| 1 | \documentclass[twoside,12pt]{article}
 | 
|---|
| 2 | %  Package standard : Utilisation de caracteres accentues, mode francais et graphique
 | 
|---|
| 3 | \usepackage[latin1]{inputenc}
 | 
|---|
| 4 | \usepackage[T1]{fontenc}
 | 
|---|
| 5 | \usepackage{babel}
 | 
|---|
| 6 | \usepackage{graphicx}
 | 
|---|
| 7 | 
 | 
|---|
| 8 | %  Extension de symboles mathematiques
 | 
|---|
| 9 | \usepackage{amssymb}
 | 
|---|
| 10 | 
 | 
|---|
| 11 | %  Definition de taille de page
 | 
|---|
| 12 | \setlength{\textwidth}{16cm}
 | 
|---|
| 13 | \setlength{\textheight}{21.5cm}
 | 
|---|
| 14 | \setlength{\topmargin}{0.5cm}
 | 
|---|
| 15 | \setlength{\oddsidemargin}{0.cm}
 | 
|---|
| 16 | \setlength{\evensidemargin}{0.cm}
 | 
|---|
| 17 | \setlength{\unitlength}{1mm}
 | 
|---|
| 18 | 
 | 
|---|
| 19 | \newcommand{\bul}{$\bullet \ $}
 | 
|---|
| 20 | 
 | 
|---|
| 21 | \begin{document}
 | 
|---|
| 22 | 
 | 
|---|
| 23 | \begin{titlepage}
 | 
|---|
| 24 | \vspace{1cm}
 | 
|---|
| 25 | \rule{110 mm}{0.5 mm}\makebox[50 mm]{\bf Planck HFI L2}
 | 
|---|
| 26 | \vspace{2cm}
 | 
|---|
| 27 | \begin{center}
 | 
|---|
| 28 | \par \renewcommand{\baselinestretch}{2.0} \small 
 | 
|---|
| 29 | {\LARGE \bf 
 | 
|---|
| 30 | Planck HFI L2 \\ 
 | 
|---|
| 31 | Software Development Guidelines
 | 
|---|
| 32 | }
 | 
|---|
| 33 | \par \renewcommand{\baselinestretch}{1.0} \normalsize
 | 
|---|
| 34 | \vspace{5 cm}
 | 
|---|
| 35 | \begin{tabular}{ll}
 | 
|---|
| 36 | {R. Ansari} & {\tt ansari@lal.in2p3.fr} \\
 | 
|---|
| 37 | {É. Aubourg} & {\tt aubourg@hep.saclay.cea.fr} \\
 | 
|---|
| 38 | % {É. Lesquoy} & {\tt lesquoy@hep.saclay.cea.fr} \\
 | 
|---|
| 39 | % {C. Magneville} & {\tt cmv@hep.saclay.cea.fr} \\
 | 
|---|
| 40 | \end{tabular}
 | 
|---|
| 41 | 
 | 
|---|
| 42 | \end{center}
 | 
|---|
| 43 | \vfill
 | 
|---|
| 44 | \hfill 
 | 
|---|
| 45 | % \includegraphics[width=4cm]{Fig/hfi_icon_vsmall.eps}
 | 
|---|
| 46 | \framebox[\textwidth]{\hspace{0.5cm} \bf Planck HFI Level 2 
 | 
|---|
| 47 | \hspace{1cm} \today }
 | 
|---|
| 48 | \end{titlepage}
 | 
|---|
| 49 | 
 | 
|---|
| 50 | \tableofcontents
 | 
|---|
| 51 | 
 | 
|---|
| 52 | \newpage
 | 
|---|
| 53 | % \tableofcontents
 | 
|---|
| 54 | 
 | 
|---|
| 55 | \section{Introduction}
 | 
|---|
| 56 | We intend to gather gradually in this document the guidelines 
 | 
|---|
| 57 | for the development of Planck HFI Level 2 data processing softwares.
 | 
|---|
| 58 | We assume throughout this document that C++ is the baseline option
 | 
|---|
| 59 | as the programming language for the development of Planck HFI 
 | 
|---|
| 60 | Level 2 processing software.
 | 
|---|
| 61 | 
 | 
|---|
| 62 | \section{Integration of software modules in different languages}
 | 
|---|
| 63 | We review here some of the problems which may arise when integrating software 
 | 
|---|
| 64 | modules written in other languages into C++ programs.
 | 
|---|
| 65 | 
 | 
|---|
| 66 | \subsection{C and C++}
 | 
|---|
| 67 | C++ extends the possibilities offered by the C language. 
