source: Sophya/trunk/Cosmo/RadioBeam/mdish.cc@ 4008

Last change on this file since 4008 was 3991, checked in by ansari, 14 years ago

encore debug/correction de Four2DRespRatio, Reza 08/05/2011

File size: 13.7 KB
RevLine 
[3756]1// Classes to compute 2D
2// R. Ansari - Nov 2008, May 2010
3
4#include "mdish.h"
5
6
7//--------------------------------------------------
8// -- Four2DResponse class
9//--------------------------------------------------
10// Constructor
[3789]11Four2DResponse::Four2DResponse(int typ, double dx, double dy, double lambda)
[3756]12 : typ_(typ), dx_((dx>1.e-3)?dx:1.), dy_((dy>1.e-3)?dy:1.)
13{
[3789]14 setLambdaRef(lambda);
15 setLambda(lambda);
[3756]16}
17
18// Return the response for the wave vecteor (kx,ky)
19double Four2DResponse::Value(double kx, double ky)
20{
[3787]21 kx *= lambda_ratio_;
22 ky *= lambda_ratio_;
[3756]23 double wk,wkx,wky;
24 switch (typ_)
25 {
[3974]26 case 1: // Reponse gaussienne parabole diametre D exp[ -(1/8) (lambda k_g / D )^2 ]
[3756]27 wk = sqrt(kx*kx+ky*ky)/dx_;
[3974]28 wk = wk*wk/8.;
[3756]29 return exp(-wk);
30 break;
31 case 2: // Reponse parabole diametre D Triangle <= kmax= 2 pi D / lambda
32 wk = sqrt(kx*kx+ky*ky)/dx_/2./M_PI;
33 return ( (wk<1.)?(1.-wk):0.);
34 break;
[3796]35 case 22: // Reponse parabole diametre D Triangle <= kmax= 2 pi D / lambda + trou au centre
36 wk = sqrt(kx*kx+ky*ky)/dx_/2./M_PI;
37 if (wk<0.025) return 39.*wk;
38 else if (wk<1.) return (1.-wk);
39 else return 0.;
40 break;
[3756]41 case 3: // Reponse rectangle Dx x Dy Triangle (|kx|,|k_y|) <= (2 pi Dx / lambda, 2 pi Dx / lambda)
[3796]42 wkx = fabs(kx)/2./M_PI/dx_;
43 wky = fabs(ky)/2./M_PI/dy_;
[3756]44 return ( ((wkx<1.)&&(wky<1.))?((1.-wkx)*(1-wky)):0.);
45 break;
46 default:
47 return 1.;
48 }
49}
50// Return a vector representing the power spectrum (for checking)
51Histo2D Four2DResponse::GetResponse(int nx, int ny)
52{
53 double kxmx = 1.2*DeuxPI*dx_;
54 double kymx = 1.2*DeuxPI*dy_;
55 if (typ_<3) kymx=kxmx;
[3930]56 Histo2D h2(-kxmx,kxmx,nx,-kymx,kymx,ny);
[3756]57
[3930]58 double xbc,ybc;
59 for(int_4 j=0; j<h2.NBinY(); j++)
60 for(int_4 i=0; i<h2.NBinX(); i++) {
61 h2.BinCenter(i,j,xbc,ybc);
62 h2(i,j) = Value(xbc,ybc);
63 }
[3756]64 return h2;
65}
66
[3947]67HProf Four2DResponse::GetProjNoiseLevel(int nbin, bool fgnorm1)
68{
69 Histo2D h2w = GetResponse(2*nbin, 2*nbin);
70 r_8 vmin=h2w.VMin();
71 r_8 vmax=h2w.VMax();
72 double seuil=vmax/10000.;
73 if (seuil<1.e-6) seuil=1.e-6;
74 r_8 facnorm=((fgnorm1)?vmax:1.);
75 cout << " Four2DResponse::GetProjNoiseLevel Min,Max=" << vmin << " , " << vmax
76 << " facnorm=" << facnorm << " seuil=" << seuil << endl;
77 double kmax=2.*M_PI*D();
78 HProf hp(0,kmax,nbin);
79 double x,y;
80 for(sa_size_t j=0; j<h2w.NBinY(); j++) {
81 for(sa_size_t i=0; i<h2w.NBinX(); i++) {
82 h2w.BinCenter(i,j,x,y);
83 double yw=h2w(i,j);
84 if (yw<seuil) continue;
85 hp.Add(sqrt(x*x+y*y),facnorm/yw);
86 }
87 }
88 return hp;
89}
90
91HProf Four2DResponse::GetProjResponse(int nbin, bool fgnorm1)
92{
93 Histo2D h2w = GetResponse(2*nbin, 2*nbin);
94 r_8 vmin=h2w.VMin();
95 r_8 vmax=h2w.VMax();
96 r_8 facnorm=((fgnorm1)?(1./vmax):1.);
97 cout << " Four2DResponse::GetProjResponse Min,Max=" << vmin << " , " << vmax
98 << " facnorm=" << facnorm << endl;
99 double kmax=2.*M_PI*D();
100 HProf hp(0,kmax,nbin);
101 double x,y;
102 for(sa_size_t j=0; j<h2w.NBinY(); j++) {
103 for(sa_size_t i=0; i<h2w.NBinX(); i++) {
104 h2w.BinCenter(i,j,x,y);
105 hp.Add(sqrt(x*x+y*y),h2w(i,j)*facnorm);
106 }
107 }
108 return hp;
109}
110
[3756]111//---------------------------------------------------------------
112// -- Four2DRespTable : Reponse tabulee instrumentale ds le plan k_x,k_y (angles theta,phi)
113//---------------------------------------------------------------
[3792]114Four2DRespTable::Four2DRespTable()
115 : Four2DResponse(0,1.,1.)
