[3756] | 1 | // Classes to compute 2D
|
---|
| 2 | // R. Ansari - Nov 2008, May 2010
|
---|
| 3 |
|
---|
| 4 | #include "mdish.h"
|
---|
| 5 |
|
---|
| 6 |
|
---|
| 7 | //--------------------------------------------------
|
---|
| 8 | // -- Four2DResponse class
|
---|
| 9 | //--------------------------------------------------
|
---|
| 10 | // Constructor
|
---|
[3789] | 11 | Four2DResponse::Four2DResponse(int typ, double dx, double dy, double lambda)
|
---|
[3756] | 12 | : typ_(typ), dx_((dx>1.e-3)?dx:1.), dy_((dy>1.e-3)?dy:1.)
|
---|
| 13 | {
|
---|
[3789] | 14 | setLambdaRef(lambda);
|
---|
| 15 | setLambda(lambda);
|
---|
[3756] | 16 | }
|
---|
| 17 |
|
---|
| 18 | // Return the response for the wave vecteor (kx,ky)
|
---|
| 19 | double Four2DResponse::Value(double kx, double ky)
|
---|
| 20 | {
|
---|
[3787] | 21 | kx *= lambda_ratio_;
|
---|
| 22 | ky *= lambda_ratio_;
|
---|
[3756] | 23 | double wk,wkx,wky;
|
---|
| 24 | switch (typ_)
|
---|
| 25 | {
|
---|
[3974] | 26 | case 1: // Reponse gaussienne parabole diametre D exp[ -(1/8) (lambda k_g / D )^2 ]
|
---|
[3756] | 27 | wk = sqrt(kx*kx+ky*ky)/dx_;
|
---|
[3974] | 28 | wk = wk*wk/8.;
|
---|
[3756] | 29 | return exp(-wk);
|
---|
| 30 | break;
|
---|
| 31 | case 2: // Reponse parabole diametre D Triangle <= kmax= 2 pi D / lambda
|
---|
| 32 | wk = sqrt(kx*kx+ky*ky)/dx_/2./M_PI;
|
---|
| 33 | return ( (wk<1.)?(1.-wk):0.);
|
---|
| 34 | break;
|
---|
[3796] | 35 | case 22: // Reponse parabole diametre D Triangle <= kmax= 2 pi D / lambda + trou au centre
|
---|
| 36 | wk = sqrt(kx*kx+ky*ky)/dx_/2./M_PI;
|
---|
| 37 | if (wk<0.025) return 39.*wk;
|
---|
| 38 | else if (wk<1.) return (1.-wk);
|
---|
| 39 | else return 0.;
|
---|
| 40 | break;
|
---|
[3756] | 41 | case 3: // Reponse rectangle Dx x Dy Triangle (|kx|,|k_y|) <= (2 pi Dx / lambda, 2 pi Dx / lambda)
|
---|
[3796] | 42 | wkx = fabs(kx)/2./M_PI/dx_;
|
---|
| 43 | wky = fabs(ky)/2./M_PI/dy_;
|
---|
[3756] | 44 | return ( ((wkx<1.)&&(wky<1.))?((1.-wkx)*(1-wky)):0.);
|
---|
| 45 | break;
|
---|
| 46 | default:
|
---|
| 47 | return 1.;
|
---|
| 48 | }
|
---|
| 49 | }
|
---|
| 50 | // Return a vector representing the power spectrum (for checking)
|
---|
| 51 | Histo2D Four2DResponse::GetResponse(int nx, int ny)
|
---|
| 52 | {
|
---|
| 53 | double kxmx = 1.2*DeuxPI*dx_;
|
---|
| 54 | double kymx = 1.2*DeuxPI*dy_;
|
---|
| 55 | if (typ_<3) kymx=kxmx;
|
---|
[3930] | 56 | Histo2D h2(-kxmx,kxmx,nx,-kymx,kymx,ny);
|
---|
