Building cool scripts, apps, and games
for Android Smartphones

Practical

Android Projects

Lucas Jordan | Pieter Greyling

Apress:

Chapter

Introducing SL4A:
The Scripting Layer
for Android

The main objective of this chapter is to introduce you to the Scripting Layer for Android
(SL4A) platform. Our aim is to give you enough basic understanding of how SL4A" works
and to be able to use it to run your own scripts written in a number of high-level
scripting languages.

As you will see, the design of SL4A enables it to support many scripting language
interpreters. In order to make practical use of SL4A, you will need to understand at least
the rudiments of one high-level scripting language such as Python, Ruby, Perl, Lua,
JavaScript, or BeanShell.

For this book, we assume that you have a good level of Java programming language
knowledge and this should serve you well if you intend to use a related language such
as BeanShell or JavaScript with SL4A.

In this chapter, we will first give you some background about what SL4A is, what it can
be used for, where to get it, and where to learn more about it for yourself. We will then
show you how to install and run SL4A with small examples. After this, you will get a
technical overview of how SL4A works and how its design relates to the scripting
architectures we presented in the two previous chapters. To help you on your way to a
deeper study of SL4A, we will then show you how to obtain a copy of the complete
SL4A source code repository. In conclusion, we will present some equivalent SL4A
“Hello World” example code snippets in various scripting languages.

' From now on, we will use the acronym “SL4A” instead of “Scripting Layer for Android.”

193

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android

What Is Scripting Layer for Android?

In a nutshell, SL4A is an infrastructure for enabling the interoperation of scripting
language engines that have been ported to the Android platform with the Android
application programming interface (API) via remote procedure calls (RPCs) to a server
implemented as a standard Android Java application.

About SL4A

SL4A,? originally called Android Scripting Environment (ASE), was brought to us by
Damon Kohler® and is hosted on Google Code as an open-source project.

From the user perspective, the SL4A Android application lets you edit and run scripts
against multiple interactive script interpreters on your Android device. It also supports
the ability to install script interpreters into the application directly from the SL4A home
site.

In essence, SL4A is more than just a standard end-user Android application; it is also a
platform for exposing Android functionality to custom client programs such as scripting
engines.

The SL4A License

Like the Android platform, SL4A is open source and is released under the same Apache
License Version 2.0,* as is most of Android.

Using SL4A

The SL4A system is suited for the following kinds of tasks:

B RAD programming: With SL4A it is possible to use a rapid application
development (RAD) approach to quickly create a prototype application
that allows you to test the feasibility of an idea. Once the practicality of
the application is confirmed, you can create a full-blown Android
application.

B Writing test scripts: Assuming that the supporting Android APIs are
exposed to SL4A, it can be used to create test scripts for other
functionality.

2 http://code.google.com/p/android-scripting/
3 http://www.damonkohler.com/search/label/sl4a

4 http://www.apache.org/licenses/

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android

B Building utilities: You can fairly easily and quickly write utility and tool
scripts that do small jobs or automate certain aspects of repetitive
tasks. These tools probably do not require a complicated user
interface; they need just a simple dialog-based user interaction mode.

SL4A Resources

For more background on SL4A, we recommend consulting the following online
resources:

B SL4A home:
B http://code.google.com/p/android-scripting/
B SL4A downloads:

B http://code.google.com/p/android-scripting
/downloads/list

B http://code.google.com/p/android-scripting
/downloads/list?q=label:Featured

B SL4A FAQ:

B http://code.google.com/p/android-scripting/wiki/FAQ
B SL4A Wiki:

B http://code.google.com/p/android-scripting/w/list
B SL4A tutorials:

B http://code.google.com/p/android-scripting/wiki
/Tutorials

B SL4A source code:

B http://code.google.com/p/android-scripting/source
/checkout

The SL4A Code Repository

The SL4A project source code is hosted on Google Code in a Mercurial repository.®

Mercurial SCM is an open-source, distributed-source, control management tool.
Mercurial is designed to be cross-platform and is written in the Python programming
language.

3 http://code.google.com/p/android-scripting/source/browse/

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android

Later in the chapter, we will show you how to use the Mercurial client-side tools and
integrated development environment (IDE) plugins to bring the SL4A code to your
desktop in order to build and run SL4A.

