| [3756] | 1 | //  Classes to compute 2D 
 | 
|---|
 | 2 | // R. Ansari - Nov 2008, May 2010 
 | 
|---|
 | 3 | 
 | 
|---|
 | 4 | #include "mdish.h"
 | 
|---|
 | 5 | 
 | 
|---|
 | 6 | 
 | 
|---|
 | 7 | //--------------------------------------------------
 | 
|---|
 | 8 | // -- Four2DResponse class 
 | 
|---|
 | 9 | //--------------------------------------------------
 | 
|---|
 | 10 | // Constructor
 | 
|---|
| [3789] | 11 | Four2DResponse::Four2DResponse(int typ, double dx, double dy, double lambda)
 | 
|---|
| [3756] | 12 |   : typ_(typ), dx_((dx>1.e-3)?dx:1.), dy_((dy>1.e-3)?dy:1.)
 | 
|---|
 | 13 | {
 | 
|---|
| [3789] | 14 |   setLambdaRef(lambda);
 | 
|---|
 | 15 |   setLambda(lambda);
 | 
|---|
| [3756] | 16 | }
 | 
|---|
 | 17 | 
 | 
|---|
 | 18 | // Return the response for the wave vecteor (kx,ky)
 | 
|---|
 | 19 | double Four2DResponse::Value(double kx, double ky)
 | 
|---|
 | 20 | {
 | 
|---|
| [3787] | 21 |   kx *= lambda_ratio_;
 | 
|---|
 | 22 |   ky *= lambda_ratio_;
 | 
|---|
| [3756] | 23 |   double wk,wkx,wky;
 | 
|---|
 | 24 |   switch (typ_) 
 | 
|---|
 | 25 |     {
 | 
|---|
 | 26 |     case 1:   // Reponse gaussienne parabole diametre D exp[ - 0.5 (lambda  k_g / D )^2 ]
 | 
|---|
 | 27 |       wk = sqrt(kx*kx+ky*ky)/dx_;
 | 
|---|
 | 28 |       wk = 0.5*wk*wk;
 | 
|---|
 | 29 |       return exp(-wk);
 | 
|---|
 | 30 |       break;
 | 
|---|
 | 31 |     case 2:   // Reponse parabole diametre D  Triangle <= kmax= 2 pi D / lambda   
 | 
|---|
 | 32 |       wk = sqrt(kx*kx+ky*ky)/dx_/2./M_PI;
 | 
|---|
 | 33 |       return ( (wk<1.)?(1.-wk):0.);
 | 
|---|
 | 34 |       break;
 | 
|---|
| [3796] | 35 |     case 22:   // Reponse parabole diametre D  Triangle <= kmax= 2 pi D / lambda + trou au centre
 | 
|---|
 | 36 |       wk = sqrt(kx*kx+ky*ky)/dx_/2./M_PI;
 | 
|---|
 | 37 |       if (wk<0.025) return 39.*wk;
 | 
|---|
 | 38 |       else if (wk<1.) return (1.-wk);
 | 
|---|
 | 39 |       else return 0.;
 | 
|---|
 | 40 |       break;
 | 
|---|
| [3756] | 41 |     case 3:   // Reponse rectangle Dx x Dy  Triangle (|kx|,|k_y|) <= (2 pi Dx / lambda, 2 pi Dx / lambda) 
 | 
|---|
| [3796] | 42 |       wkx = fabs(kx)/2./M_PI/dx_; 
 | 
|---|
 | 43 |       wky = fabs(ky)/2./M_PI/dy_; 
 | 
|---|
| [3756] | 44 |       return ( ((wkx<1.)&&(wky<1.))?((1.-wkx)*(1-wky)):0.);
 | 
|---|
 | 45 |       break;
 | 
|---|
 | 46 |     default:
 | 
|---|
 | 47 |       return 1.;
 | 
|---|
 | 48 |     }
 | 
|---|
 | 49 | }
 | 
|---|
 | 50 | // Return a vector representing the power spectrum (for checking) 
 | 
|---|
 | 51 | Histo2D Four2DResponse::GetResponse(int nx, int ny)
 | 
|---|
 | 52 | {
 | 
|---|
 | 53 |   double kxmx = 1.2*DeuxPI*dx_;
 | 
|---|
 | 54 |   double kymx = 1.2*DeuxPI*dy_;
 | 
|---|
 | 55 |   if (typ_<3) kymx=kxmx; 
 | 
|---|
 | 56 |   Histo2D h2(0.,kxmx,nx,0.,kymx,ny);
 | 
|---|
 | 57 | 
 | 
|---|
 | 58 |   for(int j=0; j<h2.NBinY(); j++) 
 | 
|---|
 | 59 |     for(int i=0; i<h2.NBinX(); i++) 
 | 
|---|
 | 60 |       h2(i,j) = Value((i+0.5)*h2.WBinX(), (j+0.5)*h2.WBinY());
 | 
|---|
 | 61 |   return h2;    
 | 
|---|
 | 62 | }
 | 
|---|
 | 63 | 
 | 
|---|
 | 64 | //---------------------------------------------------------------
 | 
|---|
 | 65 | // -- Four2DRespTable : Reponse tabulee instrumentale ds le plan k_x,k_y (angles theta,phi) 
 | 
|---|
 | 66 | //---------------------------------------------------------------
 | 
|---|
| [3792] | 67 | Four2DRespTable::Four2DRespTable()
 | 
|---|
 | 68 |   : Four2DResponse(0,1.,1.)
