//  Classes to compute 2D 
// R. Ansari - Nov 2008, May 2010 
#include "mdish.h"
//--------------------------------------------------
// -- Four2DResponse class 
//--------------------------------------------------
// Constructor
Four2DResponse::Four2DResponse(int typ, double dx, double dy, double lambda)
  : typ_(typ), dx_((dx>1.e-3)?dx:1.), dy_((dy>1.e-3)?dy:1.)
{
  setLambdaRef(lambda);
  setLambda(lambda);
}
// Return the response for the wave vecteor (kx,ky)
double Four2DResponse::Value(double kx, double ky)
{
  kx *= lambda_ratio_;
  ky *= lambda_ratio_;
  double wk,wkx,wky;
  switch (typ_) 
    {
    case 1:   // Reponse gaussienne parabole diametre D exp[ - 0.5 (lambda  k_g / D )^2 ]
      wk = sqrt(kx*kx+ky*ky)/dx_;
      wk = 0.5*wk*wk;
      return exp(-wk);
      break;
    case 2:   // Reponse parabole diametre D  Triangle <= kmax= 2 pi D / lambda   
      wk = sqrt(kx*kx+ky*ky)/dx_/2./M_PI;
      return ( (wk<1.)?(1.-wk):0.);
      break;
    case 22:   // Reponse parabole diametre D  Triangle <= kmax= 2 pi D / lambda + trou au centre
      wk = sqrt(kx*kx+ky*ky)/dx_/2./M_PI;
      if (wk<0.025) return 39.*wk;
      else if (wk<1.) return (1.-wk);
      else return 0.;
      break;
    case 3:   // Reponse rectangle Dx x Dy  Triangle (|kx|,|k_y|) <= (2 pi Dx / lambda, 2 pi Dx / lambda) 
      wkx = fabs(kx)/2./M_PI/dx_; 
      wky = fabs(ky)/2./M_PI/dy_; 
      return ( ((wkx<1.)&&(wky<1.))?((1.-wkx)*(1-wky)):0.);
      break;
    default:
      return 1.;
    }
}
// Return a vector representing the power spectrum (for checking) 
Histo2D Four2DResponse::GetResponse(int nx, int ny)
{
  double kxmx = 1.2*DeuxPI*dx_;
  double kymx = 1.2*DeuxPI*dy_;
  if (typ_<3) kymx=kxmx; 
  Histo2D h2(0.,kxmx,nx,0.,kymx,ny);
  for(int j=0; j
=hrep_.XMax()) || 
       (ky<=hrep_.YMin())||(ky>=hrep_.YMax()) )  return 0.;
  hrep_.FindBin(kx, ky, i, j);
  return hrep_(i, j);
}
double Four2DRespTable::renormalize(double max)
{
  double cmx = hrep_.VMax();
  hrep_ *= (max/cmx);
  return cmx;
}
void Four2DRespTable::writeToPPF(string flnm)
{
  DVList dvinfo;
  dvinfo["DoL"] = dx_;
  dvinfo["LambdaRef"] = lambdaref_;
  dvinfo["Lambda"] = lambda_;
  POutPersist po(flnm);
  po << hrep_;
  po << dvinfo;
}
void Four2DRespTable::readFromPPF(string flnm)
{
  PInPersist pin(flnm);
  DVList dvinfo;
  pin >> hrep_;
  pin >> dvinfo;
  dx_ = dy_ = dvinfo["DoL"];
  setLambdaRef((double)dvinfo["LambdaRef"]);
  setLambda((double)dvinfo["Lambda"]); 
}
//---------------------------------------------------------------
// -- Four2DRespRatio : rapport de la reponse entre deux objets Four2DResponse
//---------------------------------------------------------------
Four2DRespRatio::Four2DRespRatio(Four2DResponse& a, Four2DResponse& b, double divzthr)
  : Four2DResponse(0, a.D(), a.D()), a_(a), b_(b), divzthr_(divzthr)
{
}
double Four2DRespRatio::Value(double kx, double ky)
{
  double ra = a_.Value(kx,ky);
  double rb = b_.Value(kx,ky);
  if (ra1.e-39)  return(ra/rb);  
    else return 0.;
  }
  if (rb cp=1, sp=0.;
  double ct = cos(tet);
  double st = sin(tet);
  // Le Pi/2 echange les axes X<>Y pour theta=phi=0 !