Running SL4A in the Android Emulator

Before we dive into the details of SL4A, we will show you the quickest way to have a
look at SL4A in action.

We will download the SL4A Android application package (APK) distribution and install it
on a running Android emulator instance. This will allow us to use SL4A to install some
scripting engines into the emulator from the SL4A site.

Development Environment Configuration

As a quick reference, Table 5-1 lists some development environment configuration
settings and commands that you will find useful for working with the code in this
chapter.

Table 5-1. Development Environment Configuration Quick Reference

ltem Value or Command

PATH <Android SDK Directory>/tools

PATH <Android SDK Directory>/platform-tools

PATH <Apache Ant Directory>/bin

PATH <Mercurial Directory>/

Create an AVD android create avd -n android23api9_hvga_32mb -t android-9 -c 32M
Start the AVD on emulator -avd android23api9_hvga_32mb &

Linux / Mac OS X

Start the AVD on start emulator -avd android23api9_hvga_32mb

Windows

Even though the PATH entry for the Mercurial executable (hg or hg.exe) is not strictly
necessary right now, it will become useful if you decide to get a snapshot of the SL4A
code and build it yourself.

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android

Downloading the SL4A APKs

First, we will download the SL4A application archive from the SL4A download site here:
B http://code.google.com/p/android-scripting/downloads/list
Or here:

B http://code.google.com/p/android-scripting/downloads
/list?q=label:Featured

Download the latest release of the SL4A APK. At the time of writing, this was the
following:

sl4a_r3.apk
Save this to a directory on your file system. We have called ours sl4a-apk.
Also available on the SL4A site were the following scripting engine APKs:

beanshell_for_android_r1.apk
jruby_for_android_r1.apk
lua_for_android_r1.apk
perl_for_android_r1l.apk
python_for_android_r1l.apk
rhino_for_android_r1.apk

NOTE: The SL4A APKs are included in the book downloads, so you can get started right away.

Installing the SL4A APK on the Android Emulator

Ensure that you are running the Android emulator using a compatible AVD. For this,
follow the instructions in Table 5-1.

Now, in a terminal command-line shell, navigate to the directory where you have saved
the downloaded SL4A APK file and enter the following command:

adb install sl4a_r3.apk
This should produce output similar to the following:

adb install sl4a_r3.apk

364 KB/s (840827 bytes in 2.250s)
pkg: /data/local/tmp/sl4a_r3.apk

Success

The SL4A launcher icon should now appear on the emulator, as illustrated in Figure 5-1.

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android

ANl N

DevTools Downloads Email Gallery Kahlua2int KahluaDro

BEOBERP @O A

Messaging Music MyAndroi Phone Search Settings

£ P

Spare Parts Speech
Recorder

Figure 5-1. SL4A Application Launcher icon

Running SL4A on the Android Emulator

When we launch the application, you should see the SL4A primary Usage Tracking
request, as shown in Figure 5-2.

Usage Tracking

Allow collection of anonymous usage information?

This can be changed later under preferences.

Figure 5-2. SL4A Usage Tracking

Simply click one of either the Accept or Refuse buttons. After invoking the SL4A
application menu (press the F2 keyboard key while in the emulator), you should now see
the image of the main SL4A application Activity screen, as shown in Figure 5-3.

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android

Scripts SL4A T3

NO ma

Search Preferences Refresh Help

Figure 5-3. SL4A application initial screen with Menu

Now select the View menu item and choose the Interpreters entry, as shown in Figure

Triggers

Logcat

Figure 5-4. SL4A view interpreters

As illustrated in Figure 5-5, our SL4A emulator installation is currently equipped only
with the Shell interpreter.

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android

Interpreters SL4A T3

Figure 5-5. SL4A interpreters: Shell

If you run the Shell interpreter, you should be presented with Figure 5-6. As you can see,
we have entered the following command into the shell:

echo $PATH

We are also about to execute the UNIX top command.

= uwll B 9:23
$ echo $PATH
/sbin:/vendor/bin:/system/sbin:/system/bin:/system/xbin
$ top]]

Figure 5-6. SL4A interpreters: Shell commands

The result of running the top command is shown in Figure 5-7.

