1 | #include "toimanager.h"
|
---|
2 | #include "correl.h"
|
---|
3 | #include "wienerdecor.h"
|
---|
4 | #include <math.h>
|
---|
5 | extern "C" {
|
---|
6 | #include "nrutil.h"
|
---|
7 | }
|
---|
8 | extern "C" void dtoeplz(double r[], double x[], double y[], int n);
|
---|
9 |
|
---|
10 | WienerDecorrelator::WienerDecorrelator(int n, int l) {
|
---|
11 | nsamples = n;
|
---|
12 | lcorr = l;
|
---|
13 | }
|
---|
14 |
|
---|
15 | void WienerDecorrelator::init() {
|
---|
16 | declareInput("signal");
|
---|
17 | declareInput("probe");
|
---|
18 | declareOutput("signal");
|
---|
19 | declareOutput("noiseestim");
|
---|
20 | name="WienerDecorrelator";
|
---|
21 | setNeededHistory(nsamples+lcorr+1);
|
---|
22 | lowExtra = lcorr;
|
---|
23 | }
|
---|
24 |
|
---|
25 | void WienerDecorrelator::run() {
|
---|
26 | int snb = getMinIn();
|
---|
27 | int sne = getMaxIn();
|
---|
28 |
|
---|
29 | // cout << "Wiener " << snb << " - " << sne << endl;
|
---|
30 |
|
---|
31 | CorrelEstimator corr(lcorr, nsamples), autocorr(lcorr, nsamples);
|
---|
32 |
|
---|
33 | double* r = new double[2*lcorr]; // autocorr toeplitz matrix
|
---|
34 | double* w = new double[lcorr+1]; // filter
|
---|
35 | double* y = new double[lcorr+1]; // corr vector
|
---|
36 | double* window = new double[lcorr];
|
---|
37 | double* filter = new double[lcorr];
|
---|
38 | for (int i=0; i<lcorr; i++) filter[i]=0;
|
---|
39 |
|
---|
40 | int sn = snb;
|
---|
41 | int snstartcorr = -1;
|
---|
42 |
|
---|
43 | while (sn < sne) {
|
---|
44 | if (snstartcorr < 0 ||
|
---|
45 | (snstartcorr + nsamples < sn && sn+nsamples < sne)) {
|
---|
46 | // let's (re)compute the correlation
|
---|
47 | snstartcorr = sn;
|
---|
48 | corr.reset();
|
---|
49 | autocorr.reset();
|
---|
50 | int i;
|
---|
51 | for (i=sn; i<sn+nsamples; i++) {
|
---|
52 | double sig = getData(0, i);
|
---|
53 | double prb = getData(1, i);
|
---|
54 | corr.push(i, sig, prb);
|
---|
55 | autocorr.push(i, prb);
|
---|
56 | }
|
---|
57 | // correlation is recomputed, let's recompute the wiener filter from wiener equations
|
---|
58 | for (i=0; i<lcorr; i++) {
|
---|
59 | r[lcorr+i] = r[lcorr-i] = autocorr.correl(i);
|
---|
60 | y[i+1] = corr.correl(i);
|
---|
61 | }
|
---|
62 | dtoeplz(r,w,y,lcorr);
|
---|
63 | if (!isnan(w[1])) {
|
---|
64 | for (int i=0; i<lcorr; i++) {
|
---|
65 | filter[i] = w[i+1];
|
---|
66 | }
|
---|
67 | } else {
|
---|
68 | cout << "Bad inversion, keeping previous filter\n";
|
---|
69 | }
|
---|
70 | cout << "Wiener filter : " << sn << "\n ";
|
---|
71 | for (i=0; i<lcorr; i++) {
|
---|
72 | cout << filter[i] << " ";
|
---|
73 | }
|
---|
74 | cout << endl;
|
---|
75 | }
|
---|
76 |
|
---|
77 | if (sn >= snb+lcorr-1) {
|
---|
78 | getData(1, sn-lcorr+1, lcorr, window);
|
---|
79 | double outSig = 0;
|
---|
80 | for (int i=0; i<lcorr; i++) {
|
---|
81 | outSig += filter[i] * window[lcorr-1 - i];
|
---|
82 | }
|
---|
83 | putData(0, sn, getData(0, sn) - outSig);
|
---|
84 | putData(1, sn, outSig);
|
---|
85 | }
|
---|
86 | sn++;
|
---|
87 | }
|
---|
88 |
|
---|
89 | delete[] y;
|
---|
90 | delete[] w;
|
---|
91 | delete[] r;
|
---|
92 | delete[] filter;
|
---|
93 | }
|
---|