// Classes to compute 2D // R. Ansari - Nov 2008, May 2010 #include "mdish.h" //-------------------------------------------------- // -- Four2DResponse class //-------------------------------------------------- // Constructor Four2DResponse::Four2DResponse(int typ, double dx, double dy) : typ_(typ), dx_((dx>1.e-3)?dx:1.), dy_((dy>1.e-3)?dy:1.) { } // Return the response for the wave vecteor (kx,ky) double Four2DResponse::Value(double kx, double ky) { double wk,wkx,wky; switch (typ_) { case 1: // Reponse gaussienne parabole diametre D exp[ - 0.5 (lambda k_g / D )^2 ] wk = sqrt(kx*kx+ky*ky)/dx_; wk = 0.5*wk*wk; return exp(-wk); break; case 2: // Reponse parabole diametre D Triangle <= kmax= 2 pi D / lambda wk = sqrt(kx*kx+ky*ky)/dx_/2./M_PI; return ( (wk<1.)?(1.-wk):0.); break; case 3: // Reponse rectangle Dx x Dy Triangle (|kx|,|k_y|) <= (2 pi Dx / lambda, 2 pi Dx / lambda) wkx = kx/2./M_PI/dx_; wky = ky/2./M_PI/dy_; return ( ((wkx<1.)&&(wky<1.))?((1.-wkx)*(1-wky)):0.); break; default: return 1.; } } // Return a vector representing the power spectrum (for checking) Histo2D Four2DResponse::GetResponse(int nx, int ny) { double kxmx = 1.2*DeuxPI*dx_; double kymx = 1.2*DeuxPI*dy_; if (typ_<3) kymx=kxmx; Histo2D h2(0.,kxmx,nx,0.,kymx,ny); for(int j=0; j=hrep_.XMax()) || (ky<=hrep_.YMin())||(ky>=hrep_.YMax()) ) return 0.; hrep_.FindBin(kx, ky, i, j); return hrep_(i, j); } //--- Classe simple pour le calcul de rotation class Rotation { public: Rotation(double tet, double phi) { // (Teta,Phi) = Direction de visee // Les angles d'Euler correspondants sont Teta, Phi+Pi/2 // Le Pi/2 vient que les rotations d'euler se font dans l'ordre // Autour de oZ d'angle Phi, autour de oN (nouvel axe X) d'angle Teta // Autour du nouvel axe Z (x3) d'angle Psi (Psi=0 -> cp=1, sp=0.; double ct = cos(tet); double st = sin(tet); // Le Pi/2 echange les axes X<>Y pour theta=phi=0 ! // double cf = cos(phi+M_PI/2); // double sf = sin(phi+M_PI/2); double cf = cos(phi); double sf = sin(phi); double cp = 1.; // cos((double)pO); double sp = 0.; // sin((double)pO); RE[0][0] = cf*cp-sf*ct*sp; RE[0][1] = sf*cp+cf*ct*sp; RE[0][2] = st*sp; RE[1][0] = -cf*sp-sf*ct*cp; RE[1][1] = -sf*sp+cf*ct*cp; RE[1][2] = st*cp; RE[2][0] = sf*st; RE[2][1] = -cf*st; RE[2][2] = ct; } inline void Do(double& x, double& y) { double xx=x; double yy=y; x = RE[0][0]*xx+RE[0][1]*yy; y = RE[1][0]*xx+RE[1][1]*yy; } double RE[3][3]; }; // ----------------------------------- // -- Classe ressemblant a un histo 2D // ----------------------------------- QHis2D::QHis2D() : nx(0),ny(0),xmin(0),xmax(0),ymin(0),ymax(0),sumw0(0.) { } QHis2D::QHis2D(r_8 xMin,r_8 xMax,int_4 nxb,r_8 yMin,r_8 yMax,int_4 nyb) : nx(0),ny(0),xmin(0),xmax(0),ymin(0),ymax(0),sumw0(0.) { Define(xMin, xMax, nxb, yMin, yMax, nyb); } void QHis2D::Define(r_8 xMin,r_8 xMax,int_4 nxb,r_8 yMin,r_8 yMax,int_4 nyb) { nx=nxb; ny=nyb; xmin=xMin; xmax=xMax; ymin=yMin; ymax=yMax; dxb=(xmax-xmin)/(double)nx; dyb=(ymax-ymin)/(double)ny; sa_size_t sz[5]; sz[0]=nx; sz[1]=ny; aw.ReSize(2,sz); sumw0=0.; return; } double QHis2D::Add(r_8 x, r_8 y, r_8 w, bool fgfh) { sa_size_t ix = (sa_size_t)((x-xmin)/dxb); sa_size_t jy = (sa_size_t)((y-ymin)/dyb); if ((ix<0)||(ix>=nx)||(jy<0)||(jy>=ny)) return 0.; double rw = ((ix==0)&&(jy==0)) ? w : 0.; sumw0 += rw; if (fgfh) aw(ix,jy) += w; return rw; } Histo2D QHis2D::Convert() { Histo2D h2(xmin,xmax,nx,ymin,ymax,ny); for(int_4 j=0; j& dishes, bool fgnoauto) : lambda_(lambda), dmax_(dmax), dishes_(dishes), fgnoauto_(fgnoauto) { SetThetaPhiRange(); SetRespHisNBins(); mcnt_=0; } Histo2D MultiDish::GetResponse() { cout << " MultiDish::GetResponse() - NDishes=" << dishes_.size() << " nx=" << nx_ << " ny=" << ny_ << endl; double kmx = 1.2*DeuxPI*dmax_/lambda_; /* h2w_= Histo2D(0.,kmx,nx_,0.,kmx,ny_); h2cnt_= Histo2D(0.,kmx,nx_,0.,kmx,ny_); h2w_.Zero(); h2cnt_.Zero(); */ h2w_.Define(0.,kmx,nx_,0.,kmx,ny_); double dold = dishes_[0].D/lambda_; double dolx = dishes_[0].Dx/lambda_; double doly = dishes_[0].Dy/lambda_; Four2DResponse rd(2, dold, dold); Four2DResponse rdr(3, dolx, doly); if (!dishes_[0].isCircular()) rd = rdr; double dtet = thetamax_/(double)ntet_; double dphi = phimax_/(double)ntet_; double sumw = 0.; for(int kt=0; kt