[3756] | 57 |
|
---|
[3930] | 58 | double xbc,ybc;
|
---|
| 59 | for(int_4 j=0; j<h2.NBinY(); j++)
|
---|
| 60 | for(int_4 i=0; i<h2.NBinX(); i++) {
|
---|
| 61 | h2.BinCenter(i,j,xbc,ybc);
|
---|
| 62 | h2(i,j) = Value(xbc,ybc);
|
---|
| 63 | }
|
---|
[3756] | 64 | return h2;
|
---|
| 65 | }
|
---|
| 66 |
|
---|
[3947] | 67 | HProf Four2DResponse::GetProjNoiseLevel(int nbin, bool fgnorm1)
|
---|
| 68 | {
|
---|
| 69 | Histo2D h2w = GetResponse(2*nbin, 2*nbin);
|
---|
| 70 | r_8 vmin=h2w.VMin();
|
---|
| 71 | r_8 vmax=h2w.VMax();
|
---|
| 72 | double seuil=vmax/10000.;
|
---|
| 73 | if (seuil<1.e-6) seuil=1.e-6;
|
---|
| 74 | r_8 facnorm=((fgnorm1)?vmax:1.);
|
---|
| 75 | cout << " Four2DResponse::GetProjNoiseLevel Min,Max=" << vmin << " , " << vmax
|
---|
| 76 | << " facnorm=" << facnorm << " seuil=" << seuil << endl;
|
---|
| 77 | double kmax=2.*M_PI*D();
|
---|
| 78 | HProf hp(0,kmax,nbin);
|
---|
| 79 | double x,y;
|
---|
| 80 | for(sa_size_t j=0; j<h2w.NBinY(); j++) {
|
---|
| 81 | for(sa_size_t i=0; i<h2w.NBinX(); i++) {
|
---|
| 82 | h2w.BinCenter(i,j,x,y);
|
---|
| 83 | double yw=h2w(i,j);
|
---|
| 84 | if (yw<seuil) continue;
|
---|
| 85 | hp.Add(sqrt(x*x+y*y),facnorm/yw);
|
---|
| 86 | }
|
---|
| 87 | }
|
---|
| 88 | return hp;
|
---|
| 89 | }
|
---|
| 90 |
|
---|
| 91 | HProf Four2DResponse::GetProjResponse(int nbin, bool fgnorm1)
|
---|
| 92 | {
|
---|
| 93 | Histo2D h2w = GetResponse(2*nbin, 2*nbin);
|
---|
| 94 | r_8 vmin=h2w.VMin();
|
---|
| 95 | r_8 vmax=h2w.VMax();
|
---|
| 96 | r_8 facnorm=((fgnorm1)?(1./vmax):1.);
|
---|
| 97 | cout << " Four2DResponse::GetProjResponse Min,Max=" << vmin << " , " << vmax
|
---|
| 98 | << " facnorm=" << facnorm << endl;
|
---|
| 99 | double kmax=2.*M_PI*D();
|
---|
| 100 | HProf hp(0,kmax,nbin);
|
---|
| 101 | double x,y;
|
---|
| 102 | for(sa_size_t j=0; j<h2w.NBinY(); j++) {
|
---|
| 103 | for(sa_size_t i=0; i<h2w.NBinX(); i++) {
|
---|
| 104 | h2w.BinCenter(i,j,x,y);
|
---|
| 105 | hp.Add(sqrt(x*x+y*y),h2w(i,j)*facnorm);
|
---|
| 106 | }
|
---|
| 107 | }
|
---|
| 108 | return hp;
|
---|
| 109 | }
|
---|
| 110 |
|
---|
[3756] | 111 | //---------------------------------------------------------------
|
---|
| 112 | // -- Four2DRespTable : Reponse tabulee instrumentale ds le plan k_x,k_y (angles theta,phi)
|
---|
| 113 | //---------------------------------------------------------------
|
---|
[3792] | 114 | Four2DRespTable::Four2DRespTable()
|
---|
| 115 | : Four2DResponse(0,1.,1.)
