source: Sophya/trunk/Cosmo/RadioBeam/mdish.cc@ 3826

Last change on this file since 3826 was 3796, checked in by ansari, 15 years ago

Suite modif utilisation de reponse calcule (tabulee) de l'interferometre pour soustraction avant-plans, Reza 29/06/2010

File size: 9.9 KB
Line 
1// Classes to compute 2D
2// R. Ansari - Nov 2008, May 2010
3
4#include "mdish.h"
5
6
7//--------------------------------------------------
8// -- Four2DResponse class
9//--------------------------------------------------
10// Constructor
11Four2DResponse::Four2DResponse(int typ, double dx, double dy, double lambda)
12 : typ_(typ), dx_((dx>1.e-3)?dx:1.), dy_((dy>1.e-3)?dy:1.)
13{
14 setLambdaRef(lambda);
15 setLambda(lambda);
16}
17
18// Return the response for the wave vecteor (kx,ky)
19double Four2DResponse::Value(double kx, double ky)
20{
21 kx *= lambda_ratio_;
22 ky *= lambda_ratio_;
23 double wk,wkx,wky;
24 switch (typ_)
25 {
26 case 1: // Reponse gaussienne parabole diametre D exp[ - 0.5 (lambda k_g / D )^2 ]
27 wk = sqrt(kx*kx+ky*ky)/dx_;
28 wk = 0.5*wk*wk;
29 return exp(-wk);
30 break;
31 case 2: // Reponse parabole diametre D Triangle <= kmax= 2 pi D / lambda
32 wk = sqrt(kx*kx+ky*ky)/dx_/2./M_PI;
33 return ( (wk<1.)?(1.-wk):0.);
34 break;
35 case 22: // Reponse parabole diametre D Triangle <= kmax= 2 pi D / lambda + trou au centre
36 wk = sqrt(kx*kx+ky*ky)/dx_/2./M_PI;
37 if (wk<0.025) return 39.*wk;
38 else if (wk<1.) return (1.-wk);
39 else return 0.;
40 break;
41 case 3: // Reponse rectangle Dx x Dy Triangle (|kx|,|k_y|) <= (2 pi Dx / lambda, 2 pi Dx / lambda)
42 wkx = fabs(kx)/2./M_PI/dx_;
43 wky = fabs(ky)/2./M_PI/dy_;
44 return ( ((wkx<1.)&&(wky<1.))?((1.-wkx)*(1-wky)):0.);
45 break;
46 default:
47 return 1.;
48 }
49}
50// Return a vector representing the power spectrum (for checking)
51Histo2D Four2DResponse::GetResponse(int nx, int ny)
52{
53 double kxmx = 1.2*DeuxPI*dx_;
54 double kymx = 1.2*DeuxPI*dy_;
55 if (typ_<3) kymx=kxmx;
56 Histo2D h2(0.,kxmx,nx,0.,kymx,ny);
57
58 for(int j=0; j<h2.NBinY(); j++)
59 for(int i=0; i<h2.NBinX(); i++)
60 h2(i,j) = Value((i+0.5)*h2.WBinX(), (j+0.5)*h2.WBinY());
61 return h2;
62}
63
64//---------------------------------------------------------------
65// -- Four2DRespTable : Reponse tabulee instrumentale ds le plan k_x,k_y (angles theta,phi)
66//---------------------------------------------------------------
67Four2DRespTable::Four2DRespTable()
68 : Four2DResponse(0,1.,1.)