 | 
|---|
| [3756] | 69 | {
 | 
|---|
 | 70 | }
 | 
|---|
 | 71 | 
 | 
|---|
| [3792] | 72 | Four2DRespTable::Four2DRespTable(Histo2D const & hrep, double d, double lambda)
 | 
|---|
 | 73 |   : Four2DResponse(0,d,d,lambda) , hrep_(hrep)
 | 
|---|
 | 74 | {
 | 
|---|
 | 75 | }
 | 
|---|
 | 76 | 
 | 
|---|
| [3756] | 77 | double Four2DRespTable::Value(double kx, double ky)
 | 
|---|
 | 78 | {
 | 
|---|
| [3787] | 79 |   kx *= lambda_ratio_;
 | 
|---|
 | 80 |   ky *= lambda_ratio_;
 | 
|---|
| [3756] | 81 |   int_4 i,j;
 | 
|---|
 | 82 |   if ( (kx<=hrep_.XMin())||(kx>=hrep_.XMax()) || 
 | 
|---|
 | 83 |        (ky<=hrep_.YMin())||(ky>=hrep_.YMax()) )  return 0.;
 | 
|---|
 | 84 |   hrep_.FindBin(kx, ky, i, j);
 | 
|---|
 | 85 |   return hrep_(i, j);
 | 
|---|
 | 86 | }
 | 
|---|
 | 87 | 
 | 
|---|
| [3796] | 88 | double Four2DRespTable::renormalize(double max)
 | 
|---|
 | 89 | {
 | 
|---|
 | 90 |   double cmx = hrep_.VMax();
 | 
|---|
 | 91 |   hrep_ *= (max/cmx);
 | 
|---|
 | 92 |   return cmx;
 | 
|---|
 | 93 | }
 | 
|---|
 | 94 | 
 | 
|---|
| [3792] | 95 | void Four2DRespTable::writeToPPF(string flnm)
 | 
|---|
 | 96 | {
 | 
|---|
 | 97 |   DVList dvinfo;
 | 
|---|
 | 98 |   dvinfo["DoL"] = dx_;
 | 
|---|
 | 99 |   dvinfo["LambdaRef"] = lambdaref_;
 | 
|---|
 | 100 |   dvinfo["Lambda"] = lambda_;
 | 
|---|
 | 101 |   POutPersist po(flnm);
 | 
|---|
 | 102 |   po << hrep_;
 | 
|---|
 | 103 |   po << dvinfo;
 | 
|---|
 | 104 | }
 | 
|---|
 | 105 | 
 | 
|---|
 | 106 | void Four2DRespTable::readFromPPF(string flnm)
 | 
|---|
 | 107 | {
 | 
|---|
 | 108 |   PInPersist pin(flnm);
 | 
|---|
 | 109 |   DVList dvinfo;
 | 
|---|
 | 110 |   pin >> hrep_;
 | 
|---|
 | 111 |   pin >> dvinfo;
 | 
|---|
 | 112 |   dx_ = dy_ = dvinfo["DoL"];
 | 
|---|
 | 113 |   setLambdaRef((double)dvinfo["LambdaRef"]);
 | 
|---|
 | 114 |   setLambda((double)dvinfo["Lambda"]); 
 | 
|---|
 | 115 | }
 | 
|---|
 | 116 | 
 | 
|---|
 | 117 | 
 | 
|---|
 | 118 | 
 | 
|---|
| [3788] | 119 | //---------------------------------------------------------------
 | 
|---|
 | 120 | // -- Four2DRespRatio : rapport de la reponse entre deux objets Four2DResponse
 | 
|---|
 | 121 | //---------------------------------------------------------------
 | 
|---|
| [3789] | 122 | Four2DRespRatio::Four2DRespRatio(Four2DResponse& a, Four2DResponse& b, double divzthr)
 | 
|---|
 | 123 |   : Four2DResponse(0, a.D(), a.D()), a_(a), b_(b), divzthr_(divzthr)
 | 
|---|
| [3788] | 124 | {
 | 
|---|
 | 125 | }
 | 
|---|
 | 126 | 
 | 
|---|
 | 127 | double Four2DRespRatio::Value(double kx, double ky)
