1 | // Classes to compute 2D
|
---|
2 | // R. Ansari - Nov 2008, May 2010
|
---|
3 |
|
---|
4 | #include "mdish.h"
|
---|
5 |
|
---|
6 |
|
---|
7 | //--------------------------------------------------
|
---|
8 | // -- Four2DResponse class
|
---|
9 | //--------------------------------------------------
|
---|
10 | // Constructor
|
---|
11 | Four2DResponse::Four2DResponse(int typ, double dx, double dy, double lambda)
|
---|
12 | : typ_(typ), dx_((dx>1.e-3)?dx:1.), dy_((dy>1.e-3)?dy:1.)
|
---|
13 | {
|
---|
14 | setLambdaRef(lambda);
|
---|
15 | setLambda(lambda);
|
---|
16 | }
|
---|
17 |
|
---|
18 | // Return the response for the wave vecteor (kx,ky)
|
---|
19 | double Four2DResponse::Value(double kx, double ky)
|
---|
20 | {
|
---|
21 | kx *= lambda_ratio_;
|
---|
22 | ky *= lambda_ratio_;
|
---|
23 | double wk,wkx,wky;
|
---|
24 | switch (typ_)
|
---|
25 | {
|
---|
26 | case 1: // Reponse gaussienne parabole diametre D exp[ - 0.5 (lambda k_g / D )^2 ]
|
---|
27 | wk = sqrt(kx*kx+ky*ky)/dx_;
|
---|
28 | wk = 0.5*wk*wk;
|
---|
29 | return exp(-wk);
|
---|
30 | break;
|
---|
31 | case 2: // Reponse parabole diametre D Triangle <= kmax= 2 pi D / lambda
|
---|
32 | wk = sqrt(kx*kx+ky*ky)/dx_/2./M_PI;
|
---|
33 | return ( (wk<1.)?(1.-wk):0.);
|
---|
34 | break;
|
---|
35 | case 3: // Reponse rectangle Dx x Dy Triangle (|kx|,|k_y|) <= (2 pi Dx / lambda, 2 pi Dx / lambda)
|
---|
36 | wkx = kx/2./M_PI/dx_;
|
---|
37 | wky = ky/2./M_PI/dy_;
|
---|
38 | return ( ((wkx<1.)&&(wky<1.))?((1.-wkx)*(1-wky)):0.);
|
---|
39 | break;
|
---|
40 | default:
|
---|
41 | return 1.;
|
---|
42 | }
|
---|
43 | }
|
---|
44 | // Return a vector representing the power spectrum (for checking)
|
---|
45 | Histo2D Four2DResponse::GetResponse(int nx, int ny)
|
---|
46 | {
|
---|
47 | double kxmx = 1.2*DeuxPI*dx_;
|
---|
48 | double kymx = 1.2*DeuxPI*dy_;
|
---|
49 | if (typ_<3) kymx=kxmx;
|
---|
50 | Histo2D h2(0.,kxmx,nx,0.,kymx,ny);
|
---|
51 |
|
---|
52 | for(int j=0; j<h2.NBinY(); j++)
|
---|
53 | for(int i=0; i<h2.NBinX(); i++)
|
---|
54 | h2(i,j) = Value((i+0.5)*h2.WBinX(), (j+0.5)*h2.WBinY());
|
---|
55 | return h2;
|
---|
56 | }
|
---|
57 |
|
---|
58 | //---------------------------------------------------------------
|
---|
59 | // -- Four2DRespTable : Reponse tabulee instrumentale ds le plan k_x,k_y (angles theta,phi)
|
---|
60 | //---------------------------------------------------------------
|
---|
61 | Four2DRespTable::Four2DRespTable()
|
---|
62 | : Four2DResponse(0,1.,1.)
