05];
setsp({'QF', 'QD'}, {getsp('QF")+DeltaAmps(1), getsp('QD")+DeltaAmps(2)});

% Measure the chromaticity and check result
Tune2 = gettune;

14.

DeltaTune = Tune?2 - Tunel
Chromaticity

Measure a chromaticity

Measure the chromaticity using the measchro command. The tune shift verses RF
or momentum will be plotted. Chromaticity being the linear term in the curve fit.
Verify that the curve fit looks “accurate.” Note: when the chromaticity is close to
zero small tune errors can produce an inaccurate chromaticity measurement. The
default units for chromaticity are change in tune per change in RF frequency
[1/MHZz] (hardware units). However, one can select units of change in tune per
change in momentum [1/(dp/p)] (physics units) by adding 'Physics' or 'Zeta' to the
input line. The default output is the 2x1 chromaticity vector, however, a structure
output is selected by adding 'Struct' to the input line. The fields of the structure are
similar to a response matrix structure. measchro automatically plots the results

Use plotchro to plot a past measurement. See help measchro for more details.

% Measure the chromaticity and return a 2x1 vector (units [1/MHZz])
Chro = measchro;

% Measure the chromaticity and return a structure
ChroStruct = measchro('Struct');

% Measure the chromaticity is physics units [1/(dp/p)]
ChroStruct = measchro('Struct', 'Physics");

% Measure the chromaticity and archive to the appropriate directory
measchro('Archive’); % Output is optional

Measure a chromaticity response matrix (and set as the default)
measchroresp measures the chromacity response matrix for the default sextupole
families. The units for the chromacity response matrix at Spear is [1/MHz]
(hardware units). See help measchroresp for more details.

The default filename and directory is,
<DataRoot>\Response\Chromaticity\ChroRespMat<Date><Time>.mat

To make this file the default operational file, copy it to:
<OpsData>\GoldenChroResp.mat

Step the chromaticity and get the chromaticity response matrix

To change the chromaticity by [-.25; .25] [1/MHz], simple use the stepchro
command.

stepchro([-.25; .25]);

15.

16.

17.

18.

If the chromaticity was measured in physics units and the response matrix was
measured in hardware units then convert it before passing it to stepchro. For
RF=476.3 and MCF=.0011,

stepchro([.1346; -.1346] / -RF / MCF);

However, it is best to stick with one set of units for all measurements.

The stepchro function can easily be done manually:

% Measure the chromaticity (just to check the result)
figure(1);
Chrol = measchro;

% Get the chromaticity response matrix for SF and SD
m = getchroresp;

% Compute the delta SF and SD and apply the correction
DeltaAmps = inv(m) * [-.25; .25];
setsp({'SF', 'SD}, {getsp('SF')+DeltaAmps(1), getsp('SD")+DeltaAmps(2)});

% Measure the chromaticity and check result
figure(2);

Chro2 = measchro;

DeltaCrho = Chro2 - Chrol

Save/restore
Archive a lattice
Make the default magnet lattice for operations

Find a quadruple center and update the offset orbit
(to be written)

Get/Set an insertion device position
(to be written)

Model only functions
A number of function have been written only to get or set model parameters.

% Model dispersion function

modeldisp; % Plots with units mm/MHz

modeldisp('BPMXx', 'BPMy'); % Plots at 'BPMXx’, 'BPMy' families [mm/MHz]
modeldisp(‘Physics'); % Plots with units meters/(dp/p)

[Dx, Dy] = modeldisp; % Returns Dx, Dy with units mm/MHz

% Model beta function
modeltwiss('beta’); % Plot beta
modeltwiss('beta’, 'BPMx’); % Plot beta at the BPMx family

19.

[Betax, Betay] = modeltwiss('beta’, 'BPMXx’); % Returns beta at BPMx

% Model closed orbit

[X, y] = modeltwiss('ClosedOrbit"); % Closed orbit at all AT elements
[X, y] = modeltwiss('X’); % Closed orbit at all AT elements
y = modeltwiss('y', 'BPMy"); % Vertical orbit at BPMy family

Example Script (Orbit Correction)

% Introduce an orbit error
setsp('HCM',rand(72,1));

% Get the proper response matrix

%Sx = getrespmat('BPMx','HCM");

Sx = measbpmresp('BPMx', 'BPMy','HCM', 'VCM', 'Struct’, ‘Model’);
Sx = Sx(1,1).Data;

% Gets all horizontal BPMs (vector)
X = getx;

% Computes the SVD of the response matrix, Sx(96x94)
% Use singular vectors 1 thru 24

lvec = 1:24;

[U, S, V] = svd(SX);

% Find the corrector changes (vector)
DeltaAmps = -V(:,Ivec)*((U(:,lvec)*S(lvec,Ivec))\X) ;

% Changes the current in all horizontal corrector magnets
stepsp('HCM', DeltaAmps);

% Plot new orbit
plot(getspos('BPMXx’), X, 'b', getspos('BPMXx’), getx, 'r'");
xlabel('BPM Position [meters]');

	MIDDLE LAYER QUICK REFERENCE