 | 
|---|
 | 128 | {
 | 
|---|
 | 129 |   double ra = a_.Value(kx,ky);
 | 
|---|
 | 130 |   double rb = b_.Value(kx,ky);
 | 
|---|
| [3792] | 131 |   if (ra<rb) {
 | 
|---|
 | 132 |     if (rb>1.e-39)  return(ra/rb);  
 | 
|---|
 | 133 |     else return 0.;
 | 
|---|
| [3789] | 134 |   }
 | 
|---|
| [3792] | 135 |   if (rb<divzthr_)  rb=divzthr_;
 | 
|---|
| [3788] | 136 |   return (ra/rb);
 | 
|---|
 | 137 | }
 | 
|---|
 | 138 | 
 | 
|---|
 | 139 | //---------------------------------------------------------------
 | 
|---|
| [3756] | 140 | //--- Classe simple pour le calcul de rotation 
 | 
|---|
 | 141 | class Rotation {
 | 
|---|
 | 142 | public:
 | 
|---|
 | 143 |   Rotation(double tet, double phi)
 | 
|---|
 | 144 |   {
 | 
|---|
 | 145 | // (Teta,Phi) = Direction de visee 
 | 
|---|
 | 146 | // Les angles d'Euler correspondants sont Teta, Phi+Pi/2
 | 
|---|
 | 147 | // Le Pi/2 vient que les rotations d'euler se font dans l'ordre
 | 
|---|
 | 148 | //  Autour de oZ d'angle Phi, autour de oN (nouvel axe X) d'angle Teta
 | 
|---|
 | 149 | //  Autour du nouvel axe Z (x3) d'angle Psi  (Psi=0 -> cp=1, sp=0.;
 | 
|---|
 | 150 |   double ct = cos(tet);
 | 
|---|
 | 151 |   double st = sin(tet);
 | 
|---|
 | 152 |   // Le Pi/2 echange les axes X<>Y pour theta=phi=0 !
 | 
|---|
 | 153 |   //  double cf = cos(phi+M_PI/2);
 | 
|---|
 | 154 |   //  double sf = sin(phi+M_PI/2);
 | 
|---|
 | 155 |   double cf = cos(phi);
 | 
|---|
 | 156 |   double sf = sin(phi);
 | 
|---|
 | 157 |   double cp = 1.; // cos((double)pO);
 | 
|---|
 | 158 |   double sp = 0.; // sin((double)pO);
 | 
|---|
 | 159 |   RE[0][0] = cf*cp-sf*ct*sp;     RE[0][1] = sf*cp+cf*ct*sp;      RE[0][2] = st*sp;
 | 
|---|
 | 160 |   RE[1][0] = -cf*sp-sf*ct*cp;    RE[1][1] = -sf*sp+cf*ct*cp;     RE[1][2] = st*cp;
 | 
|---|
 | 161 |   RE[2][0] = sf*st;              RE[2][1] = -cf*st;              RE[2][2] = ct;
 | 
|---|
 | 162 |   }
 | 
|---|
 | 163 |   inline void Do(double& x, double& y)
 | 
|---|
 | 164 |   {
 | 
|---|
 | 165 |     double xx=x; 
 | 
|---|
 | 166 |     double yy=y;
 | 
|---|
 | 167 |     x = RE[0][0]*xx+RE[0][1]*yy;
 | 
|---|
 | 168 |     y = RE[1][0]*xx+RE[1][1]*yy;
 | 
|---|
 | 169 |   }
 | 
|---|
 | 170 |   double RE[3][3];
 | 
|---|
 | 171 | };
 | 
|---|
 | 172 | 
 | 
|---|
 | 173 | 
 | 
|---|
 | 174 | //----------------------------------------------------------------------
 | 
|---|
 | 175 | //  -- Pour calculer la reponse ds le plan kx,ky d'un system MultiDish 
 | 
|---|
