// Classes to compute 2D
// R. Ansari - Nov 2008, May 2010
#include "mdish.h"
//--------------------------------------------------
// -- Four2DResponse class
//--------------------------------------------------
// Constructor
Four2DResponse::Four2DResponse(int typ, double dx, double dy, double lambda)
: typ_(typ), dx_((dx>1.e-3)?dx:1.), dy_((dy>1.e-3)?dy:1.)
{
setLambdaRef(lambda);
setLambda(lambda);
}
// Return the response for the wave vecteor (kx,ky)
double Four2DResponse::Value(double kx, double ky)
{
kx *= lambda_ratio_;
ky *= lambda_ratio_;
double wk,wkx,wky;
switch (typ_)
{
case 1: // Reponse gaussienne parabole diametre D exp[ - 0.5 (lambda k_g / D )^2 ]
wk = sqrt(kx*kx+ky*ky)/dx_;
wk = 0.5*wk*wk;
return exp(-wk);
break;
case 2: // Reponse parabole diametre D Triangle <= kmax= 2 pi D / lambda
wk = sqrt(kx*kx+ky*ky)/dx_/2./M_PI;
return ( (wk<1.)?(1.-wk):0.);
break;
case 22: // Reponse parabole diametre D Triangle <= kmax= 2 pi D / lambda + trou au centre
wk = sqrt(kx*kx+ky*ky)/dx_/2./M_PI;
if (wk<0.025) return 39.*wk;
else if (wk<1.) return (1.-wk);
else return 0.;
break;
case 3: // Reponse rectangle Dx x Dy Triangle (|kx|,|k_y|) <= (2 pi Dx / lambda, 2 pi Dx / lambda)
wkx = fabs(kx)/2./M_PI/dx_;
wky = fabs(ky)/2./M_PI/dy_;
return ( ((wkx<1.)&&(wky<1.))?((1.-wkx)*(1-wky)):0.);
break;
default:
return 1.;
}
}
// Return a vector representing the power spectrum (for checking)
Histo2D Four2DResponse::GetResponse(int nx, int ny)
{
double kxmx = 1.2*DeuxPI*dx_;
double kymx = 1.2*DeuxPI*dy_;
if (typ_<3) kymx=kxmx;
Histo2D h2(0.,kxmx,nx,0.,kymx,ny);
for(int j=0; j
=hrep_.XMax()) ||
(ky<=hrep_.YMin())||(ky>=hrep_.YMax()) ) return 0.;
hrep_.FindBin(kx, ky, i, j);
return hrep_(i, j);
}
double Four2DRespTable::renormalize(double max)
{
double cmx = hrep_.VMax();
hrep_ *= (max/cmx);
return cmx;
}
void Four2DRespTable::writeToPPF(string flnm)
{
DVList dvinfo;
dvinfo["DoL"] = dx_;
dvinfo["LambdaRef"] = lambdaref_;
dvinfo["Lambda"] = lambda_;
POutPersist po(flnm);
po << hrep_;
po << dvinfo;
}
void Four2DRespTable::readFromPPF(string flnm)
{
PInPersist pin(flnm);
DVList dvinfo;
pin >> hrep_;
pin >> dvinfo;
dx_ = dy_ = dvinfo["DoL"];
setLambdaRef((double)dvinfo["LambdaRef"]);
setLambda((double)dvinfo["Lambda"]);
}
//---------------------------------------------------------------
// -- Four2DRespRatio : rapport de la reponse entre deux objets Four2DResponse
//---------------------------------------------------------------
Four2DRespRatio::Four2DRespRatio(Four2DResponse& a, Four2DResponse& b, double divzthr)
: Four2DResponse(0, a.D(), a.D()), a_(a), b_(b), divzthr_(divzthr)
{
}
double Four2DRespRatio::Value(double kx, double ky)
{
double ra = a_.Value(kx,ky);
double rb = b_.Value(kx,ky);
if (ra1.e-39) return(ra/rb);
else return 0.;
}
if (rb cp=1, sp=0.;
double ct = cos(tet);
double st = sin(tet);
// Le Pi/2 echange les axes X<>Y pour theta=phi=0 !