[3756]116{
117}
118
[3792]119Four2DRespTable::Four2DRespTable(Histo2D const & hrep, double d, double lambda)
120 : Four2DResponse(0,d,d,lambda) , hrep_(hrep)
121{
122}
123
[3756]124double Four2DRespTable::Value(double kx, double ky)
125{
[3787]126 kx *= lambda_ratio_;
127 ky *= lambda_ratio_;
[3756]128 int_4 i,j;
129 if ( (kx<=hrep_.XMin())||(kx>=hrep_.XMax()) ||
130 (ky<=hrep_.YMin())||(ky>=hrep_.YMax()) ) return 0.;
131 hrep_.FindBin(kx, ky, i, j);
132 return hrep_(i, j);
133}
134
[3796]135double Four2DRespTable::renormalize(double max)
136{
137 double cmx = hrep_.VMax();
138 hrep_ *= (max/cmx);
139 return cmx;
140}
141
[3792]142void Four2DRespTable::writeToPPF(string flnm)
143{
144 DVList dvinfo;
145 dvinfo["DoL"] = dx_;
146 dvinfo["LambdaRef"] = lambdaref_;
147 dvinfo["Lambda"] = lambda_;
148 POutPersist po(flnm);
149 po << hrep_;
150 po << dvinfo;
151}
152
153void Four2DRespTable::readFromPPF(string flnm)
154{
155 PInPersist pin(flnm);
156 DVList dvinfo;
157 pin >> hrep_;
158 pin >> dvinfo;
159 dx_ = dy_ = dvinfo["DoL"];
160 setLambdaRef((double)dvinfo["LambdaRef"]);
161 setLambda((double)dvinfo["Lambda"]);
162}
163
164
165
[3788]166//---------------------------------------------------------------
167// -- Four2DRespRatio : rapport de la reponse entre deux objets Four2DResponse
168//---------------------------------------------------------------
[3986]169Four2DRespRatio::Four2DRespRatio(Four2DResponse& a, Four2DResponse& b, double maxratio)
[3991]170 : Four2DResponse(0, a.D(), a.D()), a_(a), b_(b), maxratio_(maxratio), zerothr_(.5/maxratio)
[3788]171{
172}
173
174double Four2DRespRatio::Value(double kx, double ky)
175{
176 double ra = a_.Value(kx,ky);
177 double rb = b_.Value(kx,ky);
[3991]178 if ((ra<zerothr_)||(rb<zerothr_)) return 0.;
179 double rval=ra/rb;
[3986]180 if (rval<maxratio_) return rval;
181 return maxratio_;
[3788]182}
183
184//---------------------------------------------------------------
[3756]185//--- Classe simple pour le calcul de rotation
186class Rotation {
187public:
188 Rotation(double tet, double phi)
189 {
190// (Teta,Phi) = Direction de visee
191// Les angles d'Euler correspondants sont Teta, Phi+Pi/2
192// Le Pi/2 vient que les rotations d'euler se font dans l'ordre
193// Autour de oZ d'angle Phi, autour de oN (nouvel axe X) d'angle Teta
194// Autour du nouvel axe Z (x3) d'angle Psi (Psi=0 -> cp=1, sp=0.;
195 double ct = cos(tet);
196 double st = sin(tet);
197 // Le Pi/2 echange les axes X<>Y pour theta=phi=0 !