|
---|
63 | {
|
---|
64 | }
|
---|
65 |
|
---|
66 | Four2DRespTable::Four2DRespTable(Histo2D const & hrep, double d, double lambda)
|
---|
67 | : Four2DResponse(0,d,d,lambda) , hrep_(hrep)
|
---|
68 | {
|
---|
69 | }
|
---|
70 |
|
---|
71 | double Four2DRespTable::Value(double kx, double ky)
|
---|
72 | {
|
---|
73 | kx *= lambda_ratio_;
|
---|
74 | ky *= lambda_ratio_;
|
---|
75 | int_4 i,j;
|
---|
76 | if ( (kx<=hrep_.XMin())||(kx>=hrep_.XMax()) ||
|
---|
77 | (ky<=hrep_.YMin())||(ky>=hrep_.YMax()) ) return 0.;
|
---|
78 | hrep_.FindBin(kx, ky, i, j);
|
---|
79 | return hrep_(i, j);
|
---|
80 | }
|
---|
81 |
|
---|
82 | void Four2DRespTable::writeToPPF(string flnm)
|
---|
83 | {
|
---|
84 | DVList dvinfo;
|
---|
85 | dvinfo["DoL"] = dx_;
|
---|
86 | dvinfo["LambdaRef"] = lambdaref_;
|
---|
87 | dvinfo["Lambda"] = lambda_;
|
---|
88 | POutPersist po(flnm);
|
---|
89 | po << hrep_;
|
---|
90 | po << dvinfo;
|
---|
91 | }
|
---|
92 |
|
---|
93 | void Four2DRespTable::readFromPPF(string flnm)
|
---|
94 | {
|
---|
95 | PInPersist pin(flnm);
|
---|
96 | DVList dvinfo;
|
---|
97 | pin >> hrep_;
|
---|
98 | pin >> dvinfo;
|
---|
99 | dx_ = dy_ = dvinfo["DoL"];
|
---|
100 | setLambdaRef((double)dvinfo["LambdaRef"]);
|
---|
101 | setLambda((double)dvinfo["Lambda"]);
|
---|
102 | }
|
---|
103 |
|
---|
104 |
|
---|
105 |
|
---|
106 | //---------------------------------------------------------------
|
---|
107 | // -- Four2DRespRatio : rapport de la reponse entre deux objets Four2DResponse
|
---|
108 | //---------------------------------------------------------------
|
---|
109 | Four2DRespRatio::Four2DRespRatio(Four2DResponse& a, Four2DResponse& b, double divzthr)
|
---|
110 | : Four2DResponse(0, a.D(), a.D()), a_(a), b_(b), divzthr_(divzthr)
|
---|
111 | {
|
---|
112 | }
|
---|
113 |
|
---|
114 | double Four2DRespRatio::Value(double kx, double ky)
|
---|
115 | {
|
---|
116 | double ra = a_.Value(kx,ky);
|
---|
117 | double rb = b_.Value(kx,ky);
|
---|
118 | if (ra<rb) {
|
---|
119 | if (rb>1.e-39) return(ra/rb);
|
---|
120 | else return 0.;
|
---|
121 | }
|
---|
122 | if (rb<divzthr_) rb=divzthr_;
|
---|
123 | return (ra/rb);
|
---|
124 | }
|
---|
125 |
|
---|
126 | //---------------------------------------------------------------
|
---|
127 | //--- Classe simple pour le calcul de rotation
|
---|
128 | class Rotation {
|
---|
129 | public:
|
---|
130 | Rotation(double tet, double phi)
|
---|
131 | {
|
---|
132 | // (Teta,Phi) = Direction de visee
|
---|
133 | // Les angles d'Euler correspondants sont Teta, Phi+Pi/2
|
---|
134 | // Le Pi/2 vient que les rotations d'euler se font dans l'ordre
|
---|
135 | // Autour de oZ d'angle Phi, autour de oN (nouvel axe X) d'angle Teta
|
---|
136 | // Autour du nouvel axe Z (x3) d'angle Psi (Psi=0 -> cp=1, sp=0.;
|
---|
137 | double ct = cos(tet);
|
---|
138 | double st = sin(tet);
|
---|
139 | // Le Pi/2 echange les axes X<>Y pour theta=phi=0 !