 | 
|---|
| 68 | All of the C language data types and function call syntax are thus 
 | 
|---|
| 69 | supported by C++. Among other features, C++ offers the function 
 | 
|---|
| 70 | overloading possibility. This means that functions with different 
 | 
|---|
| 71 | argument list can have the same name.
 | 
|---|
| 72 | \begin{verbatim} 
 | 
|---|
| 73 | int fo(int a);
 | 
|---|
| 74 | int fo(int a, int b);
 | 
|---|
| 75 | int fo(double a, double b);
 | 
|---|
| 76 | \end{verbatim}
 | 
|---|
| 77 | Using {\bf C}, one would have written:
 | 
|---|
| 78 | \begin{verbatim} 
 | 
|---|
| 79 | int foi(int a);
 | 
|---|
| 80 | int foii(int a, int b);
 | 
|---|
| 81 | int fodd(double a, double b);
 | 
|---|
| 82 | \end{verbatim}
 | 
|---|
| 83 | C++ compilers use internally a name containing the encoding of the
 | 
|---|
| 84 | argument list. In order to instruct the compiler to use simple 
 | 
|---|
| 85 | names, {\bf C} functions should be declared as \\
 | 
|---|
| 86 | {\tt extern "C" }. This is usually included in the header
 | 
|---|
| 87 | file (.h). In the example above, the header file (.h) file
 | 
|---|
| 88 | would be in the form:
 | 
|---|
| 89 | \begin{verbatim} 
 | 
|---|
| 90 | #ifdef __cplusplus
 | 
|---|
| 91 | extern "C" {
 | 
|---|
| 92 | #endif
 | 
|---|
| 93 | int foi(int a);
 | 
|---|
| 94 | int foii(int a, int b);
 | 
|---|
| 95 | int fodd(double a, double b);
 | 
|---|
| 96 | #ifdef __cplusplus
 | 
|---|
| 97 | }
 | 
|---|
| 98 | #endif
 | 
|---|
| 99 | \end{verbatim}
 | 
|---|
| 100 | 
 | 
|---|
| 101 | \subsection{Fortran and C++}
 | 
|---|
| 102 | Fortran is a simple language and uses only basic data types.
 | 
|---|
| 103 | Although the exact mapping between Fortran and C/C++ basic data types 
 | 
|---|
| 104 | may vary depending on the OS and hardware architecture, it is close
 | 
|---|
| 105 | to the one shown in the table below: 
 | 
|---|
| 106 | \begin{center}
 | 
|---|
| 107 | \begin{tabular}{lll}
 | 
|---|
| 108 | INTEGER     &  int    & usually 4 bytes \\
 | 
|---|
| 109 | REAL*4      &  float  & usually 4 bytes \\
 | 
|---|
| 110 | REAL*8      &  double & usually 8 bytes \\
 | 
|---|
| 111 | COMPLEX     &  complex<float> & \\
 | 
|---|
| 112 | COMPLEX*16  &  complex<double> & \\
 | 
|---|
| 113 | \end{tabular}
 | 
|---|
| 114 | \end{center}
 | 
|---|
| 115 | In fortran, all arguments are passed by address and 
 | 
|---|
| 116 | fortran compilers (on Unix systems) add an underscore "\_"
 | 
|---|
| 117 | to all symbol names. It is thus rather easy to call 
 | 
|---|
| 118 | Fortran subroutines or functions from C or C++. 
 | 
|---|
| 119 | This is illustrated in the following example:
 | 
|---|
| 120 | \begin{verbatim}
 | 
|---|
| 121 | C   Fortran-Code
 | 
|---|
| 122 |       SUBROUTINE FSUB(A,N,B,M)
 | 
|---|
| 123 |       REAL A(*),B(*)
 | 
|---|
| 124 |       INTEGER N,M
 | 
|---|
| 125 |       RETURN
 | 
|---|
| 126 |       END
 | 
|---|
| 127 | \end{verbatim}
 | 
|---|
| 128 | The corresponding C (or C++) declaration is: \\[3mm]
 | 
|---|
| 129 | {\tt void fsub\_(float *a, int *n, float *b, int *m); } \\[3mm]
 | 
|---|
| 130 | {\tt FSUB} can be called from C code, as is shown below : 
 | 
|---|
| 131 | \begin{verbatim}
 | 
|---|
| 132 | float aa[10];
 | 
|---|
| 133 | int na=10;
 | 
|---|
| 134 | float bb[10];    
 | 
|---|
| 135 | int mb=10;
 | 
|---|
| 136 | fsub_(aa, &na, bb, &mb);
 | 
|---|
| 137 | \end{verbatim}
 | 
|---|
| 138 | 
 | 
|---|
| 139 | The case of character string arguments in fortran subroutines
 | 
|---|
| 140 | needs a bit more attention, and the string length needs to be passed 
 | 
|---|
| 141 | as an additional integer type argument.