|
---|
[3756] | 116 | {
|
---|
| 117 | }
|
---|
| 118 |
|
---|
[3792] | 119 | Four2DRespTable::Four2DRespTable(Histo2D const & hrep, double d, double lambda)
|
---|
| 120 | : Four2DResponse(0,d,d,lambda) , hrep_(hrep)
|
---|
| 121 | {
|
---|
| 122 | }
|
---|
| 123 |
|
---|
[3756] | 124 | double Four2DRespTable::Value(double kx, double ky)
|
---|
| 125 | {
|
---|
[3787] | 126 | kx *= lambda_ratio_;
|
---|
| 127 | ky *= lambda_ratio_;
|
---|
[3756] | 128 | int_4 i,j;
|
---|
| 129 | if ( (kx<=hrep_.XMin())||(kx>=hrep_.XMax()) ||
|
---|
| 130 | (ky<=hrep_.YMin())||(ky>=hrep_.YMax()) ) return 0.;
|
---|
| 131 | hrep_.FindBin(kx, ky, i, j);
|
---|
| 132 | return hrep_(i, j);
|
---|
| 133 | }
|
---|
| 134 |
|
---|
[3796] | 135 | double Four2DRespTable::renormalize(double max)
|
---|
| 136 | {
|
---|
| 137 | double cmx = hrep_.VMax();
|
---|
| 138 | hrep_ *= (max/cmx);
|
---|
| 139 | return cmx;
|
---|
| 140 | }
|
---|
| 141 |
|
---|
[3792] | 142 | void Four2DRespTable::writeToPPF(string flnm)
|
---|
| 143 | {
|
---|
| 144 | DVList dvinfo;
|
---|
| 145 | dvinfo["DoL"] = dx_;
|
---|
| 146 | dvinfo["LambdaRef"] = lambdaref_;
|
---|
| 147 | dvinfo["Lambda"] = lambda_;
|
---|
| 148 | POutPersist po(flnm);
|
---|
| 149 | po << hrep_;
|
---|
| 150 | po << dvinfo;
|
---|
| 151 | }
|
---|
| 152 |
|
---|
| 153 | void Four2DRespTable::readFromPPF(string flnm)
|
---|
| 154 | {
|
---|
| 155 | PInPersist pin(flnm);
|
---|
| 156 | DVList dvinfo;
|
---|
| 157 | pin >> hrep_;
|
---|
| 158 | pin >> dvinfo;
|
---|
| 159 | dx_ = dy_ = dvinfo["DoL"];
|
---|
| 160 | setLambdaRef((double)dvinfo["LambdaRef"]);
|
---|
| 161 | setLambda((double)dvinfo["Lambda"]);
|
---|
| 162 | }
|
---|
| 163 |
|
---|
| 164 |
|
---|
| 165 |
|
---|
[3788] | 166 | //---------------------------------------------------------------
|
---|
| 167 | // -- Four2DRespRatio : rapport de la reponse entre deux objets Four2DResponse
|
---|
| 168 | //---------------------------------------------------------------
|
---|
[3986] | 169 | Four2DRespRatio::Four2DRespRatio(Four2DResponse& a, Four2DResponse& b, double maxratio)
|
---|
[3991] | 170 | : Four2DResponse(0, a.D(), a.D()), a_(a), b_(b), maxratio_(maxratio), zerothr_(.5/maxratio)
|
---|
[3788] | 171 | {
|
---|
| 172 | }
|
---|
| 173 |
|
---|
| 174 | double Four2DRespRatio::Value(double kx, double ky)
|
---|
| 175 | {
|
---|
| 176 | double ra = a_.Value(kx,ky);
|
---|
| 177 | double rb = b_.Value(kx,ky);
|
---|
[3991] | 178 | if ((ra<zerothr_)||(rb<zerothr_)) return 0.;
|
---|
| 179 | double rval=ra/rb;
|
---|
[3986] | 180 | if (rval<maxratio_) return rval;
|
---|
| 181 | return maxratio_;
|
---|
[3788] | 182 | }
|
---|
| 183 |
|
---|
| 184 | //---------------------------------------------------------------
|
---|
[3756] | 185 | //--- Classe simple pour le calcul de rotation
|
---|
| 186 | class Rotation {
|
---|
| 187 | public:
|
---|
| 188 | Rotation(double tet, double phi)
|
---|
| 189 | {
|
---|
| 190 | // (Teta,Phi) = Direction de visee
|
---|
| 191 | // Les angles d'Euler correspondants sont Teta, Phi+Pi/2
|
---|
| 192 | // Le Pi/2 vient que les rotations d'euler se font dans l'ordre
|
---|
| 193 | // Autour de oZ d'angle Phi, autour de oN (nouvel axe X) d'angle Teta
|
---|
| 194 | // Autour du nouvel axe Z (x3) d'angle Psi (Psi=0 -> cp=1, sp=0.;
|
---|
| 195 | double ct = cos(tet);
|
---|
| 196 | double st = sin(tet);
|
---|
| 197 | // Le Pi/2 echange les axes X<>Y pour theta=phi=0 !