|
---|
140 | // double cf = cos(phi+M_PI/2);
|
---|
141 | // double sf = sin(phi+M_PI/2);
|
---|
142 | double cf = cos(phi);
|
---|
143 | double sf = sin(phi);
|
---|
144 | double cp = 1.; // cos((double)pO);
|
---|
145 | double sp = 0.; // sin((double)pO);
|
---|
146 | RE[0][0] = cf*cp-sf*ct*sp; RE[0][1] = sf*cp+cf*ct*sp; RE[0][2] = st*sp;
|
---|
147 | RE[1][0] = -cf*sp-sf*ct*cp; RE[1][1] = -sf*sp+cf*ct*cp; RE[1][2] = st*cp;
|
---|
148 | RE[2][0] = sf*st; RE[2][1] = -cf*st; RE[2][2] = ct;
|
---|
149 | }
|
---|
150 | inline void Do(double& x, double& y)
|
---|
151 | {
|
---|
152 | double xx=x;
|
---|
153 | double yy=y;
|
---|
154 | x = RE[0][0]*xx+RE[0][1]*yy;
|
---|
155 | y = RE[1][0]*xx+RE[1][1]*yy;
|
---|
156 | }
|
---|
157 | double RE[3][3];
|
---|
158 | };
|
---|
159 |
|
---|
160 |
|
---|
161 | //----------------------------------------------------------------------
|
---|
162 | // -- Pour calculer la reponse ds le plan kx,ky d'un system MultiDish
|
---|
163 | //----------------------------------------------------------------------
|
---|
164 | MultiDish::MultiDish(double lambda, double dmax, vector<Dish>& dishes, bool fgnoauto)
|
---|
165 | : lambda_(lambda), dmax_(dmax), dishes_(dishes), fgnoauto_(fgnoauto)
|
---|
166 | {
|
---|
167 | SetThetaPhiRange();
|
---|
168 | SetRespHisNBins();
|
---|
169 | mcnt_=0;
|
---|
170 | }
|
---|
171 |
|
---|
172 | Histo2D MultiDish::GetResponse()
|
---|
173 | {
|
---|
174 | cout << " MultiDish::GetResponse() - NDishes=" << dishes_.size() << " nx=" << nx_ << " ny=" << ny_ << endl;
|
---|
175 | double kmx = 1.2*DeuxPI*dmax_/lambda_;
|
---|
176 | double dkmx = kmx/(double)nx_;
|
---|
177 | double dkmy = kmx/(double)ny_;
|
---|
178 | double kmxx = ((double)nx_+0.5)*dkmx;
|
---|
179 | double kmxy = ((double)ny_+0.5)*dkmy;
|
---|
180 | h2w_.Define(-kmxx,kmxx,2*nx_+1,-kmxy,kmxy,2*ny_+1);
|
---|
181 | h2w_.SetZeroBin(0.,0.);
|
---|
182 |
|
---|
183 | double dold = dishes_[0].D/lambda_;
|
---|
184 | double dolx = dishes_[0].Dx/lambda_;
|
---|
185 | double doly = dishes_[0].Dy/lambda_;
|
---|
186 |
|
---|
187 | Four2DResponse rd(2, dold, dold);
|
---|
188 | Four2DResponse rdr(3, dolx, doly);
|
---|
189 |
|
---|
190 | if (!dishes_[0].isCircular()) rd = rdr;
|
---|
191 |
|
---|
192 | double dtet = thetamax_/(double)ntet_;
|
---|
193 | double dphi = phimax_/(double)ntet_;
|
---|
194 |
|
---|
195 | double sumw = 0.;
|
---|
196 | for(int kt=0; kt<ntet_; kt++)
|
---|
197 | for(int jp=0; jp<nphi_; jp++)
|
---|
198 | sumw += CumulResp(rd, (double)kt*dtet, (double)jp*dphi);
