| 1 | #include "toimanager.h"
|
|---|
| 2 | #include "correl.h"
|
|---|
| 3 | #include "wienerdecor.h"
|
|---|
| 4 | #include <math.h>
|
|---|
| 5 | extern "C" {
|
|---|
| 6 | #include "nrutil.h"
|
|---|
| 7 | }
|
|---|
| 8 | extern "C" void dtoeplz(double r[], double x[], double y[], int n);
|
|---|
| 9 |
|
|---|
| 10 | WienerDecorrelator::WienerDecorrelator(int n, int l) {
|
|---|
| 11 | nsamples = n;
|
|---|
| 12 | lcorr = l;
|
|---|
| 13 | }
|
|---|
| 14 |
|
|---|
| 15 | void WienerDecorrelator::init() {
|
|---|
| 16 | declareInput("signal");
|
|---|
| 17 | declareInput("probe");
|
|---|
| 18 | declareOutput("signal");
|
|---|
| 19 | declareOutput("noiseestim");
|
|---|
| 20 | name="WienerDecorrelator";
|
|---|
| 21 | setNeededHistory(nsamples+lcorr+1);
|
|---|
| 22 | lowExtra = lcorr;
|
|---|
| 23 | }
|
|---|
| 24 |
|
|---|
| 25 | void WienerDecorrelator::run() {
|
|---|
| 26 | int snb = getMinIn();
|
|---|
| 27 | int sne = getMaxIn();
|
|---|
| 28 |
|
|---|
| 29 | // cout << "Wiener " << snb << " - " << sne << endl;
|
|---|
| 30 |
|
|---|
| 31 | CorrelEstimator corr(lcorr, nsamples), autocorr(lcorr, nsamples);
|
|---|
| 32 |
|
|---|
| 33 | double* r = new double[2*lcorr]; // autocorr toeplitz matrix
|
|---|
| 34 | double* w = new double[lcorr+1]; // filter
|
|---|
| 35 | double* y = new double[lcorr+1]; // corr vector
|
|---|
| 36 | double* window = new double[lcorr];
|
|---|
| 37 | double* filter = new double[lcorr];
|
|---|
| 38 | for (int i=0; i<lcorr; i++) filter[i]=0;
|
|---|
| 39 |
|
|---|
| 40 | int sn = snb;
|
|---|
| 41 | int snstartcorr = -1;
|
|---|
| 42 |
|
|---|
| 43 | while (sn < sne) {
|
|---|
| 44 | if (snstartcorr < 0 ||
|
|---|
| 45 | (snstartcorr + nsamples < sn && sn+nsamples < sne)) {
|
|---|
| 46 | // let's (re)compute the correlation
|
|---|
| 47 | snstartcorr = sn;
|
|---|
| 48 | corr.reset();
|
|---|
| 49 | autocorr.reset();
|
|---|
| 50 | int i;
|
|---|
| 51 | for (i=sn; i<sn+nsamples; i++) {
|
|---|
| 52 | double sig = getData(0, i);
|
|---|
| 53 | double prb = getData(1, i);
|
|---|
| 54 | corr.push(i, sig, prb);
|
|---|
| 55 | autocorr.push(i, prb);
|
|---|
| 56 | }
|
|---|
| 57 | // correlation is recomputed, let's recompute the wiener filter from wiener equations
|
|---|
| 58 | for (i=0; i<lcorr; i++) {
|
|---|
| 59 | r[lcorr+i] = r[lcorr-i] = autocorr.correl(i);
|
|---|
| 60 | y[i+1] = corr.correl(i);
|
|---|
| 61 | }
|
|---|
| 62 | dtoeplz(r,w,y,lcorr);
|
|---|
| 63 | if (!isnan(w[1])) {
|
|---|
| 64 | for (int i=0; i<lcorr; i++) {
|
|---|
| 65 | filter[i] = w[i+1];
|
|---|
| 66 | }
|
|---|
| 67 | } else {
|
|---|
| 68 | cout << "Bad inversion, keeping previous filter\n";
|
|---|
| 69 | }
|
|---|
| 70 | cout << "Wiener filter : " << sn << "\n ";
|
|---|
| 71 | for (i=0; i<lcorr; i++) {
|
|---|
| 72 | cout << filter[i] << " ";
|
|---|
| 73 | }
|
|---|
| 74 | cout << endl;
|
|---|
| 75 | }
|
|---|
| 76 |
|
|---|
| 77 | if (sn >= snb+lcorr-1) {
|
|---|
| 78 | getData(1, sn-lcorr+1, lcorr, window);
|
|---|
| 79 | double outSig = 0;
|
|---|
| 80 | for (int i=0; i<lcorr; i++) {
|
|---|
| 81 | outSig += filter[i] * window[lcorr-1 - i];
|
|---|
| 82 | }
|
|---|
| 83 | putData(0, sn, getData(0, sn) - outSig);
|
|---|
| 84 | putData(1, sn, outSig);
|
|---|
| 85 | }
|
|---|
| 86 | sn++;
|
|---|
| 87 | }
|
|---|
| 88 |
|
|---|
| 89 | delete[] y;
|
|---|
| 90 | delete[] w;
|
|---|
| 91 | delete[] r;
|
|---|
| 92 | delete[] filter;
|
|---|
| 93 | }
|
|---|