|
---|
| 198 | // double cf = cos(phi+M_PI/2);
|
---|
| 199 | // double sf = sin(phi+M_PI/2);
|
---|
| 200 | double cf = cos(phi);
|
---|
| 201 | double sf = sin(phi);
|
---|
| 202 | double cp = 1.; // cos((double)pO);
|
---|
| 203 | double sp = 0.; // sin((double)pO);
|
---|
| 204 | RE[0][0] = cf*cp-sf*ct*sp; RE[0][1] = sf*cp+cf*ct*sp; RE[0][2] = st*sp;
|
---|
| 205 | RE[1][0] = -cf*sp-sf*ct*cp; RE[1][1] = -sf*sp+cf*ct*cp; RE[1][2] = st*cp;
|
---|
| 206 | RE[2][0] = sf*st; RE[2][1] = -cf*st; RE[2][2] = ct;
|
---|
| 207 | }
|
---|
| 208 | inline void Do(double& x, double& y)
|
---|
| 209 | {
|
---|
| 210 | double xx=x;
|
---|
| 211 | double yy=y;
|
---|
| 212 | x = RE[0][0]*xx+RE[0][1]*yy;
|
---|
| 213 | y = RE[1][0]*xx+RE[1][1]*yy;
|
---|
| 214 | }
|
---|
| 215 | double RE[3][3];
|
---|
| 216 | };
|
---|
| 217 |
|
---|
| 218 |
|
---|
| 219 | //----------------------------------------------------------------------
|
---|
| 220 | // -- Pour calculer la reponse ds le plan kx,ky d'un system MultiDish
|
---|
| 221 | //----------------------------------------------------------------------
|
---|
| 222 | MultiDish::MultiDish(double lambda, double dmax, vector<Dish>& dishes, bool fgnoauto)
|
---|
| 223 | : lambda_(lambda), dmax_(dmax), dishes_(dishes), fgnoauto_(fgnoauto)
|
---|
| 224 | {
|
---|
| 225 | SetThetaPhiRange();
|
---|
| 226 | SetRespHisNBins();
|
---|
[3933] | 227 | SetBeamNSamples();
|
---|
[3932] | 228 | SetPrtLevel();
|
---|
[3947] | 229 | fgcomputedone_=false;
|
---|
[3756] | 230 | mcnt_=0;
|
---|
| 231 | }
|
---|
| 232 |
|
---|
[3947] | 233 | void MultiDish::ComputeResponse()
|
---|
[3756] | 234 | {
|
---|
[3947] | 235 | cout << " MultiDish::ComputeResponse() - NDishes=" << dishes_.size() << " nx=" << nx_ << " ny=" << ny_ << endl;
|
---|
[3756] | 236 | double kmx = 1.2*DeuxPI*dmax_/lambda_;
|
---|
[3769] | 237 | double dkmx = kmx/(double)nx_;
|
---|
| 238 | double dkmy = kmx/(double)ny_;
|
---|
| 239 | double kmxx = ((double)nx_+0.5)*dkmx;
|
---|
| 240 | double kmxy = ((double)ny_+0.5)*dkmy;
|
---|
| 241 | h2w_.Define(-kmxx,kmxx,2*nx_+1,-kmxy,kmxy,2*ny_+1);
|
---|
| 242 | h2w_.SetZeroBin(0.,0.);
|
---|
[3947] | 243 | kmax_=kmx;
|
---|
[3756] | 244 |
|
---|
[3933] | 245 | double dold = dishes_[0].Diameter()/lambda_;
|
---|
| 246 | double dolx = dishes_[0].DiameterX()/lambda_;
|
---|
| 247 | double doly = dishes_[0].DiameterY()/lambda_;
|
---|
