#include "brpaqu.h" static inline void bswap4(void* p) { UInt32 tmp = *(UInt32*)p; *(UInt32*)p = ((tmp >> 24) & 0x000000FF) | ((tmp >> 8) & 0x0000FF00) | ((tmp & 0x0000FF00) << 8) | ((tmp & 0x000000FF) << 24); } /* --Methode__ */ BRPaquet::BRPaquet(Byte* src, Byte* dst, int paqsz, BRDataFmtConv fgswap) // swapall = true -> on swap tout le paquet, sinon swap entete seulement { dst_ = dst; sz_ = paqsz; if ((src == NULL) || (dst == NULL)) return; // Il faut mettre une protection (throw) si dst==NULL ou sz==0 UInt32* src32 = (UInt32*)src; UInt32* dst32 = (UInt32*)dst; switch ( fgswap ) { case BR_DoNothing : // rien a faire break; case BR_Copy : // copie directe memcpy(dst_, src, sz_); break; case BR_Swap32 : // On swappe toutes les donnees du paquet // les bytes sont dans l'ordre par paquet de 4 octets (Int32) , les deux Int32 de // On copie la zone donnees en faisant un byte-swap correspondant a 8 octets (4->8 Reza/firmware SGDMA) for(int ka=0; ka8 Reza/firmware SGDMA) de l'enete for(int ka=0; ka> 4); return(ModAq); } /* --Methode__ */ void BRPaquet::Print(ostream & os, int nelt, bool prht) { os << endl << "BRPaquet::Print() PaqSz=" << PaquetSize() << " DataSize=" << DataSize() << " dst_pointer=(hex)" << hex << (unsigned long)dst_ << dec << endl; if (dst_ == NULL) { os << " ...NULL paquet " << endl; return; } os << endl << " BR AcqMode: " << ModeAcquisition() << " Channel: " << ChannelID() << endl; if (TrailerSize() > 0) os << " ...HDRMarker(hex)=" << hex << HDRMarker() << " TRLMarker=" << TRLMarker() << dec << endl; else os << " ...HDRMarker(hex)=" << hex << HDRMarker() << " NO TRLMarker=" << dec << endl; UInt32 tt1, tt2; tt2 = TimeTag1(); tt1 = TimeTag2(); os << " ...TimeTag (hex)=" << hex << "TimeTag()" << " TT1= " << tt1 << " TT2=" << tt2 << dec << endl; // os << " ...Position Chariot (hex)= " << hex << PositionChariot() << endl; if (nelt > DataSize()/2) nelt = DataSize()/2; os << " ...Data[1.." << nelt << "]= "; for(int k=0; k 0) { UInt32* trl = (UInt32*)Trailer(); os << " ...Trailer (hex):" << hex ; for(int k=0; k N/2 complexes ***** // N = Nb d'echantillon en temps -> N/2 paires (real, imag) // Il y a le continu, et N/2 frequences ---> N/2+1 nombres complexes, // mais avec la contrainte Z(0).imag = 0 Z(N/2).imag = 0 // f(i) i=0...N-1 ===> Z(k) ( Z complexe , k=0...N/2 ) // mais avec la contrainte Z(0).imag = 0 Z(N/2).imag = 0 // On peut donc tout mettre ds N/2 complexes en choisissant // de mettre ds Z(0).imag Z(N/2).real // ---------------------------------------------------------- // Fonction magique qui donne le pointeur permettant de tenir compte du byte-swp sur 8 octets static inline int IndexByteSwap8(int idx) { return ( (idx-(idx%8))+(7-idx%8) ) ; } /* --Methode__ */ void BRPaquet::ReorderFFTData(Byte* src, Byte* dst, int N) { // Code recopie depuis /Dev/DisplayData/HistoWindow.cc // fonction TraceWind::DisplayBaoDatasFFT() et adapte aux structures BRPaquet et Cie // Modif par rapport au code de Bruno : N/2 elements complexes au lieu de N/2+1 - Remarque ci-dessus int nCoef = N / 2; // to change int debutIndex = N / 4 + 1; int fifoSize = N / 4 - 1; int i; TwoByteComplex* dstcmplx = (TwoByteComplex*)dst; // cout << " Display BAO Datas FFT (" << N << ")" << " : from 0 to "<< nCoef << endl; // cout << " Variables : debutIndex, fifoSize " << debutIndex << ", " << fifoSize << endl; // Sortie 1 for (i = 0; i < fifoSize ; i++) { dstcmplx[debutIndex + i].realB() = src[IndexByteSwap8(2*i)]; dstcmplx[debutIndex + i].imagB() = src[IndexByteSwap8(2*i + 1)]; } // element au milieu dstcmplx[N / 4].realB() = src[IndexByteSwap8(2*fifoSize)]; dstcmplx[N / 4].imagB() = src[IndexByteSwap8(2*fifoSize + 1)]; // Sortie 2 for (i = 0; i < fifoSize ; i++) { dstcmplx[fifoSize - i].realB() = src[IndexByteSwap8(nCoef + 2*i)]; dstcmplx[fifoSize - i].imagB() = src[IndexByteSwap8(nCoef + 2*i + 1)]; } // k = 0 et k = N/2 dstcmplx[0].realB() = src[IndexByteSwap8(N - 2)]; // Voir Remarque ci-dessus Z(N/2).real -> Z(0).image dstcmplx[0].imagB() = src[IndexByteSwap8(N - 1)]; // Attention, on met ici la real(fmax) return ; } static inline int IndexByteSwap8_32(int idx) { return ( (idx-(idx%8))+((4+idx%8)%8) ) ; } void BRPaquet::ReorderFFTData32(Byte* src, Byte* dst, int N) { // Code