  //  double cf = cos(phi+M_PI/2);
  //  double sf = sin(phi+M_PI/2);
  double cf = cos(phi);
  double sf = sin(phi);
  double cp = 1.; // cos((double)pO);
  double sp = 0.; // sin((double)pO);
  RE[0][0] = cf*cp-sf*ct*sp;     RE[0][1] = sf*cp+cf*ct*sp;      RE[0][2] = st*sp;
  RE[1][0] = -cf*sp-sf*ct*cp;    RE[1][1] = -sf*sp+cf*ct*cp;     RE[1][2] = st*cp;
  RE[2][0] = sf*st;              RE[2][1] = -cf*st;              RE[2][2] = ct;
  }
  inline void Do(double& x, double& y)
  {
    double xx=x; 
    double yy=y;
    x = RE[0][0]*xx+RE[0][1]*yy;
    y = RE[1][0]*xx+RE[1][1]*yy;
  }
  double RE[3][3];
};
//----------------------------------------------------------------------
//  -- Pour calculer la reponse ds le plan kx,ky d'un system MultiDish 
//----------------------------------------------------------------------
MultiDish::MultiDish(double lambda, double dmax, vector& dishes, bool fgnoauto)
  : lambda_(lambda), dmax_(dmax), dishes_(dishes), fgnoauto_(fgnoauto)
{ 
  SetThetaPhiRange();
  SetRespHisNBins();
  mcnt_=0;
}
Histo2D MultiDish::GetResponse()
{
  cout << " MultiDish::GetResponse() - NDishes=" << dishes_.size() << " nx=" << nx_ << " ny=" << ny_ << endl;
  double kmx = 1.2*DeuxPI*dmax_/lambda_;
  double dkmx = kmx/(double)nx_;
  double dkmy = kmx/(double)ny_;
  double kmxx = ((double)nx_+0.5)*dkmx;
  double kmxy = ((double)ny_+0.5)*dkmy;
  h2w_.Define(-kmxx,kmxx,2*nx_+1,-kmxy,kmxy,2*ny_+1);
  h2w_.SetZeroBin(0.,0.);
  double dold = dishes_[0].D/lambda_;
  double dolx = dishes_[0].Dx/lambda_;
  double doly = dishes_[0].Dy/lambda_;
  Four2DResponse rd(2, dold, dold);
  Four2DResponse rdr(3, dolx, doly);
  if (!dishes_[0].isCircular())  rd = rdr;
  double dtet = thetamax_/(double)ntet_;
  double dphi = phimax_/(double)ntet_;
  double sumw = 0.;
  for(int kt=0; kt=h2.NBinX())||(ky1>=h2.NBinY())) {
    cout << " MultiDish::GetResponse[1]/ERROR kx1,ky1=" << kx1 <<","<< ky1 << " --> ib,jb=" << ib <<","<< jb << endl;
    ib=jb=0;
  }
  double vmax=h2.VMax();
  cout << " MultiDish::GetResponse[1] VMin=" << h2.VMin() << " VMax= " << vmax  
       << " h(0,0)=" << h2(0,0) << " kx1,ky1->h(" << ib <<"," << jb << ")=" << h2(ib,jb) < sumw) {
    fnorm=(double)dishes_.size()/h2.VMax();
    cout << " MultiDish::GetResponse[2]/Warning h2.VMax()=" << vmax << " >  sumw=" << sumw << endl;  
    cout << "   ... NDishes=" << dishes_.size() << " sumw=" << sumw 
	 << " Renormalizing x NDishes/VMax  " << fnorm << endl;
  }
  else {
    fnorm=(double)dishes_.size()/sumw;
    cout << " MultiDish::GetResponse[3] NDishes=" << dishes_.size() << " sumw=" << sumw  
	 << " Renormalizing x NDishes/sumw   " << fnorm << endl;
  }
  h2 *= fnorm;
  cout << " ---- MultiDish::GetResponse/[4] APRES VMin=" << h2.VMin() << " VMax= " << h2.VMax() << " h(0,0)=" 
       << h2(0,0) << endl;
  return h2;
}
Histo2D MultiDish::PosDist(int nx, int ny, double dmax)
{
  if (dmax<1e-3)  dmax=nx*dishes_[0].Diameter();
  double dd = dmax/nx/2.;
  Histo2D hpos(-dd,dmax+dd,nx+1,-dd,dmax+dd,ny+1);
  for(size_t i=0; i0.)  {
  sumw += h2w_.Add(xxm, yyp, w, fgfh);
  // if (yym>0.)  
  sumw += h2w_.Add(xxm, yym, w, fgfh);
  //  }
  // if (yym>0.)  
  sumw += h2w_.Add(xxp, yym, w, fgfh);
  return sumw; 
}
double MultiDish::CumulResp(Four2DResponse& rd, double theta, double phi)
{
  //  cout << " MultiDish::CumulResp()  theta=" << theta << " phi=" << phi << endl;
  double dx = h2w_.WBinX()/5;
  double dy = h2w_.WBinY()/5;
  int nbx = DeuxPI*rd.Dx()/dx+1;
  int nby = DeuxPI*rd.Dy()/dy+1;
  dx = DeuxPI*rd.Dx()/(double)nbx;
  dy = DeuxPI*rd.Dy()/(double)nby;
  if (mcnt_==0) 
    cout << " CumulResp() nbx=" << nbx << " nby=" << nby << " dx=" << dx << " dy=" << dy << endl;
  mcnt_++;
  double sumw = 0.;
  Rotation rot(theta, phi);
  for(size_t i=0; i0)&&(jy>0)) {
	    sumw += AddToHisto(kx0, ky0, x, y, rd(x,y), fgfh);
	  }
	  else {
	    if ((ix==0)&&(jy==0)) 
	      sumw += h2w_.Add(kx0, ky0, rd(0.,0.), fgfh);
	    else {
	      double w = rd(x,y);
	      if (ix==0) {
		sumw += h2w_.Add(kx0, ky0+y, w, fgfh);
		sumw += h2w_.Add(kx0, ky0-y, w, fgfh);
	      }
	      else {
		sumw += h2w_.Add(kx0+x, ky0, w, fgfh);
		sumw += h2w_.Add(kx0-x, ky0, w, fgfh);
	      }
	    }
	    //	 
	  }
	}
    //    if (i%10==0) 
    //      cout << " MultiDish::CumulResp() done i=" << i << " / imax=" << dishes_.size() 
    //	   << " theta=" << theta << " phi=" << phi << endl;
    }
  }
  return sumw;
}