| 1 | \documentclass[twoside,12pt]{article} | 
|---|
| 2 | %  Package standard : Utilisation de caracteres accentues, mode francais et graphique | 
|---|
| 3 | \usepackage[latin1]{inputenc} | 
|---|
| 4 | \usepackage[T1]{fontenc} | 
|---|
| 5 | \usepackage{babel} | 
|---|
| 6 | \usepackage{graphicx} | 
|---|
| 7 |  | 
|---|
| 8 | %  Extension de symboles mathematiques | 
|---|
| 9 | \usepackage{amssymb} | 
|---|
| 10 |  | 
|---|
| 11 | %  Definition de taille de page | 
|---|
| 12 | \setlength{\textwidth}{16cm} | 
|---|
| 13 | \setlength{\textheight}{21.5cm} | 
|---|
| 14 | \setlength{\topmargin}{0.5cm} | 
|---|
| 15 | \setlength{\oddsidemargin}{0.cm} | 
|---|
| 16 | \setlength{\evensidemargin}{0.cm} | 
|---|
| 17 | \setlength{\unitlength}{1mm} | 
|---|
| 18 |  | 
|---|
| 19 | \newcommand{\bul}{$\bullet \ $} | 
|---|
| 20 |  | 
|---|
| 21 | \begin{document} | 
|---|
| 22 |  | 
|---|
| 23 | \begin{titlepage} | 
|---|
| 24 | \vspace{1cm} | 
|---|
| 25 | \rule{110 mm}{0.5 mm}\makebox[50 mm]{\bf Planck HFI L2} | 
|---|
| 26 | \vspace{2cm} | 
|---|
| 27 | \begin{center} | 
|---|
| 28 | \par \renewcommand{\baselinestretch}{2.0} \small | 
|---|
| 29 | {\LARGE \bf | 
|---|
| 30 | Planck HFI L2 \\ | 
|---|
| 31 | Software Development Guidelines | 
|---|
| 32 | } | 
|---|
| 33 | \par \renewcommand{\baselinestretch}{1.0} \normalsize | 
|---|
| 34 | \vspace{5 cm} | 
|---|
| 35 | \begin{tabular}{ll} | 
|---|
| 36 | {R. Ansari} & {\tt ansari@lal.in2p3.fr} \\ | 
|---|
| 37 | {É. Aubourg} & {\tt aubourg@hep.saclay.cea.fr} \\ | 
|---|
| 38 | % {É. Lesquoy} & {\tt lesquoy@hep.saclay.cea.fr} \\ | 
|---|
| 39 | % {C. Magneville} & {\tt cmv@hep.saclay.cea.fr} \\ | 
|---|
| 40 | \end{tabular} | 
|---|
| 41 |  | 
|---|
| 42 | \end{center} | 
|---|
| 43 | \vfill | 
|---|
| 44 | \hfill | 
|---|
| 45 | % \includegraphics[width=4cm]{Fig/hfi_icon_vsmall.eps} | 
|---|
| 46 | \framebox[\textwidth]{\hspace{0.5cm} \bf Planck HFI Level 2 | 
|---|
| 47 | \hspace{1cm} \today } | 
|---|
| 48 | \end{titlepage} | 
|---|
| 49 |  | 
|---|
| 50 | \tableofcontents | 
|---|
| 51 |  | 
|---|
| 52 | \newpage | 
|---|
| 53 | % \tableofcontents | 
|---|
| 54 |  | 
|---|
| 55 | \section{Introduction} | 
|---|
| 56 | We intend to gather gradually in this document the guidelines | 
|---|
| 57 | for the development of Planck HFI Level 2 data processing softwares. | 
|---|
| 58 | We assume throughout this document that C++ is the baseline option | 
|---|
| 59 | as the programming language for the development of Planck HFI | 
|---|
| 60 | Level 2 processing software. | 
|---|
| 61 |  | 
|---|
| 62 | \section{Integration of software modules in different languages} | 
|---|
| 63 | We review here some of the problems which may arise when integrating software | 
|---|
| 64 | modules written in other languages into C++ programs. | 
|---|
| 65 |  | 
|---|
| 66 | \subsection{C and C++} | 
|---|
| 67 | C++ extends the possibilities offered by the C language. | 
|---|
| 68 | All of the C language data types and function call syntax are thus | 
|---|
| 69 | supported by C++. Among other features, C++ offers the function | 
|---|
| 70 | overloading possibility. This means that functions with different | 
|---|
| 71 | argument list can have the same name. | 
|---|
| 72 | \begin{verbatim} | 
|---|
| 73 | int fo(int a); | 
|---|