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android

E wl B 9:25

664K 240K root /system/bin/debuggerd
5412K 536K radio /system/bin/rild
63964K 18828K root zygote
24924K 2124K media /system/bin/mediaserver
812K 296K root /system/bin/installd
1796K 336K keystore /system/bin/keystore
824K 332K root /system/bin/qemud
732K 252K shell /system/bin/sh
4392K 180K root /sbin/adbd
80240K 18600K app_22 com.android.inputmethod.latin
87308K 18336K radio com.android.phone
77476K 20884K system com.android.systemui
78836K 21684K app_1 com.android. launcher
268K 180K root /init
73852K 16692K app_26 com.android.quicksearchbox
732K 328K root /system/bin/sh
688K 344K root logcat
732K 332K app_33 /system/bin/sh
75256K 17544K app_9 android.process.media
0K 0K root kthreadd
0K 0K root ksoftirqd/0

Figure 5-7. SL4A Interpreters: Shell top

When you exit the Shell interpreter using the application menu, you are presented with
the screen as depicted in Figure 5-8.

Click the Yes button.

s ml ® 9:26
1 664K 240K root /system/bin/debuggerd
4 5412 536K radio /system/bin/rild
1 63964K 18828K root zygote
2 24924K 2124K media /system/bin/mediaserver
1 812K 296K root /system/bin/installd
1 1796K 336K keystore /system/bin/keystore
1 824K 332K root /system/bin/qemud
1 732K 252K shell /system/bin/sh
5 4392 180K root /sbin/adbd
12 80240K 18600K app_22 com.android.inputmethod.latin

19 87308K 18336K radio com.android.phone
10 77480K 20888K system com.android.systemui
10 78836K 21684K app_1 com.android. launcher
1 268K 180K root /init
287 % S 8 73852K 16692K app 26 com.android.auicksearchbox

Confirm exit.
Kill process?

Figure 5-8. SL4A interpreters: Shell exit

We are now done with confirming that our SL4A emulator installation is functioning
correctly.

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android

Installing SL4A Interpreters

Next we will add some new scripting language interpreters to the SL4A toolbox.

We will first show you how to do so using the SL4A application and then summarize how
to install the interpreters from your computer using the downloadable® application
packages (APKSs). This will enable you to install the base interpreter engines slightly
faster than doing it from the device using SL4A. It is best thereafter to let the relevant
script engine fetch its current and compatible extra ZIP packages under its own control.

Adding Interpreters with SL4A

From within the Interpreters screen, select the Add menu item. After scrolling down to
the Python entry in the list, you should see the image depicted in Figure 5-9.

% wl B 958

Add

Perl 5.10.1

Rhino 1.7R2

Figure 5-9. SL4A Add interpreters

Select the Python entry.

This will start a download of the Python APK from the SL4A site that should show the
notification shown in Figure 5-10 when completed.

6 http://code.google.com/p/android-scripting/downloads/list

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android

January 7, 2011 12

Android

4 python_for_android_r1.apk
Download complete 10:11 PM

Figure 5-10. SL4A Add interpreters: Python downloaded

Clicking the notification entry should display the dialog shown in Figure 5-11.
e Python for Android

Do you want to install this application?

Allow this application to:

+ Storage

Figure 5-11. SL4A Add interpreters: Python install

Now click the Install button.

The image shown in Figure 5-12 is what you should see during the download and
installation process.

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android

e Python for Android

Installing...

Figure 5-12. SL4A Add interpreters: Python installing

Once the installation is complete, you should see something similar to that shown in
Figure 5-13.

e Python for Android

Application installed

Done

Figure 5-13. SL4A Add interpreters: Python installed

If you now click the Open button, you will be presented with a screen (see Figure 5-14)
to initiate the secondary installation sequence. This will download all the supporting
archives to the emulator instance.

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android

Python for Android

Figure 5-14. SL4A Add interpreters: Install Python supporting files

Figure 5-15 depicts the process of downloading the suite of Python interpreter files.

@ Downloading

python_r7.zip

Figure 5-15. SL4A Add interpreters: Install Python download supporting files

Once the whole installation download process is complete, you should see the image
illustrated in Figure 5-16.

Do not click the Uninstall button.