[3756] | 248 |
|
---|
| 249 | Four2DResponse rd(2, dold, dold);
|
---|
| 250 | Four2DResponse rdr(3, dolx, doly);
|
---|
| 251 |
|
---|
| 252 | if (!dishes_[0].isCircular()) rd = rdr;
|
---|
| 253 |
|
---|
| 254 | double dtet = thetamax_/(double)ntet_;
|
---|
[3932] | 255 | double dphi = phimax_/(double)nphi_;
|
---|
[3947] | 256 | cout << " MultiDish::ComputeResponse() - ThetaMax=" << thetamax_ << " NTheta=" << ntet_
|
---|
[3932] | 257 | << " PhiMax=" << phimax_ << " NPhi=" << nphi_ << endl;
|
---|
[3756] | 258 |
|
---|
| 259 | double sumw = 0.;
|
---|
[3932] | 260 | for(int kt=0; kt<ntet_; kt++) {
|
---|
| 261 | double theta=(double)kt*dtet;
|
---|
[3931] | 262 | for(int jp=0; jp<nphi_; jp++) {
|
---|
[3932] | 263 | double phi=(double)jp*dphi;
|
---|
| 264 | sumw += CumulResp(rd, theta, phi);
|
---|
| 265 | if (theta<1.e-9) continue;
|
---|
| 266 | sumw += CumulResp(rd, theta, -phi);
|
---|
| 267 | sumw += CumulResp(rd, theta, phi+M_PI);
|
---|
| 268 | sumw += CumulResp(rd, theta, -(phi+M_PI));
|
---|
[3931] | 269 | }
|
---|
[3947] | 270 | if (prtlev_>0)
|
---|
| 271 | cout << " MultiDish::ComputeResponse() done ktheta=" << kt << " / MaxNTheta= "
|
---|
| 272 | << ntet_ << endl;
|
---|
[3932] | 273 | }
|
---|
[3947] | 274 | r_8 rmin,rmax;
|
---|
| 275 | h2w_.GetMinMax(rmin,rmax);
|
---|
| 276 | cout << " MultiDish::ComputeResponse() finished : Rep_min,max=" << rmin << "," << rmax << " sumW0="
|
---|
| 277 | << sumw << " ?=" << h2w_.SumWBinZero() << endl;
|
---|
| 278 | fgcomputedone_=true;
|
---|
| 279 | return;
|
---|
| 280 | }
|
---|
| 281 |
|
---|
| 282 | Histo2D MultiDish::GetResponse()
|
---|
| 283 | {
|
---|
| 284 | if (!fgcomputedone_) ComputeResponse();
|
---|
| 285 |
|
---|
[3769] | 286 | double kx1 = DeuxPI*(dishes_[0].DiameterX())/lambda_;
|
---|
| 287 | double ky1 = DeuxPI*(dishes_[0].DiameterY())/lambda_;
|
---|
| 288 | int_4 ib,jb;
|
---|
[3756] | 289 | // h2w_ /= h2cnt_;
|
---|
| 290 | Histo2D h2 = h2w_.Convert();
|
---|
[3769] | 291 | h2.FindBin(kx1, ky1, ib, jb);
|
---|
| 292 | if ((kx1<0)||(ky1<0)||(kx1>=h2.NBinX())||(ky1>=h2.NBinY())) {
|
---|
| 293 | cout << " MultiDish::GetResponse[1]/ERROR kx1,ky1=" << kx1 <<","<< ky1 << " --> ib,jb=" << ib <<","<< jb << endl;
|
---|
| 294 | ib=jb=0;
|
---|
| 295 | }
|
---|
[3947] | 296 | double sumw=h2w_.SumWBinZero();
|
---|
[3769] | 297 | double vmax=h2.VMax();
|
---|