// double cf = cos(phi+M_PI/2);
// double sf = sin(phi+M_PI/2);
double cf = cos(phi);
double sf = sin(phi);
double cp = 1.; // cos((double)pO);
double sp = 0.; // sin((double)pO);
RE[0][0] = cf*cp-sf*ct*sp; RE[0][1] = sf*cp+cf*ct*sp; RE[0][2] = st*sp;
RE[1][0] = -cf*sp-sf*ct*cp; RE[1][1] = -sf*sp+cf*ct*cp; RE[1][2] = st*cp;
RE[2][0] = sf*st; RE[2][1] = -cf*st; RE[2][2] = ct;
}
inline void Do(double& x, double& y)
{
double xx=x;
double yy=y;
x = RE[0][0]*xx+RE[0][1]*yy;
y = RE[1][0]*xx+RE[1][1]*yy;
}
double RE[3][3];
};
//----------------------------------------------------------------------
// -- Pour calculer la reponse ds le plan kx,ky d'un system MultiDish
//----------------------------------------------------------------------
MultiDish::MultiDish(double lambda, double dmax, vector& dishes, bool fgnoauto)
: lambda_(lambda), dmax_(dmax), dishes_(dishes), fgnoauto_(fgnoauto)
{
SetThetaPhiRange();
SetRespHisNBins();
mcnt_=0;
}
Histo2D MultiDish::GetResponse()
{
cout << " MultiDish::GetResponse() - NDishes=" << dishes_.size() << " nx=" << nx_ << " ny=" << ny_ << endl;
double kmx = 1.2*DeuxPI*dmax_/lambda_;
double dkmx = kmx/(double)nx_;
double dkmy = kmx/(double)ny_;
double kmxx = ((double)nx_+0.5)*dkmx;
double kmxy = ((double)ny_+0.5)*dkmy;
h2w_.Define(-kmxx,kmxx,2*nx_+1,-kmxy,kmxy,2*ny_+1);
h2w_.SetZeroBin(0.,0.);
double dold = dishes_[0].D/lambda_;
double dolx = dishes_[0].Dx/lambda_;
double doly = dishes_[0].Dy/lambda_;
Four2DResponse rd(2, dold, dold);
Four2DResponse rdr(3, dolx, doly);
if (!dishes_[0].isCircular()) rd = rdr;
double dtet = thetamax_/(double)ntet_;
double dphi = phimax_/(double)ntet_;
double sumw = 0.;
for(int kt=0; kt=h2.NBinX())||(ky1>=h2.NBinY())) {
cout << " MultiDish::GetResponse[1]/ERROR kx1,ky1=" << kx1 <<","<< ky1 << " --> ib,jb=" << ib <<","<< jb << endl;
ib=jb=0;
}
double vmax=h2.VMax();
cout << " MultiDish::GetResponse[1] VMin=" << h2.VMin() << " VMax= " << vmax
<< " h(0,0)=" << h2(0,0) << " kx1,ky1->h(" << ib <<"," << jb << ")=" << h2(ib,jb) < sumw) {
fnorm=(double)dishes_.size()/h2.VMax();
cout << " MultiDish::GetResponse[2]/Warning h2.VMax()=" << vmax << " > sumw=" << sumw << endl;
cout << " ... NDishes=" << dishes_.size() << " sumw=" << sumw
<< " Renormalizing x NDishes/VMax " << fnorm << endl;
}
else {
fnorm=(double)dishes_.size()/sumw;
cout << " MultiDish::GetResponse[3] NDishes=" << dishes_.size() << " sumw=" << sumw
<< " Renormalizing x NDishes/sumw " << fnorm << endl;
}
h2 *= fnorm;
cout << " ---- MultiDish::GetResponse/[4] APRES VMin=" << h2.VMin() << " VMax= " << h2.VMax() << " h(0,0)="
<< h2(0,0) << endl;
return h2;
}
Histo2D MultiDish::PosDist(int nx, int ny, double dmax)
{
if (dmax<1e-3) dmax=nx*dishes_[0].Diameter();
double dd = dmax/nx/2.;
Histo2D hpos(-dd,dmax+dd,nx+1,-dd,dmax+dd,ny+1);
for(size_t i=0; i0.) {
sumw += h2w_.Add(xxm, yyp, w, fgfh);
// if (yym>0.)
sumw += h2w_.Add(xxm, yym, w, fgfh);
// }
// if (yym>0.)
sumw += h2w_.Add(xxp, yym, w, fgfh);
return sumw;
}
double MultiDish::CumulResp(Four2DResponse& rd, double theta, double phi)
{
// cout << " MultiDish::CumulResp() theta=" << theta << " phi=" << phi << endl;
double dx = h2w_.WBinX()/5;
double dy = h2w_.WBinY()/5;
int nbx = DeuxPI*rd.Dx()/dx+1;
int nby = DeuxPI*rd.Dy()/dy+1;
dx = DeuxPI*rd.Dx()/(double)nbx;
dy = DeuxPI*rd.Dy()/(double)nby;
if (mcnt_==0)
cout << " CumulResp() nbx=" << nbx << " nby=" << nby << " dx=" << dx << " dy=" << dy << endl;
mcnt_++;
double sumw = 0.;
Rotation rot(theta, phi);
for(size_t i=0; i0)&&(jy>0)) {
sumw += AddToHisto(kx0, ky0, x, y, rd(x,y), fgfh);
}
else {
if ((ix==0)&&(jy==0))
sumw += h2w_.Add(kx0, ky0, rd(0.,0.), fgfh);
else {
double w = rd(x,y);
if (ix==0) {
sumw += h2w_.Add(kx0, ky0+y, w, fgfh);
sumw += h2w_.Add(kx0, ky0-y, w, fgfh);
}
else {
sumw += h2w_.Add(kx0+x, ky0, w, fgfh);
sumw += h2w_.Add(kx0-x, ky0, w, fgfh);
}
}
//
}
}
// if (i%10==0)
// cout << " MultiDish::CumulResp() done i=" << i << " / imax=" << dishes_.size()
// << " theta=" << theta << " phi=" << phi << endl;
}
}
return sumw;
}