69{
70}
71
72Four2DRespTable::Four2DRespTable(Histo2D const & hrep, double d, double lambda)
73 : Four2DResponse(0,d,d,lambda) , hrep_(hrep)
74{
75}
76
77double Four2DRespTable::Value(double kx, double ky)
78{
79 kx *= lambda_ratio_;
80 ky *= lambda_ratio_;
81 int_4 i,j;
82 if ( (kx<=hrep_.XMin())||(kx>=hrep_.XMax()) ||
83 (ky<=hrep_.YMin())||(ky>=hrep_.YMax()) ) return 0.;
84 hrep_.FindBin(kx, ky, i, j);
85 return hrep_(i, j);
86}
87
88double Four2DRespTable::renormalize(double max)
89{
90 double cmx = hrep_.VMax();
91 hrep_ *= (max/cmx);
92 return cmx;
93}
94
95void Four2DRespTable::writeToPPF(string flnm)
96{
97 DVList dvinfo;
98 dvinfo["DoL"] = dx_;
99 dvinfo["LambdaRef"] = lambdaref_;
100 dvinfo["Lambda"] = lambda_;
101 POutPersist po(flnm);
102 po << hrep_;
103 po << dvinfo;
104}
105
106void Four2DRespTable::readFromPPF(string flnm)
107{
108 PInPersist pin(flnm);
109 DVList dvinfo;
110 pin >> hrep_;
111 pin >> dvinfo;
112 dx_ = dy_ = dvinfo["DoL"];
113 setLambdaRef((double)dvinfo["LambdaRef"]);
114 setLambda((double)dvinfo["Lambda"]);
115}
116
117
118
119//---------------------------------------------------------------
120// -- Four2DRespRatio : rapport de la reponse entre deux objets Four2DResponse
121//---------------------------------------------------------------
122Four2DRespRatio::Four2DRespRatio(Four2DResponse& a, Four2DResponse& b, double divzthr)
123 : Four2DResponse(0, a.D(), a.D()), a_(a), b_(b), divzthr_(divzthr)
124{
125}
126
127double Four2DRespRatio::Value(double kx, double ky)
128{
129 double ra = a_.Value(kx,ky);
130 double rb = b_.Value(kx,ky);
131 if (ra<rb) {
132 if (rb>1.e-39) return(ra/rb);
133 else return 0.;
134 }
135 if (rb<divzthr_) rb=divzthr_;
136 return (ra/rb);
137}
138
139//---------------------------------------------------------------
140//--- Classe simple pour le calcul de rotation
141class Rotation {
142public:
143 Rotation(double tet, double phi)
144 {
145// (Teta,Phi) = Direction de visee
146// Les angles d'Euler correspondants sont Teta, Phi+Pi/2
147// Le Pi/2 vient que les rotations d'euler se font dans l'ordre
148// Autour de oZ d'angle Phi, autour de oN (nouvel axe X) d'angle Teta
149// Autour du nouvel axe Z (x3) d'angle Psi (Psi=0 -> cp=1, sp=0.;
150 double ct = cos(tet);
151 double st = sin(tet);
152 // Le Pi/2 echange les axes X<>Y pour theta=phi=0 !
153 // double cf = cos(phi+M_PI/2);
154 // double sf = sin(phi+M_PI/2);
155 double cf = cos(phi);
156 double sf = sin(phi);
157 double cp = 1.; // cos((double)pO);
158 double sp = 0.; // sin((double)pO);
159 RE[0][0] = cf*cp-sf*ct*sp; RE[0][1] = sf*cp+cf*ct*sp; RE[0][2] = st*sp;
160 RE[1][0] = -cf*sp-sf*ct*cp; RE[1][1] = -sf*sp+cf*ct*cp; RE[1][2] = st*cp;
161 RE[2][0] = sf*st; RE[2][1] = -cf*st; RE[2][2] = ct;
162 }
163 inline void Do(double& x, double& y)
164 {
165 double xx=x;
166 double yy=y;
167 x = RE[0][0]*xx+RE[0][1]*yy;
168 y = RE[1][0]*xx+RE[1][1]*yy;
169 }
170 double RE[3][3];
171};
172
173
174//----------------------------------------------------------------------
175// -- Pour calculer la reponse ds le plan kx,ky d'un system MultiDish
176//----------------------------------------------------------------------
