source: Sophya/trunk/Cosmo/RadioBeam/mdish.cc@ 3931

Last change on this file since 3931 was 3931, checked in by ansari, 15 years ago

1/ Ajout nouvelle config interfero en croix (ASKAP like)
2/ Correction et ameliorations diverses, en particulier sur les limites de rotation

ThetaMax=23 degres, angles phi, -phi, phi+pi, -phi-pi

Reza 23/12/2010

File size: 10.1 KB
RevLine 
[3756]1// Classes to compute 2D
2// R. Ansari - Nov 2008, May 2010
3
4#include "mdish.h"
5
6
7//--------------------------------------------------
8// -- Four2DResponse class
9//--------------------------------------------------
10// Constructor
[3789]11Four2DResponse::Four2DResponse(int typ, double dx, double dy, double lambda)
[3756]12 : typ_(typ), dx_((dx>1.e-3)?dx:1.), dy_((dy>1.e-3)?dy:1.)
13{
[3789]14 setLambdaRef(lambda);
15 setLambda(lambda);
[3756]16}
17
18// Return the response for the wave vecteor (kx,ky)
19double Four2DResponse::Value(double kx, double ky)
20{
[3787]21 kx *= lambda_ratio_;
22 ky *= lambda_ratio_;
[3756]23 double wk,wkx,wky;
24 switch (typ_)
25 {
26 case 1: // Reponse gaussienne parabole diametre D exp[ - 0.5 (lambda k_g / D )^2 ]
27 wk = sqrt(kx*kx+ky*ky)/dx_;
28 wk = 0.5*wk*wk;
29 return exp(-wk);
30 break;
31 case 2: // Reponse parabole diametre D Triangle <= kmax= 2 pi D / lambda
32 wk = sqrt(kx*kx+ky*ky)/dx_/2./M_PI;
33 return ( (wk<1.)?(1.-wk):0.);
34 break;
[3796]35 case 22: // Reponse parabole diametre D Triangle <= kmax= 2 pi D / lambda + trou au centre
36 wk = sqrt(kx*kx+ky*ky)/dx_/2./M_PI;
37 if (wk<0.025) return 39.*wk;
38 else if (wk<1.) return (1.-wk);
39 else return 0.;
40 break;
[3756]41 case 3: // Reponse rectangle Dx x Dy Triangle (|kx|,|k_y|) <= (2 pi Dx / lambda, 2 pi Dx / lambda)
[3796]42 wkx = fabs(kx)/2./M_PI/dx_;
43 wky = fabs(ky)/2./M_PI/dy_;
[3756]44 return ( ((wkx<1.)&&(wky<1.))?((1.-wkx)*(1-wky)):0.);
45 break;
46 default:
47 return 1.;
48 }
49}
50// Return a vector representing the power spectrum (for checking)
51Histo2D Four2DResponse::GetResponse(int nx, int ny)
52{
53 double kxmx = 1.2*DeuxPI*dx_;
54 double kymx = 1.2*DeuxPI*dy_;
55 if (typ_<3) kymx=kxmx;
[3930]56 Histo2D h2(-kxmx,kxmx,nx,-kymx,kymx,ny);
[3756]57
[3930]58 double xbc,ybc;
59 for(int_4 j=0; j<h2.NBinY(); j++)
60 for(int_4 i=0; i<h2.NBinX(); i++) {
61 h2.BinCenter(i,j,xbc,ybc);
62 h2(i,j) = Value(xbc,ybc);
63 }
[3756]64 return h2;
65}
66
67//---------------------------------------------------------------
68// -- Four2DRespTable : Reponse tabulee instrumentale ds le plan k_x,k_y (angles theta,phi)
69//---------------------------------------------------------------
[3792]70Four2DRespTable::Four2DRespTable()
71 : Four2DResponse(0,1.,1.)