| 298 | cout << " MultiDish::GetResponse[1] VMin=" << h2.VMin() << " VMax= " << vmax
|
---|
| 299 | << " h(0,0)=" << h2(0,0) << " kx1,ky1->h(" << ib <<"," << jb << ")=" << h2(ib,jb) <<endl;
|
---|
[3756] | 300 | // double fnorm=sqrt((double)dishes_.size())/h2.VMax();
|
---|
| 301 | double fnorm=1.;
|
---|
[3769] | 302 | if (vmax > sumw) {
|
---|
[3756] | 303 | fnorm=(double)dishes_.size()/h2.VMax();
|
---|
[3769] | 304 | cout << " MultiDish::GetResponse[2]/Warning h2.VMax()=" << vmax << " > sumw=" << sumw << endl;
|
---|
| 305 | cout << " ... NDishes=" << dishes_.size() << " sumw=" << sumw
|
---|
| 306 | << " Renormalizing x NDishes/VMax " << fnorm << endl;
|
---|
[3756] | 307 | }
|
---|
| 308 | else {
|
---|
[3769] | 309 | fnorm=(double)dishes_.size()/sumw;
|
---|
| 310 | cout << " MultiDish::GetResponse[3] NDishes=" << dishes_.size() << " sumw=" << sumw
|
---|
| 311 | << " Renormalizing x NDishes/sumw " << fnorm << endl;
|
---|
[3756] | 312 | }
|
---|
| 313 | h2 *= fnorm;
|
---|
[3769] | 314 | cout << " ---- MultiDish::GetResponse/[4] APRES VMin=" << h2.VMin() << " VMax= " << h2.VMax() << " h(0,0)="
|
---|
[3756] | 315 | << h2(0,0) << endl;
|
---|
| 316 | return h2;
|
---|
| 317 | }
|
---|
| 318 |
|
---|
[3947] | 319 | HProf MultiDish::GetProjNoiseLevel(int nbin, bool fgnorm1)
|
---|
| 320 | {
|
---|
| 321 | r_8 vmin,vmax;
|
---|
| 322 | h2w_.GetMinMax(vmin,vmax);
|
---|
| 323 | double seuil=vmax/10000.;
|
---|
| 324 | if (seuil<1.e-6) seuil=1.e-6;
|
---|
| 325 | r_8 facnorm=((fgnorm1)?vmax:1.);
|
---|
| 326 | cout << " MultiDish::GetProjNoiseLevel Min,Max=" << vmin << " , " << vmax
|
---|
| 327 | << " facnorm=" << facnorm << " seuil=" << seuil << endl;
|
---|
| 328 | HProf hp(0,kmax_,nbin);
|
---|
| 329 | for(sa_size_t j=0; j<h2w_.NBinY(); j++) {
|
---|
| 330 | double y=h2w_.Y(j);
|
---|
| 331 | for(sa_size_t i=0; i<h2w_.NBinX(); i++) {
|
---|
| 332 | double x=h2w_.X(i);
|
---|
| 333 | double yw=h2w_(i,j);
|
---|
| 334 | if (yw<seuil) continue;
|
---|
| 335 | hp.Add(sqrt(x*x+y*y),facnorm/yw);
|
---|
| 336 | }
|
---|
| 337 | }
|
---|
| 338 | return hp;
|
---|
| 339 | }
|
---|
| 340 |
|
---|
| 341 | HProf MultiDish::GetProjResponse(int nbin, bool fgnorm1)
|
---|
| 342 | {
|
---|
| 343 | r_8 vmin,vmax;
|
---|
| 344 | h2w_.GetMinMax(vmin,vmax);
|
---|
| 345 | r_8 facnorm=((fgnorm1)?(1./vmax):1.);
|
---|
| 346 | cout << " MultiDish::GetProjResponse Min,Max=" << vmin << " , " << vmax
|
---|