|
---|
199 |
|
---|
200 | double kx1 = DeuxPI*(dishes_[0].DiameterX())/lambda_;
|
---|
201 | double ky1 = DeuxPI*(dishes_[0].DiameterY())/lambda_;
|
---|
202 | int_4 ib,jb;
|
---|
203 | // h2w_ /= h2cnt_;
|
---|
204 | Histo2D h2 = h2w_.Convert();
|
---|
205 | h2.FindBin(kx1, ky1, ib, jb);
|
---|
206 | if ((kx1<0)||(ky1<0)||(kx1>=h2.NBinX())||(ky1>=h2.NBinY())) {
|
---|
207 | cout << " MultiDish::GetResponse[1]/ERROR kx1,ky1=" << kx1 <<","<< ky1 << " --> ib,jb=" << ib <<","<< jb << endl;
|
---|
208 | ib=jb=0;
|
---|
209 | }
|
---|
210 | double vmax=h2.VMax();
|
---|
211 | cout << " MultiDish::GetResponse[1] VMin=" << h2.VMin() << " VMax= " << vmax
|
---|
212 | << " h(0,0)=" << h2(0,0) << " kx1,ky1->h(" << ib <<"," << jb << ")=" << h2(ib,jb) <<endl;
|
---|
213 | // double fnorm=sqrt((double)dishes_.size())/h2.VMax();
|
---|
214 | double fnorm=1.;
|
---|
215 | if (vmax > sumw) {
|
---|
216 | fnorm=(double)dishes_.size()/h2.VMax();
|
---|
217 | cout << " MultiDish::GetResponse[2]/Warning h2.VMax()=" << vmax << " > sumw=" << sumw << endl;
|
---|
218 | cout << " ... NDishes=" << dishes_.size() << " sumw=" << sumw
|
---|
219 | << " Renormalizing x NDishes/VMax " << fnorm << endl;
|
---|
220 | }
|
---|
221 | else {
|
---|
222 | fnorm=(double)dishes_.size()/sumw;
|
---|
223 | cout << " MultiDish::GetResponse[3] NDishes=" << dishes_.size() << " sumw=" << sumw
|
---|
224 | << " Renormalizing x NDishes/sumw " << fnorm << endl;
|
---|
225 | }
|
---|
226 | h2 *= fnorm;
|
---|
227 | cout << " ---- MultiDish::GetResponse/[4] APRES VMin=" << h2.VMin() << " VMax= " << h2.VMax() << " h(0,0)="
|
---|
228 | << h2(0,0) << endl;
|
---|
229 | return h2;
|
---|
230 | }
|
---|
231 |
|
---|
232 | Histo2D MultiDish::PosDist(int nx, int ny, double dmax)
|
---|
233 | {
|
---|
234 | if (dmax<1e-3) dmax=nx*dishes_[0].Diameter();
|
---|
235 | double dd = dmax/nx/2.;
|
---|
236 | Histo2D hpos(-dd,dmax+dd,nx+1,-dd,dmax+dd,ny+1);
|
---|
237 | for(size_t i=0; i<NbDishes(); i++) {
|
---|
238 | hpos.Add(dishes_[i].X, dishes_[i].Y);
|
---|
239 | }
|
---|
240 | return hpos;
|
---|
241 | }
|
---|
242 |
|
---|
243 | double MultiDish::AddToHisto(double kx0, double ky0, double x, double y, double w, bool fgfh)
|
---|
244 | {
|
---|
245 | double xxp = kx0+x;
|
---|
246 | double yyp = ky0+y;
|
---|
247 | double sumw=0.;
|
---|
248 | sumw += h2w_.Add(xxp, yyp, w, fgfh);
|
---|
249 | double xxm=kx0-x;
|
---|
250 | double yym=ky0-y;
|
---|
251 | // if (xxm>0.) {
|
---|
252 | sumw += h2w_.Add(xxm, yyp, w, fgfh);
|
---|
253 | // if (yym>0.)
