// Classes to compute 2D // R. Ansari - Nov 2008, May 2010 #include "mdish.h" //-------------------------------------------------- // -- Four2DResponse class //-------------------------------------------------- // Constructor Four2DResponse::Four2DResponse(int typ, double dx, double dy, double lambda) : typ_(typ), dx_((dx>1.e-3)?dx:1.), dy_((dy>1.e-3)?dy:1.) { setLambdaRef(lambda); setLambda(lambda); } // Return the response for the wave vecteor (kx,ky) double Four2DResponse::Value(double kx, double ky) { kx *= lambda_ratio_; ky *= lambda_ratio_; double wk,wkx,wky; switch (typ_) { case 1: // Reponse gaussienne parabole diametre D exp[ -(1/8) (lambda k_g / D )^2 ] wk = sqrt(kx*kx+ky*ky)/dx_; wk = wk*wk/8.; return exp(-wk); break; case 2: // Reponse parabole diametre D Triangle <= kmax= 2 pi D / lambda wk = sqrt(kx*kx+ky*ky)/dx_/2./M_PI; return ( (wk<1.)?(1.-wk):0.); break; case 22: // Reponse parabole diametre D Triangle <= kmax= 2 pi D / lambda + trou au centre wk = sqrt(kx*kx+ky*ky)/dx_/2./M_PI; if (wk<0.025) return 39.*wk; else if (wk<1.) return (1.-wk); else return 0.; break; case 3: // Reponse rectangle Dx x Dy Triangle (|kx|,|k_y|) <= (2 pi Dx / lambda, 2 pi Dx / lambda) wkx = fabs(kx)/2./M_PI/dx_; wky = fabs(ky)/2./M_PI/dy_; return ( ((wkx<1.)&&(wky<1.))?((1.-wkx)*(1-wky)):0.); break; default: return 1.; } } // Return a 2 D histrogram as the response(kx,ky) Histo2D Four2DResponse::GetResponse(int nx, int ny) { double kxmx = 1.2*DeuxPI*dx_; double kymx = 1.2*DeuxPI*dy_; if (typ_<3) kymx=kxmx; Histo2D h2(-kxmx,kxmx,nx,-kymx,kymx,ny); double xbc,ybc; for(int_4 j=0; j> hrep_; pin >> dvinfo; dx_ = dy_ = dvinfo["DoL"]; setLambdaRef((double)dvinfo["LambdaRef"]); setLambda((double)dvinfo["Lambda"]); } //--------------------------------------------------------------- // -- Four2DRespRatio : rapport de la reponse entre deux objets Four2DResponse //--------------------------------------------------------------- Four2DRespRatio::Four2DRespRatio(Four2DResponse& a, Four2DResponse& b, double maxratio) : Four2DResponse(0, a.D(), a.D()), a_(a), b_(b), maxratio_(maxratio), zerothr_(.5/maxratio) { } double Four2DRespRatio::Value(double kx, double ky) { double ra = a_.Value(kx,ky); double rb = b_.Value(kx,ky); if ((ra cp=1, sp=0.; double ct = cos(tet); double st = sin(tet); // Le Pi/2 echange les axes X<>Y pour theta=phi=0 ! // double cf = cos(phi+M_PI/2); // double sf = sin(phi+M_PI/2); double cf = cos(phi); double sf = sin(phi); double cp = 1.; // cos((double)pO); double sp = 0.; // sin((double)pO); RE[0][0] = cf*cp-sf*ct*sp; RE[0][1] = sf*cp+cf*ct*sp; RE[0][2] = st*sp; RE[1][0] = -cf*sp-sf*ct*cp; RE[1][1] = -sf*sp+cf*ct*cp; RE[1][2] = st*cp; RE[2][0] = sf*st; RE[2][1] = -cf*st; RE[2][2] = ct; } inline void Do(double& x, double& y) { double xx=x; double yy=y; x = RE[0][0]*xx+RE[0][1]*yy; y = RE[1][0]*xx+RE[1][1]*yy; } double RE[3][3]; }; //---------------------------------------------------------------------- // -- Pour calculer la reponse ds le plan kx,ky d'un system MultiDish //---------------------------------------------------------------------- MultiDish::MultiDish(double