| 347 | << " facnorm=" << facnorm << endl;
|
---|
| 348 | HProf hp(0,kmax_,nbin);
|
---|
| 349 | for(sa_size_t j=0; j<h2w_.NBinY(); j++) {
|
---|
| 350 | double y=h2w_.Y(j);
|
---|
| 351 | for(sa_size_t i=0; i<h2w_.NBinX(); i++) {
|
---|
| 352 | double x=h2w_.X(i);
|
---|
| 353 | hp.Add(sqrt(x*x+y*y),h2w_(i,j)*facnorm);
|
---|
| 354 | }
|
---|
| 355 | }
|
---|
| 356 | return hp;
|
---|
| 357 | }
|
---|
| 358 |
|
---|
| 359 |
|
---|
[3769] | 360 | Histo2D MultiDish::PosDist(int nx, int ny, double dmax)
|
---|
[3756] | 361 | {
|
---|
[3769] | 362 | if (dmax<1e-3) dmax=nx*dishes_[0].Diameter();
|
---|
| 363 | double dd = dmax/nx/2.;
|
---|
| 364 | Histo2D hpos(-dd,dmax+dd,nx+1,-dd,dmax+dd,ny+1);
|
---|
| 365 | for(size_t i=0; i<NbDishes(); i++) {
|
---|
| 366 | hpos.Add(dishes_[i].X, dishes_[i].Y);
|
---|
[3756] | 367 | }
|
---|
[3769] | 368 | return hpos;
|
---|
[3756] | 369 | }
|
---|
| 370 |
|
---|
| 371 | double MultiDish::AddToHisto(double kx0, double ky0, double x, double y, double w, bool fgfh)
|
---|
| 372 | {
|
---|
| 373 | double xxp = kx0+x;
|
---|
| 374 | double yyp = ky0+y;
|
---|
| 375 | double sumw=0.;
|
---|
| 376 | sumw += h2w_.Add(xxp, yyp, w, fgfh);
|
---|
| 377 | double xxm=kx0-x;
|
---|
| 378 | double yym=ky0-y;
|
---|
[3769] | 379 | // if (xxm>0.) {
|
---|
| 380 | sumw += h2w_.Add(xxm, yyp, w, fgfh);
|
---|
| 381 | // if (yym>0.)
|
---|
| 382 | sumw += h2w_.Add(xxm, yym, w, fgfh);
|
---|
| 383 | // }
|
---|
| 384 | // if (yym>0.)
|
---|
| 385 | sumw += h2w_.Add(xxp, yym, w, fgfh);
|
---|
[3756] | 386 | return sumw;
|
---|
| 387 | }
|
---|
| 388 |
|
---|
| 389 | double MultiDish::CumulResp(Four2DResponse& rd, double theta, double phi)
|
---|
| 390 | {
|
---|
| 391 | // cout << " MultiDish::CumulResp() theta=" << theta << " phi=" << phi << endl;
|
---|
[3933] | 392 | /*
|
---|
[3756] | 393 | double dx = h2w_.WBinX()/5;
|
---|
| 394 | double dy = h2w_.WBinY()/5;
|
---|
[3769] | 395 | int nbx = DeuxPI*rd.Dx()/dx+1;
|
---|
| 396 | int nby = DeuxPI*rd.Dy()/dy+1;
|
---|
[3933] | 397 | */
|
---|
| 398 | double dx,dy;
|
---|
| 399 | int nbx=beamnx_;
|
---|
| 400 | int nby=beamny_;
|
---|
[3756] | 401 | dx = DeuxPI*rd.Dx()/(double)nbx;
|
---|
| 402 | dy = DeuxPI*rd.Dy()/(double)nby;
|
---|
| 403 | if (mcnt_==0)
|
---|
| 404 | cout << " CumulResp() nbx=" << nbx << " nby=" << nby << " dx=" << dx << " dy=" << dy << endl;
|
---|
| 405 | mcnt_++;
|
---|