| 74 | int fo(int a, int b); | 
|---|
| 75 | int fo(double a, double b); | 
|---|
| 76 | \end{verbatim} | 
|---|
| 77 | Using {\bf C}, one would have written: | 
|---|
| 78 | \begin{verbatim} | 
|---|
| 79 | int foi(int a); | 
|---|
| 80 | int foii(int a, int b); | 
|---|
| 81 | int fodd(double a, double b); | 
|---|
| 82 | \end{verbatim} | 
|---|
| 83 | C++ compilers use internally a name containing the encoding of the | 
|---|
| 84 | argument list. In order to instruct the compiler to use simple | 
|---|
| 85 | names, {\bf C} functions should be declared as \\ | 
|---|
| 86 | {\tt extern "C" }. This is usually included in the header | 
|---|
| 87 | file (.h). In the example above, the header file (.h) file | 
|---|
| 88 | would be in the form: | 
|---|
| 89 | \begin{verbatim} | 
|---|
| 90 | #ifdef __cplusplus | 
|---|
| 91 | extern "C" { | 
|---|
| 92 | #endif | 
|---|
| 93 | int foi(int a); | 
|---|
| 94 | int foii(int a, int b); | 
|---|
| 95 | int fodd(double a, double b); | 
|---|
| 96 | #ifdef __cplusplus | 
|---|
| 97 | } | 
|---|
| 98 | #endif | 
|---|
| 99 | \end{verbatim} | 
|---|
| 100 |  | 
|---|
| 101 | \subsection{Fortran and C++} | 
|---|
| 102 | Fortran is a simple language and uses only basic data types. | 
|---|
| 103 | Although the exact mapping between Fortran and C/C++ basic data types | 
|---|
| 104 | may vary depending on the OS and hardware architecture, it is close | 
|---|
| 105 | to the one shown in the table below: | 
|---|
| 106 | \begin{center} | 
|---|
| 107 | \begin{tabular}{lll} | 
|---|
| 108 | INTEGER     &  int    & usually 4 bytes \\ | 
|---|
| 109 | REAL*4      &  float  & usually 4 bytes \\ | 
|---|
| 110 | REAL*8      &  double & usually 8 bytes \\ | 
|---|
| 111 | COMPLEX     &  complex<float> & \\ | 
|---|
| 112 | COMPLEX*16  &  complex<double> & \\ | 
|---|
| 113 | \end{tabular} | 
|---|
| 114 | \end{center} | 
|---|
| 115 | In fortran, all arguments are passed by address and | 
|---|
| 116 | fortran compilers (on Unix systems) add an underscore "\_" | 
|---|
| 117 | to all symbol names. It is thus rather easy to call | 
|---|
| 118 | Fortran subroutines or functions from C or C++. | 
|---|
| 119 | This is illustrated in the following example: | 
|---|
| 120 | \begin{verbatim} | 
|---|
| 121 | C   Fortran-Code | 
|---|
| 122 | SUBROUTINE FSUB(A,N,B,M) | 
|---|
| 123 | REAL A(*),B(*) | 
|---|
| 124 | INTEGER N,M | 
|---|
| 125 | RETURN | 
|---|
| 126 | END | 
|---|
| 127 | \end{verbatim} | 
|---|
| 128 | The corresponding C (or C++) declaration is: \\[3mm] | 
|---|
| 129 | {\tt void fsub\_(float *a, int *n, float *b, int *m); } \\[3mm] | 
|---|
| 130 | {\tt FSUB} can be called from C code, as is shown below : | 
|---|
| 131 | \begin{verbatim} | 
|---|
| 132 | float aa[10]; | 
|---|
| 133 | int na=10; | 
|---|
| 134 | float bb[10]; | 
|---|
| 135 | int mb=10; | 
|---|
| 136 | fsub_(aa, &na, bb, &mb); | 
|---|
| 137 | \end{verbatim} | 
|---|
| 138 |  | 
|---|
| 139 | The case of character string arguments in fortran subroutines | 
|---|
| 140 | needs a bit more attention, and the string length needs to be passed | 
|---|
| 141 | as an additional integer type argument. | 
|---|
| 142 | As with {\bf C} functions, fortran functions or subroutines | 
|---|
| 143 | have to be delared {\tt extern "C"} to be used within {\bf C++} | 
|---|