lambda, double dmax, vector& dishes, bool fgnoauto) : lambda_(lambda), dmax_(dmax), dishes_(dishes), fgnoauto_(fgnoauto) { SetThetaPhiRange(); SetRespHisNBins(); SetBeamNSamples(); SetPrtLevel(); fgcomputedone_=false; mcnt_=0; } void MultiDish::ComputeResponse() { cout << " MultiDish::ComputeResponse() - NDishes=" << dishes_.size() << " nx=" << nx_ << " ny=" << ny_ << endl; double kmx = 1.2*DeuxPI*dmax_/lambda_; double dkmx = kmx/(double)nx_; double dkmy = kmx/(double)ny_; double kmxx = ((double)nx_+0.5)*dkmx; double kmxy = ((double)ny_+0.5)*dkmy; h2w_.Define(-kmxx,kmxx,2*nx_+1,-kmxy,kmxy,2*ny_+1); h2w_.SetZeroBin(0.,0.); kmax_=kmx; double dold = dishes_[0].Diameter()/lambda_; double dolx = dishes_[0].DiameterX()/lambda_; double doly = dishes_[0].DiameterY()/lambda_; Four2DResponse rd(2, dold, dold); Four2DResponse rdr(3, dolx, doly); if (!dishes_[0].isCircular()) rd = rdr; double dtet = thetamax_/(double)ntet_; double dphi = phimax_/(double)nphi_; cout << " MultiDish::ComputeResponse() - ThetaMax=" << thetamax_ << " NTheta=" << ntet_ << " PhiMax=" << phimax_ << " NPhi=" << nphi_ << endl; double sumw = 0.; for(int kt=0; kt0) cout << " MultiDish::ComputeResponse() done ktheta=" << kt << " / MaxNTheta= " << ntet_ << endl; } r_8 rmin,rmax; h2w_.GetMinMax(rmin,rmax); cout << " MultiDish::ComputeResponse() finished : Rep_min,max=" << rmin << "," << rmax << " sumW0=" << sumw << " ?=" << h2w_.SumWBinZero() << endl; fgcomputedone_=true; return; } Histo2D MultiDish::GetResponse() { if (!fgcomputedone_) ComputeResponse(); double kx1 = DeuxPI*(dishes_[0].DiameterX())/lambda_; double ky1 = DeuxPI*(dishes_[0].DiameterY())/lambda_; int_4 ib,jb; // h2w_ /= h2cnt_; Histo2D h2 = h2w_.Convert(); h2.FindBin(kx1, ky1, ib, jb); if ((kx1<0)||(ky1<0)||(kx1>=h2.NBinX())||(ky1>=h2.NBinY())) { cout << " MultiDish::GetResponse[1]/ERROR kx1,ky1=" << kx1 <<","<< ky1 << " --> ib,jb=" << ib <<","<< jb << endl; ib=jb=0; } double sumw=h2w_.SumWBinZero(); double vmax=h2.VMax(); cout << " MultiDish::GetResponse[1] VMin=" << h2.VMin() << " VMax= " << vmax << " h(0,0)=" << h2(0,0) << " kx1,ky1->h(" << ib <<"," << jb << ")=" << h2(ib,jb) < sumw) { fnorm=(double)dishes_.size()/h2.VMax(); cout << " MultiDish::GetResponse[2]/Warning h2.VMax()=" << vmax << " > sumw=" << sumw << endl; cout << " ... NDishes=" << dishes_.size() << " sumw=" << sumw << " Renormalizing x NDishes/VMax " << fnorm << endl; } else { fnorm=(double)dishes_.size()/sumw; cout << " MultiDish::GetResponse[3] NDishes=" << dishes_.size() << " sumw=" << sumw << " Renormalizing x NDishes/sumw " << fnorm << endl; } h2 *= fnorm; cout << " ---- MultiDish::GetResponse/[4] APRES VMin=" << h2.VMin() << " VMax= " << h2.VMax() << " h(0,0)=" << h2(0,0) << endl; return h2; } HProf MultiDish::GetProjNoiseLevel(int nbin, bool fgnorm1) { r_8 vmin,vmax; h2w_.GetMinMax(vmin,vmax); double seuil=vmax/10000.; if (seuil<1.e-6) seuil=1.e-6; r_8 facnorm=((fgnorm1)?vmax:1.); cout << " MultiDish::GetProjNoiseLevel Min,Max=" << vmin << " , " << vmax << " facnorm=" << facnorm << " seuil=" << seuil << endl; HProf hp(0,kmax_,nbin); for(sa_size_t j=0; j