recopie depuis /Dev/DisplayData/HistoWindow.cc // fonction TraceWind::DisplayBaoDatasFFT() et adapte aux structures BRPaquet et Cie // Modif par rapport au code de Bruno : N/2 elements complexes au lieu de N/2+1 - Remarque ci-dessus int nCoef = N / 2; // to change int debutIndex = N / 4 + 1; int fifoSize = N / 4 - 1; int i; TwoByteComplex* dstcmplx = (TwoByteComplex*)dst; // cout << " Display BAO Datas FFT (" << N << ")" << " : from 0 to "<< nCoef << endl; // cout << " Variables : debutIndex, fifoSize " << debutIndex << ", " << fifoSize << endl; // Sortie 1 for (i = 0; i < fifoSize ; i++) { dstcmplx[debutIndex + i].realB() = src[IndexByteSwap8_32(2*i)]; dstcmplx[debutIndex + i].imagB() = src[IndexByteSwap8_32(2*i + 1)]; } // element au milieu dstcmplx[N / 4].realB() = src[IndexByteSwap8_32(2*fifoSize)]; dstcmplx[N / 4].imagB() = src[IndexByteSwap8_32(2*fifoSize + 1)]; // Sortie 2 for (i = 0; i < fifoSize ; i++) { dstcmplx[fifoSize - i].realB() = src[IndexByteSwap8_32(nCoef + 2*i)]; dstcmplx[fifoSize - i].imagB() = src[IndexByteSwap8_32(nCoef + 2*i + 1)]; } // k = 0 et k = N/2 dstcmplx[0].realB() = src[IndexByteSwap8_32(N - 2)]; // Voir Remarque ci-dessus Z(N/2).real -> Z(0).image dstcmplx[0].imagB() = src[IndexByteSwap8_32(N - 1)]; // Attention, on met ici la real(fmax) return ; } void BRPaquet::ReorderFFTDataNoSwap(Byte* src, Byte* dst, int N) { // Code recopie depuis /Dev/DisplayData/HistoWindow.cc // fonction TraceWind::DisplayBaoDatasFFT() et adapte aux structures BRPaquet et Cie // Modif par rapport au code de Bruno : N/2 elements complexes au lieu de N/2+1 - Remarque ci-dessus int nCoef = N / 2; // to change int debutIndex = N / 4 + 1; int fifoSize = N / 4 - 1; int i; TwoByteComplex* dstcmplx = (TwoByteComplex*)dst; // cout << " Display BAO Datas FFT (" << N << ")" << " : from 0 to "<< nCoef << endl; // cout << " Variables : debutIndex, fifoSize " << debutIndex << ", " << fifoSize << endl; // Sortie 1 for (i = 0; i < fifoSize ; i++) { dstcmplx[debutIndex + i].realB() = src[(2*i)]; dstcmplx[debutIndex + i].imagB() = src[(2*i + 1)]; } // element au milieu dstcmplx[N / 4].realB() = src[(2*fifoSize)]; dstcmplx[N / 4].imagB() = src[(2*fifoSize + 1)]; // Sortie 2 for (i = 0; i < fifoSize ; i++) { dstcmplx[fifoSize - i].realB() = src[(nCoef + 2*i)]; dstcmplx[fifoSize - i].imagB() = src[(nCoef + 2*i + 1)]; } // k = 0 et k = N/2 dstcmplx[0].realB() = src[(N - 2)]; // Voir Remarque ci-dessus Z(N/2).real -> Z(0).image dstcmplx[0].imagB() = src[(N - 1)]; // Attention, on met ici la real(fmax) return ; } /* --Methode__ */ const char* BRPaquet::FmtConvToString(BRDataFmtConv fgswap) { const char * rs=""; switch ( fgswap ) { case BR_DoNothing : rs = "BR_DoNothing"; break; case BR_Copy : rs = "BR_Copy"; break; case BR_SwapAll : rs = "BR_SwapAll"; break; case BR_SwapHDR : rs = "BR_SwapHDR"; break; case BR_FFTOneChan : rs = "BR_FFTOneChan"; break; case BR_FFTTwoChan : rs = "BR_FFTTwoChan"; break; case BR_Swap32 : rs = "BR_Swap32"; break; case BR_FFTOneChan32 : rs = "BR_FFTOneChan32"; break; case BR_FFTTwoChan32 : rs = "BR_FFTTwoChan32"; break; case BR_FFTOneChanNoSwap : rs = "BR_FFTOneChanNoSwap"; break; case BR_FFTTwoChanNoSwap : rs = "BR_FFTTwoChanNoSwap"; break; default: rs = "?????"; break; } // Fin switch return rs; } // -------------------------------------------------------------------------- // Classe pour effectuer des verifications d'integrite sur les paquets/frames // -------------------------------------------------------------------------- BRPaqChecker::BRPaqChecker() { totnframes = 0; nframeok = 0; lostframes = 0; frclst = 0; } BRPaqChecker::~BRPaqChecker() { } bool BRPaqChecker::Check(BRPaquet& paq) { totnframes++; if (paq.HDRMarker() != 0x76543210) return false; unsigned int curfc = paq.FrameCounter(); unsigned int delfc = 0; if (nframeok > 0) { if (curfc>frclst) delfc = (curfc-frclst); else delfc = (65535-frclst+curfc); lostframes += (unsigned long long)delfc - 1; } nframeok++; frclst = curfc; return true; } ostream& BRPaqChecker::Print(ostream& os) { os << "BRPaqChecker: Tot.Nb.Frames.Proc=" << totnframes << " NbFrameOK=" << nframeok << " LostFrames=" << lostframes << " Loss=" << (double)lostframes*100./(double)totnframes << " %" << endl; return os; }