| 406 |
|
---|
| 407 | double sumw = 0.;
|
---|
| 408 | Rotation rot(theta, phi);
|
---|
| 409 |
|
---|
| 410 | for(size_t i=0; i<dishes_.size(); i++) {
|
---|
[3934] | 411 | for(size_t j=i; j<dishes_.size(); j++) {
|
---|
[3769] | 412 | double kx0 = DeuxPI*(dishes_[i].X-dishes_[j].X)/lambda_;
|
---|
| 413 | double ky0 = DeuxPI*(dishes_[i].Y-dishes_[j].Y)/lambda_;
|
---|
[3947] | 414 | double pgain=dishes_[i].Gain()*dishes_[j].Gain();
|
---|
[3756] | 415 | rot.Do(kx0, ky0);
|
---|
[3769] | 416 | // if (kx0<0) kx0=-kx0;
|
---|
| 417 | // if (ky0<0) ky0=-ky0;
|
---|
[3756] | 418 | bool fgfh= (!fgnoauto_ || (dishes_[i].ReflectorId()!=dishes_[j].ReflectorId()));
|
---|
| 419 | for(int ix=0; ix<nbx; ix++)
|
---|
| 420 | for(int jy=0; jy<nby; jy++) {
|
---|
| 421 | double x = ix*dx;
|
---|
[3769] | 422 | double y = jy*dy;
|
---|
| 423 | if ((ix>0)&&(jy>0)) {
|
---|
[3947] | 424 | sumw += AddToHisto(kx0, ky0, x, y, rd(x,y)*pgain, fgfh);
|
---|
| 425 | if (j!=i) sumw += AddToHisto(-kx0, -ky0, x, y, rd(x,y)*pgain, fgfh);
|
---|
[3769] | 426 | }
|
---|
| 427 | else {
|
---|
[3934] | 428 | if ((ix==0)&&(jy==0)) {
|
---|
[3947] | 429 | sumw += h2w_.Add(kx0, ky0, rd(0.,0.)*pgain, fgfh);
|
---|
| 430 | if (j!=i) sumw += h2w_.Add(-kx0, -ky0, rd(0.,0.)*pgain, fgfh);
|
---|
[3934] | 431 | }
|
---|
[3769] | 432 | else {
|
---|
[3947] | 433 | double w = rd(x,y)*pgain;
|
---|
[3769] | 434 | if (ix==0) {
|
---|
| 435 | sumw += h2w_.Add(kx0, ky0+y, w, fgfh);
|
---|
| 436 | sumw += h2w_.Add(kx0, ky0-y, w, fgfh);
|
---|
[3934] | 437 | if (j!=i) {
|
---|
| 438 | sumw += h2w_.Add(-kx0, -ky0+y, w, fgfh);
|
---|
| 439 | sumw += h2w_.Add(-kx0, -ky0-y, w, fgfh);
|
---|
| 440 | }
|
---|
[3769] | 441 | }
|
---|
| 442 | else {
|
---|
| 443 | sumw += h2w_.Add(kx0+x, ky0, w, fgfh);
|
---|
| 444 | sumw += h2w_.Add(kx0-x, ky0, w, fgfh);
|
---|
[3934] | 445 | if (j!=i) {
|
---|
| 446 | sumw += h2w_.Add(-kx0+x, -ky0, w, fgfh);
|
---|
| 447 | sumw += h2w_.Add(-kx0-x, -ky0, w, fgfh);
|
---|
| 448 | }
|
---|
[3769] | 449 | }
|
---|
| 450 | }
|
---|
| 451 | //
|
---|
| 452 | }
|
---|
[3756] | 453 | }
|
---|
| 454 | // if (i%10==0)
|
---|
| 455 | // cout << " MultiDish::CumulResp() done i=" << i << " / imax=" << dishes_.size()
|
---|
| 456 | // << " theta=" << theta << " phi=" << phi << endl;
|
---|
[3769] | 457 | }
|
---|
[3756] | 458 | }
|
---|
| 459 | return sumw;
|
---|
| 460 | }
|
---|
| 461 |
|
---|