198 // double cf = cos(phi+M_PI/2);
199 // double sf = sin(phi+M_PI/2);
200 double cf = cos(phi);
201 double sf = sin(phi);
202 double cp = 1.; // cos((double)pO);
203 double sp = 0.; // sin((double)pO);
204 RE[0][0] = cf*cp-sf*ct*sp; RE[0][1] = sf*cp+cf*ct*sp; RE[0][2] = st*sp;
205 RE[1][0] = -cf*sp-sf*ct*cp; RE[1][1] = -sf*sp+cf*ct*cp; RE[1][2] = st*cp;
206 RE[2][0] = sf*st; RE[2][1] = -cf*st; RE[2][2] = ct;
207 }
208 inline void Do(double& x, double& y)
209 {
210 double xx=x;
211 double yy=y;
212 x = RE[0][0]*xx+RE[0][1]*yy;
213 y = RE[1][0]*xx+RE[1][1]*yy;
214 }
215 double RE[3][3];
216};
217
218
219//----------------------------------------------------------------------
220// -- Pour calculer la reponse ds le plan kx,ky d'un system MultiDish
221//----------------------------------------------------------------------
222MultiDish::MultiDish(double lambda, double dmax, vector<Dish>& dishes, bool fgnoauto)
223 : lambda_(lambda), dmax_(dmax), dishes_(dishes), fgnoauto_(fgnoauto)
224{
225 SetThetaPhiRange();
226 SetRespHisNBins();
[3933]227 SetBeamNSamples();
[3932]228 SetPrtLevel();
[3947]229 fgcomputedone_=false;
[3756]230 mcnt_=0;
231}
232
[3947]233void MultiDish::ComputeResponse()
[3756]234{
[3947]235 cout << " MultiDish::ComputeResponse() - NDishes=" << dishes_.size() << " nx=" << nx_ << " ny=" << ny_ << endl;
[3756]236 double kmx = 1.2*DeuxPI*dmax_/lambda_;
[3769]237 double dkmx = kmx/(double)nx_;
238 double dkmy = kmx/(double)ny_;
239 double kmxx = ((double)nx_+0.5)*dkmx;
240 double kmxy = ((double)ny_+0.5)*dkmy;
241 h2w_.Define(-kmxx,kmxx,2*nx_+1,-kmxy,kmxy,2*ny_+1);
242 h2w_.SetZeroBin(0.,0.);
[3947]243 kmax_=kmx;
[3756]244
[3933]245 double dold = dishes_[0].Diameter()/lambda_;
246 double dolx = dishes_[0].DiameterX()/lambda_;
247 double doly = dishes_[0].DiameterY()/lambda_;
[3756]248
249 Four2DResponse rd(2, dold, dold);
250 Four2DResponse rdr(3, dolx, doly);
251
252 if (!dishes_[0].isCircular()) rd = rdr;
253
254 double dtet = thetamax_/(double)ntet_;
[3932]255 double dphi = phimax_/(double)nphi_;
[3947]256 cout << " MultiDish::ComputeResponse() - ThetaMax=" << thetamax_ << " NTheta=" << ntet_
[3932]257 << " PhiMax=" << phimax_ << " NPhi=" << nphi_ << endl;
[3756]258
259 double sumw = 0.;
[3932]260 for(int kt=0; kt<ntet_; kt++) {
261 double theta=(double)kt*dtet;
[3931]262 for(int jp=0; jp<nphi_; jp++) {
[3932]263 double phi=(double)jp*dphi;
264 sumw += CumulResp(rd, theta, phi);
265 if (theta<1.e-9) continue;
266 sumw += CumulResp(rd, theta, -phi);
267 sumw += CumulResp(rd, theta, phi+M_PI);
268 sumw += CumulResp(rd, theta, -(phi+M_PI));
[3931]269 }
[3947]270 if (prtlev_>0)
271 cout << " MultiDish::ComputeResponse() done ktheta=" << kt << " / MaxNTheta= "
272 << ntet_ << endl;
[3932]273 }
[3947]274 r_8 rmin,rmax;
275 h2w_.GetMinMax(rmin,rmax);
276 cout << " MultiDish::ComputeResponse() finished : Rep_min,max=" << rmin << "," << rmax << " sumW0="
277 << sumw << " ?=" << h2w_.SumWBinZero() << endl;
278 fgcomputedone_=true;
279 return;
280}
281
282Histo2D MultiDish::GetResponse()
283{
284 if (!fgcomputedone_) ComputeResponse();
285
[3769]286 double kx1 = DeuxPI*(dishes_[0].DiameterX())/lambda_;
287 double ky1 = DeuxPI*(dishes_[0].DiameterY())/lambda_;
288 int_4 ib,jb;