 | 176 | //----------------------------------------------------------------------
 | 
|---|
 | 177 | MultiDish::MultiDish(double lambda, double dmax, vector<Dish>& dishes, bool fgnoauto)
 | 
|---|
 | 178 |   : lambda_(lambda), dmax_(dmax), dishes_(dishes), fgnoauto_(fgnoauto)
 | 
|---|
 | 179 | { 
 | 
|---|
 | 180 |   SetThetaPhiRange();
 | 
|---|
 | 181 |   SetRespHisNBins();
 | 
|---|
 | 182 |   mcnt_=0;
 | 
|---|
 | 183 | }
 | 
|---|
 | 184 | 
 | 
|---|
 | 185 | Histo2D MultiDish::GetResponse()
 | 
|---|
 | 186 | {
 | 
|---|
 | 187 |   cout << " MultiDish::GetResponse() - NDishes=" << dishes_.size() << " nx=" << nx_ << " ny=" << ny_ << endl;
 | 
|---|
 | 188 |   double kmx = 1.2*DeuxPI*dmax_/lambda_;
 | 
|---|
| [3769] | 189 |   double dkmx = kmx/(double)nx_;
 | 
|---|
 | 190 |   double dkmy = kmx/(double)ny_;
 | 
|---|
 | 191 |   double kmxx = ((double)nx_+0.5)*dkmx;
 | 
|---|
 | 192 |   double kmxy = ((double)ny_+0.5)*dkmy;
 | 
|---|
 | 193 |   h2w_.Define(-kmxx,kmxx,2*nx_+1,-kmxy,kmxy,2*ny_+1);
 | 
|---|
 | 194 |   h2w_.SetZeroBin(0.,0.);
 | 
|---|
| [3756] | 195 | 
 | 
|---|
 | 196 |   double dold = dishes_[0].D/lambda_;
 | 
|---|
 | 197 |   double dolx = dishes_[0].Dx/lambda_;
 | 
|---|
 | 198 |   double doly = dishes_[0].Dy/lambda_;
 | 
|---|
 | 199 | 
 | 
|---|
 | 200 |   Four2DResponse rd(2, dold, dold);
 | 
|---|
 | 201 |   Four2DResponse rdr(3, dolx, doly);
 | 
|---|
 | 202 | 
 | 
|---|
 | 203 |   if (!dishes_[0].isCircular())  rd = rdr;
 | 
|---|
 | 204 | 
 | 
|---|
 | 205 |   double dtet = thetamax_/(double)ntet_;
 | 
|---|
 | 206 |   double dphi = phimax_/(double)ntet_;
 | 
|---|
 | 207 | 
 | 
|---|
 | 208 |   double sumw = 0.;
 | 
|---|
 | 209 |   for(int kt=0; kt<ntet_; kt++) 
 | 
|---|
 | 210 |     for(int jp=0; jp<nphi_; jp++) 
 | 
|---|
 | 211 |       sumw += CumulResp(rd, (double)kt*dtet, (double)jp*dphi);
 | 
|---|
 | 212 | 
 | 
|---|
| [3769] | 213 |   double kx1 = DeuxPI*(dishes_[0].DiameterX())/lambda_;
 | 
|---|
 | 214 |   double ky1 = DeuxPI*(dishes_[0].DiameterY())/lambda_;
 | 
|---|
 | 215 |   int_4 ib,jb;
 | 
|---|
| [3756] | 216 |   //  h2w_ /= h2cnt_; 
 | 
|---|
 | 217 |   Histo2D h2 = h2w_.Convert();
 | 
|---|
| [3769] | 218 |   h2.FindBin(kx1, ky1, ib, jb);
 | 
|---|
 | 219 |   if ((kx1<0)||(ky1<0)||(kx1>=h2.NBinX())||(ky1>=h2.NBinY())) {
 | 
|---|
 | 220 |     cout << " MultiDish::GetResponse[1]/ERROR kx1,ky1=" << kx1 <<","<< ky1 << " --> ib,jb=" << ib <<","<< jb << endl;
 | 
|---|
 | 221 |     ib=jb=0;
 | 
|---|
 | 222 |   }
 | 
|---|
 | 223 |   double vmax=h2.VMax();
 | 
|---|