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android

Python for Android

Figure 5-16. SL4A Add interpreters: Install Python done

Going back to the SL4A interpreters list, you should now see the Python script language
entry, as shown in Figure 5-17.

x wl # 1046
Interpreters SL4A T3

=] shell
'gl Python 2.6.2

Figure 5-17. SL4A Add interpreters: Python complete

This means that you can run Python on Android! The result of clicking the Python
interpreter entry is shown in Figure 5-18.

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android

s E owl B 11:23
Python 2.6.2 (r262:71600, Sep 19 2009, 11:03:28)

[GCC 4.2.1] on linux2

Type "help", "copyright", "credits" or "license" for more il

>>> I

Python 2.6.2

60x 15

Figure 5-18. SL4A: Run Python

Let’s enter some code into the interpreter. Try running the following Python statements:

import sys
print(sys.platform)

The result should be the following:

linux2
This short session is also shown in Figure 5-19.

s = il @ 12:00
Python 2.6.2 (r262:71600, Sep 19 2009, 11:03:28)

[GCC 4.2.1] on linux2

Type “"help", "copyright", "credits" or "license" for more il
>>> import sys

>>> print(sys.platform)

Figure 5-19. SL4A - Run Python Code

To demonstrate interaction with the Android API, enter the following code into the
interactive interpreter:

import android
andy = android.Android()
andy.makeToast('Hello Practical Android Projects!")

The result is shown in Figure 5-20.

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android

s = il B 12:52

Python 2.6.2 (r262:71600, Sep 19 2009, 11:03:28)

[GCC 4.2.1] on linux2

Type “"help", "copyright®, “"credits" or "license" for more in|

formation.

>>> import android

>>> andy = android.Android()

>>> andy.makeToast("Hello Practical Android Projects!™)
id=1, result=None, error=None)

Hello Practical Android Projects!

Figure 5-20. SL4A: Run Python Hello Android

This concludes our demonstration of how to install SL4A interpreters using SL4A.

NOTE: The SL4A interpreter setup process that we have documented so far will also apply when
using a physical device. So when you install SL4A and the supported interpreters on your phone,
the same steps will be presented.

Adding Interpreters with Package Archives

As mentioned earlier, it is also possible to install the interpreters from your computer
using the downloadable’ application packages (APKs). This makes script interpreter
installation slightly faster than only using the SL4A application as explained before.

Let’s assume that you want to install the Perl scripting interpreter in this fashion. In a
terminal command-line shell, navigate to the directory where you have saved the
downloaded Perl APK file and enter the following command:

adb install perl_for_android_r1l.apk
This should produce output similar to the following:

adb install perl_for_android_r1l.apk
96 KB/s (33894 bytes in 0.343s)

pkg: /data/local/tmp/perl_for_android_r1l.apk
Success

As shown earlier in Figure 5-14 where we installed Python, you can now initiate the
secondary installation sequence using the Perl for Android Launcher icon that should
now be visible in the emulator or device. This will download all the supporting archives

7 http://code.google.com/p/android-scripting/downloads/list

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android

following on from Figure 5-14 with the same workflow as before. At the very least, it
saves having the interpreter package being downloaded.

Understanding Scripting Layer for Android

As mentioned earlier, SL4A enables interoperation between Android agnostic scripting
language engines and the Android API. As you will see later, this is not restricted to
scripting languages only. Any program that implements a compatible JSON-based RPC?
interfacing module or set of routines can potentially invoke the SL4A RPC Server.

Communicating Using JavaScript Object Notation (JSON)

Internally, SL4A uses the JavaScript Object Notation (JSON) data format for the
interchange of messages and data between the SL4A RPC Server and its clients. This is
fundamental to its workings so we will give a quick summary of JSON here.

The acronym JSON was originally specified by Douglas Crockford. The JSON data
format is described in RFC 4627.°

To quote from the JSON specification:

“JavaScript Object Notation (JSON) is a lightweight, text-based,
language-independent data interchange format. It was derived from the
ECMAScript Programming Language Standard. JSON defines a small
set of formatting rules for the portable representation of structured data.
JSON can represent four primitive types (strings, numbers, booleans,
and null) and two structured types (objects and arrays).”