| 144 | programs. {\bf C/C++} driver routines can easily be written for | 
|---|
| 145 | extensively used fortran modules, simplifying calling sequences. | 
|---|
| 146 |  | 
|---|
| 147 | It should also be noted that the fortran support libraries have to be | 
|---|
| 148 | included for the link with the C++ driver. | 
|---|
| 149 | It is also possible to translate the whole fortran source code | 
|---|
| 150 | into {\bf C} code using {\bf f2c} program. The call syntax | 
|---|
| 151 | will be exactly the same as with a Fortran compiler, and | 
|---|
| 152 | {\tt libf2c.a} should be used when linking the program. | 
|---|
| 153 |  | 
|---|
| 154 | It is very difficult to use C++ classes directly from fortran. | 
|---|
| 155 | However, high level functionalities based on a C++ libray can | 
|---|
| 156 | be wrapped in a fortran style function which can be | 
|---|
| 157 | called from fortran. One looses of course many of the | 
|---|
| 158 | possibilities offered by underlying C++ library. | 
|---|
| 159 |  | 
|---|
| 160 | We illustrate below the wrapping of a simple C++ class: | 
|---|
| 161 | \begin{verbatim} | 
|---|
| 162 | // An example class performing some computation | 
|---|
| 163 | class Example { | 
|---|
| 164 | Example(); | 
|---|
| 165 | ~Example(); | 
|---|
| 166 | void compute(int sz, float *x); | 
|---|
| 167 | int getSize(); | 
|---|
| 168 | float getResult(int k); | 
|---|
| 169 | }; | 
|---|
| 170 | \end{verbatim} | 
|---|
| 171 |  | 
|---|
| 172 | The wrapper would then look like: | 
|---|
| 173 | \begin{verbatim} | 
|---|
| 174 | extern "C" { | 
|---|
| 175 | void foradapt_(float *a, int *n, float *b, int *m); | 
|---|
| 176 | } | 
|---|
| 177 |  | 
|---|
| 178 | foradapt_(float *a, int *m, float *b, int *n) | 
|---|
| 179 | { | 
|---|
| 180 | // a is the input array, m it's size | 
|---|
| 181 | // b is the output array, n the returned size | 
|---|
| 182 | // b has to dimensioned big enough in the calling program | 
|---|
| 183 |  | 
|---|
| 184 | Example ex; | 
|---|
| 185 | ex.compute(*n, a); | 
|---|
| 186 | *m = ex.getSize(); | 
|---|
| 187 | for(int i=0; i<ex.getSize(); i++) | 
|---|
| 188 | b[i] = ex.getResult(i); | 
|---|
| 189 | } | 
|---|
| 190 | \end{verbatim} | 
|---|
| 191 |  | 
|---|
| 192 | One can then call {\tt FORADPAT} from fortran : | 
|---|
| 193 | \begin{verbatim} | 
|---|
| 194 | REAL  A(1000) | 
|---|
| 195 | REAL  B(1000) | 
|---|
| 196 | INTEGER N,M | 
|---|
| 197 | M = 1000 | 
|---|
| 198 | N = 1000 | 
|---|
| 199 | CALL FORADPAT(A, M, B, N) | 
|---|
| 200 | \end{verbatim} | 
|---|
| 201 |  | 
|---|
| 202 |  | 
|---|
| 203 | \subsection{Fortran-90 and C++} | 
|---|
| 204 | Fortran-90 (F90) is a much more complex language than Fortran 77 | 
|---|
| 205 | (F77). Compared to F77, it introduces many new constructions, including: | 
|---|
| 206 | \begin{itemize} | 
|---|
| 207 | \item[-] pointers | 
|---|
| 208 | \item[-] local and global variables | 
|---|
| 209 | \item[-] in, out, in-out argument type for function and subroutines | 
|---|
| 210 | \item[-] compound data types, similar to structures in C | 
|---|
| 211 | \item[-] multidimensional arrays | 
|---|
| 212 | \item[-] function and operator overloading. | 
|---|
| 213 | \end{itemize} | 
|---|
| 214 | It is thus more difficult to use full featured F90 modules from | 
|---|