 | 224 |   cout << " MultiDish::GetResponse[1] VMin=" << h2.VMin() << " VMax= " << vmax  
 | 
|---|
 | 225 |        << " h(0,0)=" << h2(0,0) << " kx1,ky1->h(" << ib <<"," << jb << ")=" << h2(ib,jb) <<endl;
 | 
|---|
| [3756] | 226 |   //  double fnorm=sqrt((double)dishes_.size())/h2.VMax();
 | 
|---|
 | 227 |   double fnorm=1.;
 | 
|---|
| [3769] | 228 |   if (vmax > sumw) {
 | 
|---|
| [3756] | 229 |     fnorm=(double)dishes_.size()/h2.VMax();
 | 
|---|
| [3769] | 230 |     cout << " MultiDish::GetResponse[2]/Warning h2.VMax()=" << vmax << " >  sumw=" << sumw << endl;  
 | 
|---|
 | 231 |     cout << "   ... NDishes=" << dishes_.size() << " sumw=" << sumw 
 | 
|---|
 | 232 |          << " Renormalizing x NDishes/VMax  " << fnorm << endl;
 | 
|---|
| [3756] | 233 |   }
 | 
|---|
 | 234 |   else {
 | 
|---|
| [3769] | 235 |     fnorm=(double)dishes_.size()/sumw;
 | 
|---|
 | 236 |     cout << " MultiDish::GetResponse[3] NDishes=" << dishes_.size() << " sumw=" << sumw  
 | 
|---|
 | 237 |          << " Renormalizing x NDishes/sumw   " << fnorm << endl;
 | 
|---|
| [3756] | 238 |   }
 | 
|---|
 | 239 |   h2 *= fnorm;
 | 
|---|
| [3769] | 240 |   cout << " ---- MultiDish::GetResponse/[4] APRES VMin=" << h2.VMin() << " VMax= " << h2.VMax() << " h(0,0)=" 
 | 
|---|
| [3756] | 241 |        << h2(0,0) << endl;
 | 
|---|
 | 242 |   return h2;
 | 
|---|
 | 243 | }
 | 
|---|
 | 244 | 
 | 
|---|
| [3769] | 245 | Histo2D MultiDish::PosDist(int nx, int ny, double dmax)
 | 
|---|
| [3756] | 246 | {
 | 
|---|
| [3769] | 247 |   if (dmax<1e-3)  dmax=nx*dishes_[0].Diameter();
 | 
|---|
 | 248 |   double dd = dmax/nx/2.;
 | 
|---|
 | 249 |   Histo2D hpos(-dd,dmax+dd,nx+1,-dd,dmax+dd,ny+1);
 | 
|---|
 | 250 |   for(size_t i=0; i<NbDishes(); i++) {
 | 
|---|
 | 251 |     hpos.Add(dishes_[i].X, dishes_[i].Y);
 | 
|---|
| [3756] | 252 |   }
 | 
|---|
| [3769] | 253 |   return hpos;
 | 
|---|
| [3756] | 254 | }
 | 
|---|
 | 255 | 
 | 
|---|
 | 256 | double MultiDish::AddToHisto(double kx0, double ky0, double x, double y, double w, bool fgfh)
 | 
|---|
 | 257 | {
 | 
|---|
 | 258 |   double xxp = kx0+x;
 | 
|---|
 | 259 |   double yyp = ky0+y;
 | 
|---|
 | 260 |   double sumw=0.;
 | 
|---|
 | 261 |   sumw += h2w_.Add(xxp, yyp, w, fgfh);
 | 
|---|
 | 262 |   double xxm=kx0-x;
 | 
|---|
 | 263 |   double yym=ky0-y;
 | 
|---|
| [3769] | 264 |   //  if (xxm>0.)  {
 | 
|---|
 | 265 |   sumw += h2w_.Add(xxm, yyp, w, fgfh);
 | 
|---|
 | 266 |   // if (yym>0.)  
 | 
|---|
 | 267 |   sumw += h2w_.Add(xxm, yym, w, fgfh);
 | 
|---|
 | 268 |   //  }
 | 
|---|
 | 269 |   // if (yym>0.)  