[3756]289 // h2w_ /= h2cnt_;
290 Histo2D h2 = h2w_.Convert();
[3769]291 h2.FindBin(kx1, ky1, ib, jb);
292 if ((kx1<0)||(ky1<0)||(kx1>=h2.NBinX())||(ky1>=h2.NBinY())) {
293 cout << " MultiDish::GetResponse[1]/ERROR kx1,ky1=" << kx1 <<","<< ky1 << " --> ib,jb=" << ib <<","<< jb << endl;
294 ib=jb=0;
295 }
[3947]296 double sumw=h2w_.SumWBinZero();
[3769]297 double vmax=h2.VMax();
298 cout << " MultiDish::GetResponse[1] VMin=" << h2.VMin() << " VMax= " << vmax
299 << " h(0,0)=" << h2(0,0) << " kx1,ky1->h(" << ib <<"," << jb << ")=" << h2(ib,jb) <<endl;
[3756]300 // double fnorm=sqrt((double)dishes_.size())/h2.VMax();
301 double fnorm=1.;
[3769]302 if (vmax > sumw) {
[3756]303 fnorm=(double)dishes_.size()/h2.VMax();
[3769]304 cout << " MultiDish::GetResponse[2]/Warning h2.VMax()=" << vmax << " > sumw=" << sumw << endl;
305 cout << " ... NDishes=" << dishes_.size() << " sumw=" << sumw
306 << " Renormalizing x NDishes/VMax " << fnorm << endl;
[3756]307 }
308 else {
[3769]309 fnorm=(double)dishes_.size()/sumw;
310 cout << " MultiDish::GetResponse[3] NDishes=" << dishes_.size() << " sumw=" << sumw
311 << " Renormalizing x NDishes/sumw " << fnorm << endl;
[3756]312 }
313 h2 *= fnorm;
[3769]314 cout << " ---- MultiDish::GetResponse/[4] APRES VMin=" << h2.VMin() << " VMax= " << h2.VMax() << " h(0,0)="
[3756]315 << h2(0,0) << endl;
316 return h2;
317}
318
[3947]319HProf MultiDish::GetProjNoiseLevel(int nbin, bool fgnorm1)
320{
321 r_8 vmin,vmax;
322 h2w_.GetMinMax(vmin,vmax);
323 double seuil=vmax/10000.;
324 if (seuil<1.e-6) seuil=1.e-6;
325 r_8 facnorm=((fgnorm1)?vmax:1.);
326 cout << " MultiDish::GetProjNoiseLevel Min,Max=" << vmin << " , " << vmax
327 << " facnorm=" << facnorm << " seuil=" << seuil << endl;
328 HProf hp(0,kmax_,nbin);
329 for(sa_size_t j=0; j<h2w_.NBinY(); j++) {
330 double y=h2w_.Y(j);
331 for(sa_size_t i=0; i<h2w_.NBinX(); i++) {
332 double x=h2w_.X(i);
333 double yw=h2w_(i,j);
334 if (yw<seuil) continue;
335 hp.Add(sqrt(x*x+y*y),facnorm/yw);
336 }
337 }
338 return hp;
339}
340
341HProf MultiDish::GetProjResponse(int nbin, bool fgnorm1)
342{
343 r_8 vmin,vmax;
344 h2w_.GetMinMax(vmin,vmax);
345 r_8 facnorm=((fgnorm1)?(1./vmax):1.);
346 cout << " MultiDish::GetProjResponse Min,Max=" << vmin << " , " << vmax
347 << " facnorm=" << facnorm << endl;
348 HProf hp(0,kmax_,nbin);
349 for(sa_size_t j=0; j<h2w_.NBinY(); j++) {
350 double y=h2w_.Y(j);
351 for(sa_size_t i=0; i<h2w_.NBinX(); i++) {
352 double x=h2w_.X(i);
353 hp.Add(sqrt(x*x+y*y),h2w_(i,j)*facnorm);
354 }
355 }
356 return hp;
357}
358
359
[3769]360Histo2D MultiDish::PosDist(int nx, int ny, double dmax)
[3756]361{
[3769]362 if (dmax<1e-3) dmax=nx*dishes_[0].Diameter();
363 double dd = dmax/nx/2.;
364 Histo2D hpos(-dd,dmax+dd,nx+1,-dd,dmax+dd,ny+1);
365 for(size_t i=0; i<NbDishes(); i++) {
366 hpos.Add(dishes_[i].X, dishes_[i].Y);
[3756]367 }
[3769]368 return hpos;
[3756]369}
370
371double MultiDish::AddToHisto(double kx0, double ky0, double x, double y, double w, bool fgfh)
372{
373 double xxp = kx0+x;
374 double yyp = ky0+y;
375 double sumw=0.;
376 sumw += h2w_.Add(xxp, yyp, w, fgfh);
377 double xxm=kx0-x;
378 double yym=ky0-y;
[3769]379 // if (xxm>0.) {
380 sumw += h2w_.Add(xxm, yyp, w, fgfh);
381 // if (yym>0.)