| 215 | {\bf C} or {\bf C++}. One would have to map all these different | 
|---|
| 216 | data structures with their attributes between the two languages, | 
|---|
| 217 | in a OS/compiler independent way. | 
|---|
| 218 | It should however be possible to encapsulate F90 modules into simple F77 | 
|---|
| 219 | like subroutines that could be called from C/C++. | 
|---|
| 220 |  | 
|---|
| 221 |  | 
|---|
| 222 | \newpage | 
|---|
| 223 | \appendix | 
|---|
| 224 |  | 
|---|
| 225 | \section{The C++ language} | 
|---|
| 226 | \vspace{5 mm} | 
|---|
| 227 | {\bf C++} is a very powerful Object Oriented language. | 
|---|
| 228 | It has been developped by extending the {\bf C} language, | 
|---|
| 229 | keeping in mind the efficiency and performance, | 
|---|
| 230 | as well as easy integration with existing softwares. | 
|---|
| 231 | It incorporates new possibilities such as: | 
|---|
| 232 |  | 
|---|
| 233 | \begin{itemize} | 
|---|
| 234 | \item Introduction of object and classes | 
|---|
| 235 | \item function overloading | 
|---|
| 236 | \item Operator overloading | 
|---|
| 237 | \item function and operator inlining (optimisation) | 
|---|
| 238 | \item virtual functions (polymorphism) | 
|---|
| 239 | \item public, protected and private members | 
|---|
| 240 | \item dynamic memory management operators | 
|---|
| 241 | \item Exception handling | 
|---|
| 242 | \item generic (template) function and classes | 
|---|
| 243 | \end{itemize} | 
|---|
| 244 |  | 
|---|
| 245 | {\bf C++} can be considered now as a mature language. | 
|---|
| 246 | C++ class library covering various areas, including | 
|---|
| 247 | numerical data processing are available as freeware | 
|---|
| 248 | or commercial products. Many software tools feature | 
|---|
| 249 | a standard C++ API. | 
|---|
| 250 | \par \vspace{3mm} | 
|---|
| 251 | The current standard for C++ and C are defined by | 
|---|
| 252 | \footnote{Available from {\bf http://www.ansi.org/ } }: | 
|---|
| 253 | \begin{itemize} | 
|---|
| 254 | \item[] {\bf ISO/IEC 14882-1998(E)} Programming languages -- C++ | 
|---|
| 255 | \item[] {\bf ANSI/ISO 9899-1990} for Programming Languages C | 
|---|
| 256 | \end{itemize} | 
|---|
| 257 |  | 
|---|
| 258 |  | 
|---|
| 259 | \newpage | 
|---|
| 260 | \section{C++ compilers} | 
|---|
| 261 |  | 
|---|
| 262 |  | 
|---|
| 263 | Powerful compilers are available on most platforms, | 
|---|
| 264 | including: | 
|---|
| 265 |  | 
|---|
| 266 | \begin{itemize} | 
|---|
| 267 | \item[-] the GNU multiplatform g++ \footnote{http://gcc.gnu.org/}, | 
|---|
| 268 | \item[-] KAI KCC \footnote{http://www.kai.com/C\_plus\_plus/} which is a | 
|---|
| 269 | nice multiplatform optimising C++ compiler. | 
|---|
| 270 | \item[-] Digital (Compaq) cxx \footnote{http://www.unix.digital.com/cplus/} | 
|---|
| 271 | \item[-] IBM VisualAge C++ \footnote{http://www-4.ibm.com/software/ad/vacpp/} | 
|---|
| 272 | \item[-] HP aCC \footnote{http://www.hp.com/esy/lang/cpp/} | 
|---|
| 273 | \item[-] Silicon Graphics SGI-CC on IRIX \footnote{http://www.sgi.com/developers/devtools/languages/c++.html} | 
|---|
| 274 | \item[-] Cray C++ compiler on Unicos \footnote{http://www.sgi.com/software/unicos/cplusoverview.html} | 
|---|
| 275 | \end{itemize} | 
|---|
| 276 |  | 
|---|
| 277 |  | 
|---|
| 278 | \end{document} | 
|---|