[3756]72{
73}
74
[3792]75Four2DRespTable::Four2DRespTable(Histo2D const & hrep, double d, double lambda)
76 : Four2DResponse(0,d,d,lambda) , hrep_(hrep)
77{
78}
79
[3756]80double Four2DRespTable::Value(double kx, double ky)
81{
[3787]82 kx *= lambda_ratio_;
83 ky *= lambda_ratio_;
[3756]84 int_4 i,j;
85 if ( (kx<=hrep_.XMin())||(kx>=hrep_.XMax()) ||
86 (ky<=hrep_.YMin())||(ky>=hrep_.YMax()) ) return 0.;
87 hrep_.FindBin(kx, ky, i, j);
88 return hrep_(i, j);
89}
90
[3796]91double Four2DRespTable::renormalize(double max)
92{
93 double cmx = hrep_.VMax();
94 hrep_ *= (max/cmx);
95 return cmx;
96}
97
[3792]98void Four2DRespTable::writeToPPF(string flnm)
99{
100 DVList dvinfo;
101 dvinfo["DoL"] = dx_;
102 dvinfo["LambdaRef"] = lambdaref_;
103 dvinfo["Lambda"] = lambda_;
104 POutPersist po(flnm);
105 po << hrep_;
106 po << dvinfo;
107}
108
109void Four2DRespTable::readFromPPF(string flnm)
110{
111 PInPersist pin(flnm);
112 DVList dvinfo;
113 pin >> hrep_;
114 pin >> dvinfo;
115 dx_ = dy_ = dvinfo["DoL"];
116 setLambdaRef((double)dvinfo["LambdaRef"]);
117 setLambda((double)dvinfo["Lambda"]);
118}
119
120
121
[3788]122//---------------------------------------------------------------
123// -- Four2DRespRatio : rapport de la reponse entre deux objets Four2DResponse
124//---------------------------------------------------------------
[3789]125Four2DRespRatio::Four2DRespRatio(Four2DResponse& a, Four2DResponse& b, double divzthr)
126 : Four2DResponse(0, a.D(), a.D()), a_(a), b_(b), divzthr_(divzthr)
[3788]127{
128}
129
130double Four2DRespRatio::Value(double kx, double ky)
131{
132 double ra = a_.Value(kx,ky);
133 double rb = b_.Value(kx,ky);
[3792]134 if (ra<rb) {
135 if (rb>1.e-39) return(ra/rb);
136 else return 0.;
[3789]137 }
[3792]138 if (rb<divzthr_) rb=divzthr_;
[3788]139 return (ra/rb);
140}
141
142//---------------------------------------------------------------
[3756]143//--- Classe simple pour le calcul de rotation
144class Rotation {
145public:
146 Rotation(double tet, double phi)
147 {
148// (Teta,Phi) = Direction de visee
149// Les angles d'Euler correspondants sont Teta, Phi+Pi/2
150// Le Pi/2 vient que les rotations d'euler se font dans l'ordre
151// Autour de oZ d'angle Phi, autour de oN (nouvel axe X) d'angle Teta
152// Autour du nouvel axe Z (x3) d'angle Psi (Psi=0 -> cp=1, sp=0.;
153 double ct = cos(tet);
154 double st = sin(tet);
155 // Le Pi/2 echange les axes X<>Y pour theta=phi=0 !