382 sumw += h2w_.Add(xxm, yym, w, fgfh);
383 // }
384 // if (yym>0.)
385 sumw += h2w_.Add(xxp, yym, w, fgfh);
[3756]386 return sumw;
387}
388
389double MultiDish::CumulResp(Four2DResponse& rd, double theta, double phi)
390{
391 // cout << " MultiDish::CumulResp() theta=" << theta << " phi=" << phi << endl;
[3933]392 /*
[3756]393 double dx = h2w_.WBinX()/5;
394 double dy = h2w_.WBinY()/5;
[3769]395 int nbx = DeuxPI*rd.Dx()/dx+1;
396 int nby = DeuxPI*rd.Dy()/dy+1;
[3933]397 */
398 double dx,dy;
399 int nbx=beamnx_;
400 int nby=beamny_;
[3756]401 dx = DeuxPI*rd.Dx()/(double)nbx;
402 dy = DeuxPI*rd.Dy()/(double)nby;
403 if (mcnt_==0)
404 cout << " CumulResp() nbx=" << nbx << " nby=" << nby << " dx=" << dx << " dy=" << dy << endl;
405 mcnt_++;
406
407 double sumw = 0.;
408 Rotation rot(theta, phi);
409
410 for(size_t i=0; i<dishes_.size(); i++) {
[3934]411 for(size_t j=i; j<dishes_.size(); j++) {
[3769]412 double kx0 = DeuxPI*(dishes_[i].X-dishes_[j].X)/lambda_;
413 double ky0 = DeuxPI*(dishes_[i].Y-dishes_[j].Y)/lambda_;
[3947]414 double pgain=dishes_[i].Gain()*dishes_[j].Gain();
[3756]415 rot.Do(kx0, ky0);
[3769]416 // if (kx0<0) kx0=-kx0;
417 // if (ky0<0) ky0=-ky0;
[3756]418 bool fgfh= (!fgnoauto_ || (dishes_[i].ReflectorId()!=dishes_[j].ReflectorId()));
419 for(int ix=0; ix<nbx; ix++)
420 for(int jy=0; jy<nby; jy++) {
421 double x = ix*dx;
[3769]422 double y = jy*dy;
423 if ((ix>0)&&(jy>0)) {
[3947]424 sumw += AddToHisto(kx0, ky0, x, y, rd(x,y)*pgain, fgfh);
425 if (j!=i) sumw += AddToHisto(-kx0, -ky0, x, y, rd(x,y)*pgain, fgfh);
[3769]426 }
427 else {
[3934]428 if ((ix==0)&&(jy==0)) {
[3947]429 sumw += h2w_.Add(kx0, ky0, rd(0.,0.)*pgain, fgfh);
430 if (j!=i) sumw += h2w_.Add(-kx0, -ky0, rd(0.,0.)*pgain, fgfh);
[3934]431 }
[3769]432 else {
[3947]433 double w = rd(x,y)*pgain;
[3769]434 if (ix==0) {
435 sumw += h2w_.Add(kx0, ky0+y, w, fgfh);
436 sumw += h2w_.Add(kx0, ky0-y, w, fgfh);
[3934]437 if (j!=i) {
438 sumw += h2w_.Add(-kx0, -ky0+y, w, fgfh);
439 sumw += h2w_.Add(-kx0, -ky0-y, w, fgfh);
440 }
[3769]441 }
442 else {
443 sumw += h2w_.Add(kx0+x, ky0, w, fgfh);
444 sumw += h2w_.Add(kx0-x, ky0, w, fgfh);
[3934]445 if (j!=i) {
446 sumw += h2w_.Add(-kx0+x, -ky0, w, fgfh);
447 sumw += h2w_.Add(-kx0-x, -ky0, w, fgfh);
448 }
[3769]449 }
450 }
451 //
452 }
[3756]453 }
454 // if (i%10==0)
455 // cout << " MultiDish::CumulResp() done i=" << i << " / imax=" << dishes_.size()
456 // << " theta=" << theta << " phi=" << phi << endl;
[3769]457 }
[3756]458 }
459 return sumw;
460}
461
Note: See TracBrowser for help on using the repository browser.