 | 
|---|
| 142 | As with {\bf C} functions, fortran functions or subroutines 
 | 
|---|
| 143 | have to be delared {\tt extern "C"} to be used within {\bf C++}
 | 
|---|
| 144 | programs. {\bf C/C++} driver routines can easily be written for
 | 
|---|
| 145 | extensively used fortran modules, simplifying calling sequences.
 | 
|---|
| 146 | 
 | 
|---|
| 147 | It should also be noted that the fortran support libraries have to be 
 | 
|---|
| 148 | included for the link with the C++ driver.
 | 
|---|
| 149 | It is also possible to translate the whole fortran source code 
 | 
|---|
| 150 | into {\bf C} code using {\bf f2c} program. The call syntax 
 | 
|---|
| 151 | will be exactly the same as with a Fortran compiler, and 
 | 
|---|
| 152 | {\tt libf2c.a} should be used when linking the program.
 | 
|---|
| 153 | 
 | 
|---|
| 154 | It is very difficult to use C++ classes directly from fortran.
 | 
|---|
| 155 | However, high level functionalities based on a C++ libray can 
 | 
|---|
| 156 | be wrapped in a fortran style function which can be 
 | 
|---|
| 157 | called from fortran. One looses of course many of the 
 | 
|---|
| 158 | possibilities offered by underlying C++ library.
 | 
|---|
| 159 | 
 | 
|---|
| 160 | We illustrate below the wrapping of a simple C++ class:
 | 
|---|
| 161 | \begin{verbatim}
 | 
|---|
| 162 | // An example class performing some computation
 | 
|---|
| 163 | class Example {
 | 
|---|
| 164 |   Example();
 | 
|---|
| 165 |   ~Example();
 | 
|---|
| 166 |   void compute(int sz, float *x);
 | 
|---|
| 167 |   int getSize();
 | 
|---|
| 168 |   float getResult(int k);
 | 
|---|
| 169 | };
 | 
|---|
| 170 | \end{verbatim}
 | 
|---|
| 171 | 
 | 
|---|
| 172 | The wrapper would then look like:
 | 
|---|
| 173 | \begin{verbatim}
 | 
|---|
| 174 | extern "C" {
 | 
|---|
| 175 |   void foradapt_(float *a, int *n, float *b, int *m);
 | 
|---|
| 176 | }
 | 
|---|
| 177 | 
 | 
|---|
| 178 | foradapt_(float *a, int *m, float *b, int *n)
 | 
|---|
| 179 | {
 | 
|---|
| 180 | // a is the input array, m it's size
 | 
|---|
| 181 | // b is the output array, n the returned size
 | 
|---|
| 182 | // b has to dimensioned big enough in the calling program
 | 
|---|
| 183 | 
 | 
|---|
| 184 | Example ex;
 | 
|---|
| 185 | ex.compute(*n, a);
 | 
|---|
| 186 | *m = ex.getSize();
 | 
|---|
| 187 | for(int i=0; i<ex.getSize(); i++) 
 | 
|---|
| 188 |   b[i] = ex.getResult(i);
 | 
|---|
| 189 | }
 | 
|---|
| 190 | \end{verbatim}
 | 
|---|
| 191 | 
 | 
|---|
| 192 | One can then call {\tt FORADPAT} from fortran :
 | 
|---|
| 193 | \begin{verbatim}
 | 
|---|
| 194 | REAL  A(1000)
 | 
|---|
| 195 | REAL  B(1000)
 | 
|---|
| 196 | INTEGER N,M
 | 
|---|
| 197 | M = 1000
 | 
|---|
| 198 | N = 1000
 | 
|---|
| 199 | CALL FORADPAT(A, M, B, N)
 | 
|---|
| 200 | \end{verbatim}
 | 
|---|
| 201 | 
 | 
|---|
| 202 | 
 | 
|---|
| 203 | \subsection{Fortran-90 and C++}
 | 
|---|
| 204 | Fortran-90 (F90) is a much more complex language than Fortran 77
 | 
|---|
| 205 | (F77). Compared to F77, it introduces many new constructions, including:
 | 
|---|
| 206 | \begin{itemize}
 | 
|---|
| 207 | \item[-] pointers 
 | 
|---|
| 208 | \item[-] local and global variables
 | 
|---|
| 209 | \item[-] in, out, in-out argument type for function and subroutines
 | 
|---|
| 210 | \item[-] compound data types, similar to structures in C 
 | 
|---|
| 211 | \item[-] multidimensional arrays
 | 
|---|
| 212 | \item[-] function and operator overloading.