|
---|
254 | sumw += h2w_.Add(xxm, yym, w, fgfh);
|
---|
255 | // }
|
---|
256 | // if (yym>0.)
|
---|
257 | sumw += h2w_.Add(xxp, yym, w, fgfh);
|
---|
258 | return sumw;
|
---|
259 | }
|
---|
260 |
|
---|
261 | double MultiDish::CumulResp(Four2DResponse& rd, double theta, double phi)
|
---|
262 | {
|
---|
263 | // cout << " MultiDish::CumulResp() theta=" << theta << " phi=" << phi << endl;
|
---|
264 |
|
---|
265 | double dx = h2w_.WBinX()/5;
|
---|
266 | double dy = h2w_.WBinY()/5;
|
---|
267 | int nbx = DeuxPI*rd.Dx()/dx+1;
|
---|
268 | int nby = DeuxPI*rd.Dy()/dy+1;
|
---|
269 | dx = DeuxPI*rd.Dx()/(double)nbx;
|
---|
270 | dy = DeuxPI*rd.Dy()/(double)nby;
|
---|
271 | if (mcnt_==0)
|
---|
272 | cout << " CumulResp() nbx=" << nbx << " nby=" << nby << " dx=" << dx << " dy=" << dy << endl;
|
---|
273 | mcnt_++;
|
---|
274 |
|
---|
275 | double sumw = 0.;
|
---|
276 | Rotation rot(theta, phi);
|
---|
277 |
|
---|
278 | for(size_t i=0; i<dishes_.size(); i++) {
|
---|
279 | for(size_t j=0; j<dishes_.size(); j++) {
|
---|
280 | double kx0 = DeuxPI*(dishes_[i].X-dishes_[j].X)/lambda_;
|
---|
281 | double ky0 = DeuxPI*(dishes_[i].Y-dishes_[j].Y)/lambda_;
|
---|
282 | rot.Do(kx0, ky0);
|
---|
283 | // if (kx0<0) kx0=-kx0;
|
---|
284 | // if (ky0<0) ky0=-ky0;
|
---|
285 | bool fgfh= (!fgnoauto_ || (dishes_[i].ReflectorId()!=dishes_[j].ReflectorId()));
|
---|
286 | for(int ix=0; ix<nbx; ix++)
|
---|
287 | for(int jy=0; jy<nby; jy++) {
|
---|
288 | double x = ix*dx;
|
---|
289 | double y = jy*dy;
|
---|
290 | if ((ix>0)&&(jy>0)) {
|
---|
291 | sumw += AddToHisto(kx0, ky0, x, y, rd(x,y), fgfh);
|
---|
292 | }
|
---|
293 | else {
|
---|
294 | if ((ix==0)&&(jy==0))
|
---|
295 | sumw += h2w_.Add(kx0, ky0, rd(0.,0.), fgfh);
|
---|
296 | else {
|
---|
297 | double w = rd(x,y);
|
---|
298 | if (ix==0) {
|
---|
299 | sumw += h2w_.Add(kx0, ky0+y, w, fgfh);
|
---|
300 | sumw += h2w_.Add(kx0, ky0-y, w, fgfh);
|
---|
301 | }
|
---|
302 | else {
|
---|
303 | sumw += h2w_.Add(kx0+x, ky0, w, fgfh);
|
---|
304 | sumw += h2w_.Add(kx0-x, ky0, w, fgfh);
|
---|
305 | }
|
---|
306 | }
|
---|
307 | //
|
---|
308 | }
|
---|
309 | }
|
---|
310 | // if (i%10==0)
|
---|
311 | // cout << " MultiDish::CumulResp() done i=" << i << " / imax=" << dishes_.size()
|
---|
312 | // << " theta=" << theta << " phi=" << phi << endl;
|
---|
313 | }
|
---|
314 | }
|
---|
315 | return sumw;
|
---|
316 | }
|
---|
317 |
|
---|