156 // double cf = cos(phi+M_PI/2);
157 // double sf = sin(phi+M_PI/2);
158 double cf = cos(phi);
159 double sf = sin(phi);
160 double cp = 1.; // cos((double)pO);
161 double sp = 0.; // sin((double)pO);
162 RE[0][0] = cf*cp-sf*ct*sp; RE[0][1] = sf*cp+cf*ct*sp; RE[0][2] = st*sp;
163 RE[1][0] = -cf*sp-sf*ct*cp; RE[1][1] = -sf*sp+cf*ct*cp; RE[1][2] = st*cp;
164 RE[2][0] = sf*st; RE[2][1] = -cf*st; RE[2][2] = ct;
165 }
166 inline void Do(double& x, double& y)
167 {
168 double xx=x;
169 double yy=y;
170 x = RE[0][0]*xx+RE[0][1]*yy;
171 y = RE[1][0]*xx+RE[1][1]*yy;
172 }
173 double RE[3][3];
174};
175
176
177//----------------------------------------------------------------------
178// -- Pour calculer la reponse ds le plan kx,ky d'un system MultiDish
179//----------------------------------------------------------------------
180MultiDish::MultiDish(double lambda, double dmax, vector<Dish>& dishes, bool fgnoauto)
181 : lambda_(lambda), dmax_(dmax), dishes_(dishes), fgnoauto_(fgnoauto)
182{
183 SetThetaPhiRange();
184 SetRespHisNBins();
185 mcnt_=0;
186}
187
188Histo2D MultiDish::GetResponse()
189{
190 cout << " MultiDish::GetResponse() - NDishes=" << dishes_.size() << " nx=" << nx_ << " ny=" << ny_ << endl;
191 double kmx = 1.2*DeuxPI*dmax_/lambda_;
[3769]192 double dkmx = kmx/(double)nx_;
193 double dkmy = kmx/(double)ny_;
194 double kmxx = ((double)nx_+0.5)*dkmx;
195 double kmxy = ((double)ny_+0.5)*dkmy;
196 h2w_.Define(-kmxx,kmxx,2*nx_+1,-kmxy,kmxy,2*ny_+1);
197 h2w_.SetZeroBin(0.,0.);
[3756]198
199 double dold = dishes_[0].D/lambda_;
200 double dolx = dishes_[0].Dx/lambda_;
201 double doly = dishes_[0].Dy/lambda_;
202
203 Four2DResponse rd(2, dold, dold);
204 Four2DResponse rdr(3, dolx, doly);
205
206 if (!dishes_[0].isCircular()) rd = rdr;
207
208 double dtet = thetamax_/(double)ntet_;
209 double dphi = phimax_/(double)ntet_;
210
211 double sumw = 0.;
212 for(int kt=0; kt<ntet_; kt++)
[3931]213 for(int jp=0; jp<nphi_; jp++) {
[3756]214 sumw += CumulResp(rd, (double)kt*dtet, (double)jp*dphi);
[3931]215 sumw += CumulResp(rd, (double)kt*dtet, -(double)jp*dphi);
216 sumw += CumulResp(rd, (double)kt*dtet, (double)jp*dphi+M_PI);
217 sumw += CumulResp(rd, (double)kt*dtet, -(double)jp*dphi-M_PI);
218 }
[3769]219 double kx1 = DeuxPI*(dishes_[0].DiameterX())/lambda_;
220 double ky1 = DeuxPI*(dishes_[0].DiameterY())/lambda_;
221 int_4 ib,jb;
[3756]222 // h2w_ /= h2cnt_;
223 Histo2D h2 = h2w_.Convert();
[3769]224 h2.FindBin(kx1, ky1, ib, jb);
225 if ((kx1<0)||(ky1<0)||(kx1>=h2.NBinX())||(ky1>=h2.NBinY())) {
226 cout << " MultiDish::GetResponse[1]/ERROR kx1,ky1=" << kx1 <<","<< ky1 << " --> ib,jb=" << ib <<","<< jb << endl;
227 ib=jb=0;
228 }
229 double vmax=h2.VMax();
230 cout << " MultiDish::GetResponse[1] VMin=" << h2.VMin() << " VMax= " << vmax
231 << " h(0,0)=" << h2(0,0) << " kx1,ky1->h(" << ib <<"," << jb << ")=" << h2(ib,jb) <<endl;
[3756]232 // double fnorm=sqrt((double)dishes_.size())/h2.VMax();
233 double fnorm=1.;
[3769]234 if (vmax > sumw) {
[3756]235 fnorm=(double)dishes_.size()/h2.VMax();
[3769]236 cout << " MultiDish::GetResponse[2]/Warning h2.VMax()=" << vmax << " > sumw=" << sumw << endl;
237 cout << " ... NDishes=" << dishes_.size() << " sumw=" << sumw
238 << " Renormalizing x NDishes/VMax " << fnorm << endl;
[3756]239 }
240 else {
[3769]241 fnorm=(double)dishes_.size()/sumw;
242 cout << " MultiDish::GetResponse[3] NDishes=" << dishes_.size() << " sumw=" << sumw
243 << " Renormalizing x NDishes/sumw " << fnorm << endl;
[3756]244 }
245 h2 *= fnorm;
[3769]246 cout << " ---- MultiDish::GetResponse/[4] APRES VMin=" << h2.VMin() << " VMax= " << h2.VMax() << " h(0,0)="
[3756]247 << h2(0,0) << endl;
248 return h2;
249}
250
[3769]251Histo2D MultiDish::PosDist(int nx, int ny, double dmax)
[3756]252{
[3769]253 if (dmax<1e-3) dmax=nx*dishes_[0].Diameter();
254 double dd = dmax/nx/2.;
255 Histo2D hpos(-dd,dmax+dd,nx+1,-dd,dmax+dd,ny+1);
256 for(size_t i=0; i<NbDishes(); i++) {
257 hpos.Add(dishes_[i].X, dishes_[i].Y);
[3756]258 }
[3769]259 return hpos;
[3756]260}
261
262double MultiDish::AddToHisto(double kx0, double ky0, double x, double y, double w, bool fgfh)
263{
264 double xxp = kx0+x;
265 double yyp = ky0+y;
266 double sumw=0.;
267 sumw += h2w_.Add(xxp, yyp, w, fgfh);
268 double xxm=kx0-x;
269 double yym=ky0-y;
[3769]270 // if (xxm>0.) {
271 sumw += h2w_.Add(xxm, yyp, w, fgfh);
272 // if (yym>0.)