To give you an idea of the data format, the specification also presents an example of a
JSON object as follows:

{
"Image": {

"Width": 800,

"Height": 600,

"Title": "View from 15th Floor",

"Thumbnail": {
"Url": "http://www.example.com/image/481989943",
"Height": 125,
"Width": "100"

b
"IDs": [116, 943, 234, 38793]

8 Remote Procedure Call

’ http://tools.ietf.org/html/rfc4627

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android

}
}

We will not go into more detail about JSON here but instead recommend that you follow
up the online resources for more information if you are interested.

Summarizing the SL4A Architecture

SL4A exposes Android API functionality to its clients. It achieves this by implementing a
scripting language—compatible module that marshals RPCs and their responses to and
from a RPC server implemented as an Android Java application. This enables the RPC
server to have direct access to the Android APl and it behaves as a remote proxy using
a facade that encapsulates and exposes selected Android APIs.

Scripting languages are ported, via cross-compilation or otherwise, to the Android
platform in their purest form avoiding any source code changes. This implies that the
scripting language has no knowledge of the Android platform at all. It gains access to
the Android API using a special module generally implemented in the scripting language
itself that accesses the Android APl over the remote SL4A RPC server. The current
implementation uses the JSON data format for its application layer network messaging
package payload content.

The overall design of this infrastructure is illustrated in Figure 5-21.

(

\
[Scripting Layer for Android (SL4A))

S serintoy \ SL4A Supported
\TYSCHPLY ™ Client Seript Engines
meerzees | \(Python, Perl, JRuby etc.)
/ android Android() /

/ __ Script “Android” Lﬁﬁc

SL4A RPC Server
{Android Java Application)

Java Android API

- _[RPC Module “SguEued Facade
Android 4
Android Operating Platform (Dalvik VIV) A
\ J

Figure 5-21. SL4A architecture overview

To explain things another way, a “generic” script engine, running in a self-contained
process, accesses the Android API over bidirectional JSON-RPC via an API fagade. The
facade is serviced in a separate process, and implemented as a “standard,” Java-
based, Android server application. The latter has full access to the Android platform API
and thus essentially serves as a remote API “proxy” for the scripting engine/interpreter.
Each scripting language has a “wrapper” module providing an “Android object” that

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android

serves as an in-process, local, API proxy, with the task of packaging RPC calls as
scripting methods in the spirit of the particular scripting engine.

To sum this up, an overview of the full-round trip invocation stack looks something like
the following:

-- Script Interpreter

---- Client/Caller/Consumer Script

------ "Android" Script Object (locally wraps RPC calls) - Local Proxy
-------- Remote Procedure Calls (RPC) - Exchanges contain a JSON payload
------ Android API Java Facade - Remote Proxy

---- API Server/Provider - Android Java application

-- The Android Platform itself

NOTE: This decoupled architecture permits any compatible local or remote client to call into
SL4A as long as it does so via the JSON RPC call interface.

Reviewing Local Proxy Implementations

We will not go into detailed explanations of the code, but to give you an idea of what is
involved, here are some implementations of client RPC proxy wrapper modules.

In Python (see Listing 5-1):

Listing 5-1. Python Module for Accessing the AndroidProxy (android-scripting/python/ase/android.py)
Copyright (C) 2009 Google Inc.

#

Licensed under the Apache License, Version 2.0 (the "License"); you may not
use this file except in compliance with the License. You may obtain a copy of
the License at

#

http://www.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS, WITHOUT

WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under
the License.

_author__ = 'Damon Kohler <damonkohler@gmail.com>'

import collections
import json
import os

import socket
import sys

PORT = os.environ.get('AP_PORT")
HOST = os.environ.get('AP_HOST")
HANDSHAKE = os.environ.get('AP_HANDSHAKE")

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android

Result = collections.namedtuple('Result’, 'id,result,error")

class Android(object):

def __init_ (self, addr=None):

if addr is None:
addr = HOST, PORT

self.conn = socket.create_connection(addr)

self.client = self.conn.makefile()

selfid =0

if HANDSHAKE is not None:
self._authenticate(HANDSHAKE)

def _rpc(self, method, *args):
data = {'id": self.id,
'method": method,
'params': args}
request = json.dumps(data)
self.client.write(request+'\n")
self.client.flush()
response = self.client.readline()
selfid +=1
result = json.loads(response)
if result['error'] is not None:
print result['error’]
namedtuple doesn't work with unicode keys.
return Result(id=result['id'], result=result['result'],
error=result['error'],)

def __getattr__(self, name):
defrpc_call(*args):
return self._rpc(name, *args)
return rpc_call

The equivalent functionality is shown in the C programming language (see Listing 5-2)
taken from the android-cruft project'® on Google Code. This project demonstrates how
to write C programs that can access the Android API by leveraging SL4A, using the
same principles as the earlier Python proxy.