177MultiDish::MultiDish(double lambda, double dmax, vector<Dish>& dishes, bool fgnoauto)
178 : lambda_(lambda), dmax_(dmax), dishes_(dishes), fgnoauto_(fgnoauto)
179{
180 SetThetaPhiRange();
181 SetRespHisNBins();
182 mcnt_=0;
183}
184
185Histo2D MultiDish::GetResponse()
186{
187 cout << " MultiDish::GetResponse() - NDishes=" << dishes_.size() << " nx=" << nx_ << " ny=" << ny_ << endl;
188 double kmx = 1.2*DeuxPI*dmax_/lambda_;
189 double dkmx = kmx/(double)nx_;
190 double dkmy = kmx/(double)ny_;
191 double kmxx = ((double)nx_+0.5)*dkmx;
192 double kmxy = ((double)ny_+0.5)*dkmy;
193 h2w_.Define(-kmxx,kmxx,2*nx_+1,-kmxy,kmxy,2*ny_+1);
194 h2w_.SetZeroBin(0.,0.);
195
196 double dold = dishes_[0].D/lambda_;
197 double dolx = dishes_[0].Dx/lambda_;
198 double doly = dishes_[0].Dy/lambda_;
199
200 Four2DResponse rd(2, dold, dold);
201 Four2DResponse rdr(3, dolx, doly);
202
203 if (!dishes_[0].isCircular()) rd = rdr;
204
205 double dtet = thetamax_/(double)ntet_;
206 double dphi = phimax_/(double)ntet_;
207
208 double sumw = 0.;
209 for(int kt=0; kt<ntet_; kt++)
210 for(int jp=0; jp<nphi_; jp++)
211 sumw += CumulResp(rd, (double)kt*dtet, (double)jp*dphi);
212
213 double kx1 = DeuxPI*(dishes_[0].DiameterX())/lambda_;
214 double ky1 = DeuxPI*(dishes_[0].DiameterY())/lambda_;
215 int_4 ib,jb;
216 // h2w_ /= h2cnt_;
217 Histo2D h2 = h2w_.Convert();
218 h2.FindBin(kx1, ky1, ib, jb);
219 if ((kx1<0)||(ky1<0)||(kx1>=h2.NBinX())||(ky1>=h2.NBinY())) {
220 cout << " MultiDish::GetResponse[1]/ERROR kx1,ky1=" << kx1 <<","<< ky1 << " --> ib,jb=" << ib <<","<< jb << endl;
221 ib=jb=0;
222 }
223 double vmax=h2.VMax();
224 cout << " MultiDish::GetResponse[1] VMin=" << h2.VMin() << " VMax= " << vmax
225 << " h(0,0)=" << h2(0,0) << " kx1,ky1->h(" << ib <<"," << jb << ")=" << h2(ib,jb) <<endl;
226 // double fnorm=sqrt((double)dishes_.size())/h2.VMax();
227 double fnorm=1.;
228 if (vmax > sumw) {
229 fnorm=(double)dishes_.size()/h2.VMax();
230 cout << " MultiDish::GetResponse[2]/Warning h2.VMax()=" << vmax << " > sumw=" << sumw << endl;
231 cout << " ... NDishes=" << dishes_.size() << " sumw=" << sumw
232 << " Renormalizing x NDishes/VMax " << fnorm << endl;
233 }
234 else {
235 fnorm=(double)dishes_.size()/sumw;
236 cout << " MultiDish::GetResponse[3] NDishes=" << dishes_.size() << " sumw=" << sumw
237 << " Renormalizing x NDishes/sumw " << fnorm << endl;
238 }
239 h2 *= fnorm;
240 cout << " ---- MultiDish::GetResponse/[4] APRES VMin=" << h2.VMin() << " VMax= " << h2.VMax() << " h(0,0)="
241 << h2(0,0) << endl;
242 return h2;
243}
244
245Histo2D MultiDish::PosDist(int nx, int ny, double dmax)
246{
247 if (dmax<1e-3) dmax=nx*dishes_[0].Diameter();
248 double dd = dmax/nx/2.;
249 Histo2D hpos(-dd,dmax+dd,nx+1,-dd,dmax+dd,ny+1);
250 for(size_t i=0; i<NbDishes(); i++) {
251 hpos.Add(dishes_[i].X, dishes_[i].Y);
252 }
253 return hpos;
254}
255
256double MultiDish::AddToHisto(double kx0, double ky0, double x, double y, double w, bool fgfh)
257{
258 double xxp = kx0+x;
259 double yyp = ky0+y;
260 double sumw=0.;
261 sumw += h2w_.Add(xxp, yyp, w, fgfh);
262 double xxm=kx0-x;
263 double yym=ky0-y;
264 // if (xxm>0.) {
265 sumw += h2w_.Add(xxm, yyp, w, fgfh);
266 // if (yym>0.)
