1 | #include "mbeamcyl.h"
|
---|
2 | #include "fftpserver.h"
|
---|
3 | #include "vector3d.h"
|
---|
4 | #include "matharr.h"
|
---|
5 | #include "srandgen.h"
|
---|
6 |
|
---|
7 | //=================================================
|
---|
8 |
|
---|
9 | MultiBeamCyl::MultiBeamCyl(int nr, int ns, double posy)
|
---|
10 | : texact(ns) , tjitt(ns) , toffset(nr) ,
|
---|
11 | signal(ns), sigjitt(ns) , gain(nr)
|
---|
12 | {
|
---|
13 | NR = nr;
|
---|
14 | NS = ns;
|
---|
15 | posY = posy;
|
---|
16 |
|
---|
17 | SetPrintLevel(0);
|
---|
18 |
|
---|
19 | SetBaseFreqDa(2., 0.25);
|
---|
20 | SetNoiseSigma(0.);
|
---|
21 | SetTimeJitter(0.);
|
---|
22 | SetTimeOffsetSigma(0.);
|
---|
23 | SetGains(1., 0., 0);
|
---|
24 | adfg = false; src = NULL;
|
---|
25 | SetSources(new BRSourceGen, true);
|
---|
26 | }
|
---|
27 |
|
---|
28 | MultiBeamCyl::~MultiBeamCyl()
|
---|
29 | {
|
---|
30 | if (adfg && src) delete src;
|
---|
31 | }
|
---|
32 |
|
---|
33 | void MultiBeamCyl::SetSources(BRSourceGen* brs, bool ad)
|
---|
34 | {
|
---|
35 | if (brs == NULL) return;
|
---|
36 | if (adfg && src) delete src;
|
---|
37 | src = brs; adfg=ad;
|
---|
38 | if (PrtLev > 1)
|
---|
39 | cout << " MultiBeamCyl::SetSources(brs=" << brs <<" ,bool) NbSrc="
|
---|
40 | << src->NbSources() << endl;
|
---|
41 |
|
---|
42 | }
|
---|
43 |
|
---|
44 | void MultiBeamCyl::SetGains(double g, double sigg, int nzerogain)
|
---|
45 | {
|
---|
46 | if (sigg < 1.e-6) gain = g;
|
---|
47 | else gain = RandomSequence(RandomSequence::Gaussian, g, sigg);
|
---|
48 | int k;
|
---|
49 | for (k=0; k<NR; k++) if (gain(k) < 0) gain(k) = 0.;
|
---|
50 | for(k=0; k<nzerogain; k++) {
|
---|
51 | int zg = random()%NR;
|
---|
52 | if ((zg >=0) && (zg < NR)) gain(zg) = 0.;
|
---|
53 | }
|
---|
54 | if (PrtLev > 1)
|
---|
55 | cout << " MultiBeamCyl::SetGains(g=" << g <<" ,sigg=" << sigg
|
---|
56 | << " ,nzg=" << nzerogain << " )" << endl;
|
---|
57 | }
|
---|
58 |
|
---|
59 | void MultiBeamCyl::ComputeTimeVectors()
|
---|
60 | {
|
---|
61 | texact = RegularSequence(0., 1.);
|
---|
62 | toffset = RandomSequence(RandomSequence::Gaussian, 0., toffsig);
|
---|
63 | NewTJitVector();
|
---|
64 | }
|
---|
65 |
|
---|
66 | void MultiBeamCyl::NewTJitVector(int num)
|
---|
67 | {
|
---|
68 | if (timejitter > 1.e-19) {
|
---|
69 | tjitt = RandomSequence(RandomSequence::Gaussian, 0., timejitter);
|
---|
70 | tjitt += texact;
|
---|
71 | }
|
---|
72 | else tjitt = texact;
|
---|
73 | if (num >= 0) tjitt += toffset(num);
|
---|
74 |
|
---|
75 | }
|
---|
76 |
|
---|
77 | int MultiBeamCyl::ComputeSignalVector(int num, bool fgsignojit)