Listing 5-2 presents the C main function that is the meat of the code logic. It attempts to
invoke the Android API over the SL4A RPC server in order to raise an Android Toast with
the message “w00t!” It marshals the message character buffer into a json_array, which it
then sends over to the SL4A RPC server with a call to the sl4a_rpc function.

Listing 5-2. C Main Module for Accessing SL4A (ndk-to-sl4a.c)

[--code omitted--]

10 http://code.google.com/p/android-cruft/wiki/SL4AC

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android

main(int argc, char **argv) {
int port = 0;
if (argc !1=2) {
printf("Usage: %s port\n", argv[0]);
return 1;

}

port = atoi(argv[1]);

int socket_fd = init_socket("localhost", port);
if (socket_fd < 0) return 2;

json_t *params = json_array/();
json_array_append(params, json_string("w00t!"));
sl4a_rpc(socket_fd, "makeToast", params);

}

[--code omitted--]

The supporting C functions are shown in Listing 5-3. We will not go into the details, but
present the listing here for the sake of completeness.

Listing 5-3. C Support Functions for Accessing SL4A (ndk-to-sl4a.c)

// Released into the public domain, 15 August 2010

// This program demonstrates how a C application can access some of the Android
// APl via the SL4A (Scripting Languages for Android, formerly "ASE", or Android
// Scripting Environment) RPC mechanism. It works either from a host computer
// or as a native binary compiled with the NDK (rooted phone required, I think)
// SL4A is a neat Android app that provides support for many popular scripting
// languages like Python, Perl, Ruby and TCL. SL4A exposes a useful subset of

// the Android API in a clever way: by setting up a JSON RPC server. That way,

// each language only needs to implement a thin RPC client layer to access the

// whole SL4A API.

// The Android NDK is a C compiler only intended for writing optimized

// subroutines of "normal" Android apps written in Java. So it doesn't come

// with any way to access the Android APIL.

// This program uses the excellent "Jansson" JSON library to talk to SL4A's

// RPC server, effectively adding native C programs to the list of languages

// supported by SL4A.

// To try it, first install SL4A: http://code.google.com/p/android-scripting/

//

// Start a private server with View->Interpreters->Start Server

//

// Note the port number the server is running on by pulling down the status
// bar and tapping "SL4A service".

// This program works just fine as either a native Android binary or from a
// host machine.

// To compile on an ordinary linux machine, first install libjansson. Then:

// $ gcc -ljansson ndk-to-sl4a.c -o ndk-to-sl4a

// To access SL4A on the phone use "adb forward tcp:XXXXX tcp:XXXXX" to port
// forward the SL4A server port from your host to the phone. See this

// page for more details:

// http://code.google.com/p/android-scripting/wiki/RemoteControl

] e

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android

// To compile using the NDK:

// 1.Make sure you can compile "Hello, world" using the NDK. See:

// http://credentiality2.blogspot.com/2010/08/native-android-c-program- «
using-ndk.html

/!

// 2.1fyou followed the above instructions, you have a copy of the agcc.pl

// wrapper that calls the NDK's gcc compiler with the right options for

// standalone apps.

//

// 3.Unpack a fresh copy of the jansson sources. Tell configure to build for
// Android:

//

// $ CC=agcc.pl./configure --host=arm

// $ make

//

// 4.Cross your fingers and go! (I'm quite certain there's a more elegant
// way to do this)

/!

// $ agcc.pl -1/path/to/jansson-1.3 /src -o ndk-to-sl4a-arm ndk-to-sl4a.c+~
/path/to/jansson-1.3/src/*.0

/!

// 5. Copy to the phone and run it with the port of the SL4A server!