267 sumw += h2w_.Add(xxm, yym, w, fgfh);
268 // }
269 // if (yym>0.)
270 sumw += h2w_.Add(xxp, yym, w, fgfh);
271 return sumw;
272}
273
274double MultiDish::CumulResp(Four2DResponse& rd, double theta, double phi)
275{
276 // cout << " MultiDish::CumulResp() theta=" << theta << " phi=" << phi << endl;
277
278 double dx = h2w_.WBinX()/5;
279 double dy = h2w_.WBinY()/5;
280 int nbx = DeuxPI*rd.Dx()/dx+1;
281 int nby = DeuxPI*rd.Dy()/dy+1;
282 dx = DeuxPI*rd.Dx()/(double)nbx;
283 dy = DeuxPI*rd.Dy()/(double)nby;
284 if (mcnt_==0)
285 cout << " CumulResp() nbx=" << nbx << " nby=" << nby << " dx=" << dx << " dy=" << dy << endl;
286 mcnt_++;
287
288 double sumw = 0.;
289 Rotation rot(theta, phi);
290
291 for(size_t i=0; i<dishes_.size(); i++) {
292 for(size_t j=0; j<dishes_.size(); j++) {
293 double kx0 = DeuxPI*(dishes_[i].X-dishes_[j].X)/lambda_;
294 double ky0 = DeuxPI*(dishes_[i].Y-dishes_[j].Y)/lambda_;
295 rot.Do(kx0, ky0);
296 // if (kx0<0) kx0=-kx0;
297 // if (ky0<0) ky0=-ky0;
298 bool fgfh= (!fgnoauto_ || (dishes_[i].ReflectorId()!=dishes_[j].ReflectorId()));
299 for(int ix=0; ix<nbx; ix++)
300 for(int jy=0; jy<nby; jy++) {
301 double x = ix*dx;
302 double y = jy*dy;
303 if ((ix>0)&&(jy>0)) {
304 sumw += AddToHisto(kx0, ky0, x, y, rd(x,y), fgfh);
305 }
306 else {
307 if ((ix==0)&&(jy==0))
308 sumw += h2w_.Add(kx0, ky0, rd(0.,0.), fgfh);
309 else {
310 double w = rd(x,y);
311 if (ix==0) {
312 sumw += h2w_.Add(kx0, ky0+y, w, fgfh);
313 sumw += h2w_.Add(kx0, ky0-y, w, fgfh);
314 }
315 else {
316 sumw += h2w_.Add(kx0+x, ky0, w, fgfh);
317 sumw += h2w_.Add(kx0-x, ky0, w, fgfh);
318 }
319 }
320 //
321 }
322 }
323 // if (i%10==0)
324 // cout << " MultiDish::CumulResp() done i=" << i << " / imax=" << dishes_.size()
325 // << " theta=" << theta << " phi=" << phi << endl;
326 }
327 }
328 return sumw;
329}
330
Note: See TracBrowser for help on using the repository browser.