 | 
|---|
 | 270 |   sumw += h2w_.Add(xxp, yym, w, fgfh);
 | 
|---|
| [3756] | 271 |   return sumw; 
 | 
|---|
 | 272 | }
 | 
|---|
 | 273 | 
 | 
|---|
 | 274 | double MultiDish::CumulResp(Four2DResponse& rd, double theta, double phi)
 | 
|---|
 | 275 | {
 | 
|---|
 | 276 |   //  cout << " MultiDish::CumulResp()  theta=" << theta << " phi=" << phi << endl;
 | 
|---|
 | 277 | 
 | 
|---|
 | 278 |   double dx = h2w_.WBinX()/5;
 | 
|---|
 | 279 |   double dy = h2w_.WBinY()/5;
 | 
|---|
| [3769] | 280 |   int nbx = DeuxPI*rd.Dx()/dx+1;
 | 
|---|
 | 281 |   int nby = DeuxPI*rd.Dy()/dy+1;
 | 
|---|
| [3756] | 282 |   dx = DeuxPI*rd.Dx()/(double)nbx;
 | 
|---|
 | 283 |   dy = DeuxPI*rd.Dy()/(double)nby;
 | 
|---|
 | 284 |   if (mcnt_==0) 
 | 
|---|
 | 285 |     cout << " CumulResp() nbx=" << nbx << " nby=" << nby << " dx=" << dx << " dy=" << dy << endl;
 | 
|---|
 | 286 |   mcnt_++;
 | 
|---|
 | 287 | 
 | 
|---|
 | 288 |   double sumw = 0.;
 | 
|---|
 | 289 |   Rotation rot(theta, phi);
 | 
|---|
 | 290 | 
 | 
|---|
 | 291 |   for(size_t i=0; i<dishes_.size(); i++) {
 | 
|---|
| [3769] | 292 |     for(size_t j=0; j<dishes_.size(); j++) {
 | 
|---|
 | 293 |       double kx0 = DeuxPI*(dishes_[i].X-dishes_[j].X)/lambda_;
 | 
|---|
 | 294 |       double ky0 = DeuxPI*(dishes_[i].Y-dishes_[j].Y)/lambda_;
 | 
|---|
| [3756] | 295 |       rot.Do(kx0, ky0);
 | 
|---|
| [3769] | 296 |       //    if (kx0<0) kx0=-kx0;
 | 
|---|
 | 297 |       //    if (ky0<0) ky0=-ky0;
 | 
|---|
| [3756] | 298 |       bool fgfh= (!fgnoauto_ || (dishes_[i].ReflectorId()!=dishes_[j].ReflectorId()));
 | 
|---|
 | 299 |       for(int ix=0; ix<nbx; ix++) 
 | 
|---|
 | 300 |         for(int jy=0; jy<nby; jy++) { 
 | 
|---|
 | 301 |           double x = ix*dx;  
 | 
|---|
| [3769] | 302 |           double y = jy*dy;
 | 
|---|
 | 303 |           if ((ix>0)&&(jy>0)) {
 | 
|---|
 | 304 |             sumw += AddToHisto(kx0, ky0, x, y, rd(x,y), fgfh);
 | 
|---|
 | 305 |           }
 | 
|---|
 | 306 |           else {
 | 
|---|
 | 307 |             if ((ix==0)&&(jy==0)) 
 | 
|---|
 | 308 |               sumw += h2w_.Add(kx0, ky0, rd(0.,0.), fgfh);
 | 
|---|
 | 309 |             else {
 | 
|---|
 | 310 |               double w = rd(x,y);
 | 
|---|
 | 311 |               if (ix==0) {
 | 
|---|
 | 312 |                 sumw += h2w_.Add(kx0, ky0+y, w, fgfh);
 | 
|---|
 | 313 |                 sumw += h2w_.Add(kx0, ky0-y, w, fgfh);
 | 
|---|
 | 314 |               }
 | 
|---|
 | 315 |               else {
 | 
|---|
 | 316 |                 sumw += h2w_.Add(kx0+x, ky0, w, fgfh);
 | 
|---|
 | 317 |                 sumw += h2w_.Add(kx0-x, ky0, w, fgfh);
 | 
|---|
 | 318 |               }
 | 
|---|
 | 319 |             }
 | 
|---|
 | 320 |             //   
 | 
|---|
 | 321 |           }
 | 
|---|
| [3756] | 322 |         }
 | 
|---|
 | 323 |     //    if (i%10==0) 
 | 
|---|
 | 324 |     //      cout << " MultiDish::CumulResp() done i=" << i << " / imax=" << dishes_.size() 
 | 
|---|
 | 325 |     //     << " theta=" << theta << " phi=" << phi << endl;
 | 
|---|
| [3769] | 326 |     }
 | 
|---|
| [3756] | 327 |   }
 | 
|---|
 | 328 |   return sumw;
 | 
|---|
 | 329 | }
 | 
|---|
 | 330 | 
 | 
|---|