#include <stdio.h>
#include <jansson.h>
#include <unistd.h>
#include <string.h>

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

// This mimics SL4A's android.py, constructing a JSON RPC object and
// sending it to the SL4A server.
int sl4a_rpc(int socket_fd, char *method, json_t *params) {

static int request_id = 0; // monotonically increasing counter

json_t *root = json_object();

json_object_set(root, "id", json_integer(request_id));
request_id++;

json_object_set(root, "method", json_string(method));

if (params == NULL) {
params = json_array/();
json_array_append(params, json_null());

}

json_object_set(root, "params", params);

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android

char *command = json_dumps(root, JSON_PRESERVE_ORDER | JSON_ENSURE_ASCII);
printf("command string:'%s"\n", command);

write(socket_fd, command, strlen(command));
write(socket_fd, "\n", strlen("\n"));

// At this point we just print the response, but really we should buffer it
// up into a single string, then pass it to json_loads() for decoding.
printf("Got back:\n");
while (1) {

charc;

read(socket_fd, &c, 1);

printf("%c", c);

if (c=="\n") {

break;
}

}
fflush(stdout);

return 0;

}

// This function is just boilerplate TCP socket setup code
int init_socket(char *hostname, int port) {
int socket_fd = socket(AF_INET, SOCK_STREAM, 0);
if (socket_fd ==-1) {
perror("Error creating socket");
return 0;

}

struct hostent *host = gethostbyname(hostname);
if (host == NULL) {

perror("No such host");

return -1;

}

struct sockaddr_in socket_address;

inti;

for (i=0; i < sizeof(socket_address); i++) {
((char *) &socket_address)[i] = 0;

}

socket_address.sin_family = AF_INET;
for (i=0; i < host->h_length; i++) {

((char *) &socket_address.sin_addr.s_addr)[i] = ((char *) host->h_addr)[i];
}

socket_address.sin_port = htons(port);

if (connect(socket_fd, (struct sockaddr *) &socket_address, sizeof(socket_address)) <~

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android

<0){
perror("connect() failed");
return -1;

}

return socket_fd;

}

[--code omitted--]

Getting the SL4A Source Code

To quote from the home site of SL4A:

“SL4A is designed for developers and is alpha quality software.”

This means that you can expect SL4A to go through relatively frequent changes and
releases until it moves out of alpha. For this reason, we will present methods by which
you can retrieve the SL4A source code.

Cloning the SL4A Source Code

We will show you several options for getting a local copy of the SL4A source code
repository.

Installing Mercurial
We recommend that you install a local copy of Mercurial using the following resources:
B Mercurial source code management home:
B http://mercurial.selenic.com/
B http://mercurial.selenic.com/about/
B Mercurial downloads:
B http://mercurial.selenic.com/downloads/
B Mercurial tools:

B http://mercurial.selenic.com/wiki/OtherTools

NOTE: The Eclipse IDE plugin for Mercurial that we will present later also includes the option of
installing the Mercurial executables and binaries for the Windows platform. We prefer to install
Mercurial as a stand-alone application and add it to the system PATH variable.

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android

To verify the Mercurial installation on your development computer, execute the following
command from the terminal command line:

hg -v
This should result in output similar to the following:

Mercurial Distributed SCM (version 1.6.2)

Copyright (C) 2005-2010 Matt Mackall <mpm@selenic.com> and others
This is free software; see the source for copying conditions.

[--text omitted--]

use "hg help" for the full list of commands

Getting SL4A Using the Mercurial Hg Executable

We assume that you have installed a local copy of Mercurial and that it is on your
system PATH variable. Enter into a file system directory of your choice using the
terminal command line and execute the following command:

hg clone https://android-scripting.googlecode.com/hg/ android-scripting
This should result in output somewhat similar to the following:

hg clone https://android-scripting.googlecode.com/hg/ android-scripting
requesting all changes

adding changesets

adding manifests

adding file changes

added 1066 changesets with 34881 changes to 28397 files

updating to branch default

11207 files updated, 0 files merged, O files removed, O files unresolved

Using Mercurial with Eclipse
You can install the Mercurial plugin for Eclipse from the update location below:
B Eclipse Mercurial plugin:
B http://javaforge.com/project/HGE
B Eclipse Mercurial plugin update site:
B http://cbes.javaforge.com/update

Figure 5-22 displays the form required for installing the Eclipse Mercurial plugin.