|
---|
78 | {
|
---|
79 | int nok = 0;
|
---|
80 | signal = 0.;
|
---|
81 | sigjitt = 0.;
|
---|
82 | for(int is=0; is<src->freq.Size(); is++) {
|
---|
83 | double fr = src->freq(is);
|
---|
84 | if ((fr < 0.) || (fr > 0.5)) continue;
|
---|
85 | nok++;
|
---|
86 | // Pour le dephasage entre recepteurs, on doit utiliser la frequence vraie,
|
---|
87 | // pas celle apres shift (freq-reduite)
|
---|
88 | // lambda = c T = c/freq avec c = 1, dephasage = 2*pi*num*Da*sin(ang)/lambda
|
---|
89 | double dephasage = num*Da*sin(src->angX(is)) + posY*sin(src->angY(is)) ;
|
---|
90 | dephasage *= (2*M_PI*(fr+freq0));
|
---|
91 | // On ajoute alors la phase propre de chaque source
|
---|
92 | dephasage += src->phase(is);
|
---|
93 | double amprep = src->amp(is)*AngResponse(src->angX(is), src->angY(is));
|
---|
94 | for(int k=0; k<NS; k++) {
|
---|
95 | sigjitt(k) += amprep*sin(2.*M_PI*fr*tjitt(k)+dephasage);
|
---|
96 | if (fgsignojit)
|
---|
97 | signal(k) += amprep*sin(2.*M_PI*fr*texact(k)+dephasage);
|
---|
98 | }
|
---|
99 | }
|
---|
100 | // Application du gain du detecteur
|
---|
101 | r_4 ga = gain(num);
|
---|
102 | if (fabs(ga-1.) > 1.e-9) {
|
---|
103 | signal *= ga;
|
---|
104 | sigjitt *= ga;
|
---|
105 | }
|
---|
106 | // Ajout de bruit (ampli ...)
|
---|
107 | if (signoise > 1.e-18) {
|
---|
108 | for(int k=0; k<NS; k++) {
|
---|
109 | sigjitt(k) += GauRnd(0., signoise);
|
---|
110 | if (fgsignojit) signal(k) += GauRnd(0., signoise);
|
---|
111 | }
|
---|
112 | }
|
---|
113 |
|
---|
114 | FFTPackServer ffts;
|
---|
115 |
|
---|
116 | ffts.FFTForward(sigjitt, f_sigjit);
|
---|
117 | if (fgsignojit) ffts.FFTForward(signal, f_sig);
|
---|
118 |
|
---|
119 | return nok;
|
---|
120 | }
|
---|
121 |
|
---|
122 |
|
---|
123 | /* --- a supprimer ?
|
---|
124 | inline float myZmodule(complex<r_4>& z)
|
---|
125 | {
|
---|
126 | return (float)sqrt((double)(z.real()*z.real()+z.imag()*z.imag()));
|
---|
127 | }
|
---|
128 | ----- */
|
---|
129 |
|
---|
130 | void MultiBeamCyl::ReconstructSourcePlane(bool fgzerocentre)
|
---|
131 | {
|
---|
132 | ComputeTimeVectors();
|
---|
133 | int noksrc = ComputeSignalVector(0, false);
|
---|
134 | vector<TVector< complex<r_4> > > vvfc;
|
---|
135 | cout << "MultiBeamCyl::ReconstructSourcePlane() NR=" << NR
|
---|
136 | << " PosY=" << posY << " NFreq=" << f_sigjit.Size()-1 << " NOkSrc=" << noksrc << endl;
|
---|
137 | if (PrtLev > 0) {
|
---|
138 | cout << " ... posY= " << posY << " MeanGain=" << Mean(gain) << " MeanAmpSrc="
|
---|
139 | << Mean(src->amp) << endl;
|
---|
140 | cout << " ...SigNoise=" << signoise << " TimeJitter=" << timejitter