 | 
|---|
| 213 | \end{itemize}
 | 
|---|
| 214 | It is thus more difficult to use full featured F90 modules from 
 | 
|---|
| 215 | {\bf C} or {\bf C++}. One would have to map all these different 
 | 
|---|
| 216 | data structures with their attributes between the two languages,
 | 
|---|
| 217 | in a OS/compiler independent way.
 | 
|---|
| 218 | It should however be possible to encapsulate F90 modules into simple F77 
 | 
|---|
| 219 | like subroutines that could be called from C/C++. 
 | 
|---|
| 220 | 
 | 
|---|
| 221 | 
 | 
|---|
| 222 | \newpage
 | 
|---|
| 223 | \appendix
 | 
|---|
| 224 | 
 | 
|---|
| 225 | \section{The C++ language}
 | 
|---|
| 226 | \vspace{5 mm}
 | 
|---|
| 227 | {\bf C++} is a very powerful Object Oriented language. 
 | 
|---|
| 228 | It has been developped by extending the {\bf C} language, 
 | 
|---|
| 229 | keeping in mind the efficiency and performance, 
 | 
|---|
| 230 | as well as easy integration with existing softwares.
 | 
|---|
| 231 | It incorporates new possibilities such as:
 | 
|---|
| 232 | 
 | 
|---|
| 233 | \begin{itemize}
 | 
|---|
| 234 | \item Introduction of object and classes
 | 
|---|
| 235 | \item function overloading
 | 
|---|
| 236 | \item Operator overloading
 | 
|---|
| 237 | \item function and operator inlining (optimisation)
 | 
|---|
| 238 | \item virtual functions (polymorphism)
 | 
|---|
| 239 | \item public, protected and private members
 | 
|---|
| 240 | \item dynamic memory management operators
 | 
|---|
| 241 | \item Exception handling
 | 
|---|
| 242 | \item generic (template) function and classes
 | 
|---|
| 243 | \end{itemize}
 | 
|---|
| 244 | 
 | 
|---|
| 245 | {\bf C++} can be considered now as a mature language. 
 | 
|---|
| 246 | C++ class library covering various areas, including
 | 
|---|
| 247 | numerical data processing are available as freeware 
 | 
|---|
| 248 | or commercial products. Many software tools feature
 | 
|---|
| 249 | a standard C++ API. 
 | 
|---|
| 250 | \par \vspace{3mm}
 | 
|---|
| 251 | The current standard for C++ and C are defined by
 | 
|---|
| 252 | \footnote{Available from {\bf http://www.ansi.org/ } }: 
 | 
|---|
| 253 | \begin{itemize}
 | 
|---|
| 254 | \item[] {\bf ISO/IEC 14882-1998(E)} Programming languages -- C++ 
 | 
|---|
| 255 | \item[] {\bf ANSI/ISO 9899-1990} for Programming Languages C  
 | 
|---|
| 256 | \end{itemize}
 | 
|---|
| 257 | 
 | 
|---|
| 258 | 
 | 
|---|
| 259 | \newpage
 | 
|---|
| 260 | \section{C++ compilers}
 | 
|---|
| 261 | 
 | 
|---|
| 262 | 
 | 
|---|
| 263 | Powerful compilers are available on most platforms, 
 | 
|---|
| 264 | including:
 | 
|---|
| 265 | 
 | 
|---|
| 266 | \begin{itemize}
 | 
|---|
| 267 | \item[-] the GNU multiplatform g++ \footnote{http://gcc.gnu.org/},
 | 
|---|
| 268 | \item[-] KAI KCC \footnote{http://www.kai.com/C\_plus\_plus/} which is a 
 | 
|---|
| 269 | nice multiplatform optimising C++ compiler.
 | 
|---|
| 270 | \item[-] Digital (Compaq) cxx \footnote{http://www.unix.digital.com/cplus/}
 | 
|---|
| 271 | \item[-] IBM VisualAge C++ \footnote{http://www-4.ibm.com/software/ad/vacpp/}
 | 
|---|
| 272 | \item[-] HP aCC \footnote{http://www.hp.com/esy/lang/cpp/}
 | 
|---|
| 273 | \item[-] Silicon Graphics SGI-CC on IRIX \footnote{http://www.sgi.com/developers/devtools/languages/c++.html} 
 | 
|---|
| 274 | \item[-] Cray C++ compiler on Unicos \footnote{http://www.sgi.com/software/unicos/cplusoverview.html}
 | 
|---|
| 275 | \end{itemize} 
 | 
|---|
| 276 | 
 | 
|---|
| 277 | 
 | 
|---|
| 278 | \end{document}
 | 
|---|