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android

(:} Install I =] B3
Available Software
Check the items that you wish to install. 4
Work with: I [pa] Mercurial VCS Edlipse Plugin - http: //cbes.javaforge.com/update 3 Add... I
Find more software by working with the "Available Software Sites” preferences.
| type filter text
Name I Version
m| 9+ codeBeamer Ediipse Studio (with Mylyn) 3.1.0.v201011161842
[0 4 HoEdipse 1.5.1,TRANSITION
=# MercurialEdlipse 1.7.1.v201012101420
[m} $ MercurialEdlipse with codeBeamer Edlipse Studio 1.2.0.v201011161842
%% MercurialMylyn 1.1.0.v201011161842
[<0+ Windows Binaries for Mercurial (Recommended) 1.6.4.v201011161842
< i o
Deselect All I 2items selected
[Details
This item installs the Mercurial binaries for Windows computers. =
Itis REQUIRED, unless Mercurial is already installed on your computer. Itis for Windows only! -
[V Show only the latest versions of available software ™ Hide items that are already installed
I Group items by category Whatis already installed?
¥ Contact all update sites during install to find required software
@ < Back I Next > I Einishy I Cancel I

Figure 5-22. Eclipse Mercurial plugin

We will not follow the whole sequence here, but Figure 5-23 displays the form required
for cloning a Mercurial repository from within Eclipse.

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android

(:} New Project

Select a wizard

Clone existing local or remote Mercurial repository (

—>

Wizards:
Itvpe filter text

B2 Mercurial ;l
- {1, Clone Existing Mercurial Repository

#-(2 Plug-in Development

B Pydev

- Web

-G XLUPC
[#-(= Examples v

@

Figure 5-23. Cloning a Mercurial repository with the Eclipse Mercurial plugin

Einist Cancel

Using Mercurial with IntelliJ IDEA

You can install the Mercurial plugin for Intellid IDEA from the following location:
B [ntelliJ IDEA Mercurial plugin:
B http://plugins.intellij.net/plugin/?id=3370
B https://bitbucket.org/willemv/hg4idea

Figure 5-24 displays the form required for using the Intellid IDEA Mercurial plugin. This
will allow you to clone a Mercurial repository from the IDE.

File Edit Search View GoTo Code Analyze Refactor Buld Run Tools VersionControl Window Help

PESGXRA|QAA[EH[A >S5

=g
%E‘

Figure 5-24. IntelliJ IDEA Mercurial plugin

Checkout from Version Control »
Import into Version Control »
Browse VCS Repository »

Ccvs

Git
GitHub

Mercurial

Subversion

Again, we will not follow the whole sequence here, but Figure 5-25 displays the form
required for cloning a Mercurial repository from within IntelliJ IDEA.

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android

¢]| Clone Mercurial Repository !H

Mercurial Repository URL |https://android-scripﬁng.googlecode.com/hg/ Test Repository

Parent Directory || _l
Directory Name |

| Clone I Cancel | Help

Figure 5-25. Cloning a Mercurial repository with the IntelliJ IDEA Mercurial plugin

SL4A Hello World Examples

To get an idea of the spirit of SL4A, here are some basic examples in different scripting
languages. Install the interpreters and try them out.

® BeanShell:

source("/sdcard/com.googlecode.bshforandroid/extras/bsh/android.bsh");
droid = Android();
droid.call("makeToast", "Hello, Android!");

B JavaScript:

load("/sdcard/com.googlecode.rhinoforandroid/extras/rhino/android.js");
var droid = new Android();
droid.makeToast("Hello, Android!");

m Perl:

use Android;
my $a = Android->new();
$a->makeToast("Hello Practical Android Projects!");

H Python:

import android
andy = android.Android()
andy.makeToast("Hello Practical Android Projects!")

H Ruby:

droid = Android.new
droid.makeToast "Hello Practical Android Projects!"

m TCL:

package require android
set android [android new]
$android makeToast "Hello, Android!"

We hope that this will encourage you to study SL4A in more depth.

CHAPTER 5: Introducing SL4A: The Scripting Layer for Android

Summary

The main objective of this chapter was to introduce you to the Scripting Layer for
Android (SL4A) platform. SL4A is a growing topic and is well worth investigating in
depth.

We helped you get a basic understanding of how SL4A works and to be able to use it to
run your own scripts on the Android platform.

You now have enough information to clone your own copy of the SL4A source code
repository in order to build SL4A yourself.