273 sumw += h2w_.Add(xxm, yym, w, fgfh);
274 // }
275 // if (yym>0.)
276 sumw += h2w_.Add(xxp, yym, w, fgfh);
[3756]277 return sumw;
278}
279
280double MultiDish::CumulResp(Four2DResponse& rd, double theta, double phi)
281{
282 // cout << " MultiDish::CumulResp() theta=" << theta << " phi=" << phi << endl;
283
284 double dx = h2w_.WBinX()/5;
285 double dy = h2w_.WBinY()/5;
[3769]286 int nbx = DeuxPI*rd.Dx()/dx+1;
287 int nby = DeuxPI*rd.Dy()/dy+1;
[3756]288 dx = DeuxPI*rd.Dx()/(double)nbx;
289 dy = DeuxPI*rd.Dy()/(double)nby;
290 if (mcnt_==0)
291 cout << " CumulResp() nbx=" << nbx << " nby=" << nby << " dx=" << dx << " dy=" << dy << endl;
292 mcnt_++;
293
294 double sumw = 0.;
295 Rotation rot(theta, phi);
296
297 for(size_t i=0; i<dishes_.size(); i++) {
[3769]298 for(size_t j=0; j<dishes_.size(); j++) {
299 double kx0 = DeuxPI*(dishes_[i].X-dishes_[j].X)/lambda_;
300 double ky0 = DeuxPI*(dishes_[i].Y-dishes_[j].Y)/lambda_;
[3756]301 rot.Do(kx0, ky0);
[3769]302 // if (kx0<0) kx0=-kx0;
303 // if (ky0<0) ky0=-ky0;
[3756]304 bool fgfh= (!fgnoauto_ || (dishes_[i].ReflectorId()!=dishes_[j].ReflectorId()));
305 for(int ix=0; ix<nbx; ix++)
306 for(int jy=0; jy<nby; jy++) {
307 double x = ix*dx;
[3769]308 double y = jy*dy;
309 if ((ix>0)&&(jy>0)) {
310 sumw += AddToHisto(kx0, ky0, x, y, rd(x,y), fgfh);
311 }
312 else {
313 if ((ix==0)&&(jy==0))
314 sumw += h2w_.Add(kx0, ky0, rd(0.,0.), fgfh);
315 else {
316 double w = rd(x,y);
317 if (ix==0) {
318 sumw += h2w_.Add(kx0, ky0+y, w, fgfh);
319 sumw += h2w_.Add(kx0, ky0-y, w, fgfh);
320 }
321 else {
322 sumw += h2w_.Add(kx0+x, ky0, w, fgfh);
323 sumw += h2w_.Add(kx0-x, ky0, w, fgfh);
324 }
325 }
326 //
327 }
[3756]328 }
329 // if (i%10==0)
330 // cout << " MultiDish::CumulResp() done i=" << i << " / imax=" << dishes_.size()
331 // << " theta=" << theta << " phi=" << phi << endl;
[3769]332 }
[3756]333 }
334 return sumw;
335}
336
Note: See TracBrowser for help on using the repository browser.