|
---|
141 | << " TOffSig=" << toffsig << " Da=" << Da << " Freq0=" << freq0 << endl;
|
---|
142 | }
|
---|
143 | // On ne s'occupe pas de la composante continue
|
---|
144 | for(int jf=1; jf<f_sigjit.Size(); jf++) {
|
---|
145 | TVector<complex<r_4> > cf(NR);
|
---|
146 | vvfc.push_back(cf);
|
---|
147 | }
|
---|
148 | cout << "ReconstructSourcePlane()/Info: computing s(t) for each receptor ..." << endl;
|
---|
149 | int pmod = NR/10;
|
---|
150 | for(int ir=0; ir<NR; ir++) {
|
---|
151 | if (timejitter > 1.e-19) NewTJitVector(ir);
|
---|
152 | noksrc = ComputeSignalVector(ir, false);
|
---|
153 | for(int jf=1; jf<f_sigjit.Size(); jf++)
|
---|
154 | vvfc[jf-1](ir) = f_sigjit(jf);
|
---|
155 | if ( (PrtLev>0) && (ir%pmod == 0) )
|
---|
156 | cout << " OK s(t) for ir=" << ir << " / NR=" << NR << " NOkSrc=" << noksrc << endl;
|
---|
157 | }
|
---|
158 |
|
---|
159 | cout << "ReconstructSourcePlane()/Info: computing s(ang) for each freq by FFT" << endl;
|
---|
160 | cmplx_srcplane.SetSize(f_sigjit.Size()-1, NR);
|
---|
161 | // rec_srcplane.SetSize(f_sigjit.Size()-1, NR);
|
---|
162 | FFTPackServer ffts;
|
---|
163 | TVector<complex<r_4> > fcf;
|
---|
164 | pmod = vvfc.size()/10;
|
---|
165 | for(int jf=0; jf<vvfc.size(); jf++) {
|
---|
166 | ffts.FFTForward(vvfc[jf], fcf);
|
---|
167 | if (fcf.Size() != NR) {
|
---|
168 | cout << "ReconstructSourcePlane()/BUG jf=" << jf << " fcf.Size() != NR "
|
---|
169 | << fcf.Size() << " != " << NR << endl;
|
---|
170 | continue;
|
---|
171 | }
|
---|
172 | if (fgzerocentre) { // On veut avoir la direction angle=0 au milieu de la matrice
|
---|
173 | int milieu = (NR-1)/2;
|
---|
174 | if (NR%2 == 0) milieu++;
|
---|
175 | int decal = NR - milieu - 1;
|
---|
176 | for (int ir=0; ir<=milieu; ir++)
|
---|
177 | cmplx_srcplane(jf, ir+decal) = fcf(ir);
|
---|
178 | // rec_srcplane(jf, ir+decal) = myZmodule(fcf(ir));
|
---|
179 |
|
---|
180 | for (int ir=milieu+1; ir<NR; ir++)
|
---|
181 | cmplx_srcplane(jf, decal-(NR-ir)) = fcf(ir);
|
---|
182 | // rec_srcplane(jf, decal-(NR-ir)) = myZmodule(fcf(ir));
|
---|
183 |
|
---|
184 | }
|
---|
185 | else for (int ir=0; ir<NR; ir++)
|
---|
186 | cmplx_srcplane(jf, ir) = fcf(ir);
|
---|
187 | // rec_srcplane(jf, ir) = myZmodule(fcf(ir));
|
---|
188 |
|
---|
189 | if ( (PrtLev > 0) && (jf%pmod == 0))
|
---|
190 | cout << " OK rec_srcplane(jf, ir) for jf=" << jf << endl;
|
---|
191 | }
|
---|
192 |
|
---|
193 |
|
---|
194 | cout << "ReconstructSourcePlane()/Info: rec_srcplane computed OK" << endl;
|
---|
195 | }
|
---|
196 |
|
---|
197 |
|
---|