//  Classes to compute 2D 
// R. Ansari - Nov 2008, May 2010 
#include "mdish.h"
//--------------------------------------------------
// -- Four2DResponse class 
//--------------------------------------------------
// Constructor
Four2DResponse::Four2DResponse(int typ, double dx, double dy, double lambda)
  : typ_(typ), dx_((dx>1.e-3)?dx:1.), dy_((dy>1.e-3)?dy:1.)
{
  setLambdaRef(lambda);
  setLambda(lambda);
}
// Return the response for the wave vecteor (kx,ky)
double Four2DResponse::Value(double kx, double ky)
{
  kx *= lambda_ratio_;
  ky *= lambda_ratio_;
  double wk,wkx,wky;
  switch (typ_) 
    {
    case 1:   // Reponse gaussienne parabole diametre D exp[ -(1/8) (lambda  k_g / D )^2 ]
      wk = sqrt(kx*kx+ky*ky)/dx_;
      wk = wk*wk/8.;
      return exp(-wk);
      break;
    case 2:   // Reponse parabole diametre D  Triangle <= kmax= 2 pi D / lambda   
      wk = sqrt(kx*kx+ky*ky)/dx_/2./M_PI;
      return ( (wk<1.)?(1.-wk):0.);
      break;
    case 22:   // Reponse parabole diametre D  Triangle <= kmax= 2 pi D / lambda + trou au centre
      wk = sqrt(kx*kx+ky*ky)/dx_/2./M_PI;
      if (wk<0.025) return 39.*wk;
      else if (wk<1.) return (1.-wk);
      else return 0.;
      break;
    case 3:   // Reponse rectangle Dx x Dy  Triangle (|kx|,|k_y|) <= (2 pi Dx / lambda, 2 pi Dx / lambda) 
      wkx = fabs(kx)/2./M_PI/dx_; 
      wky = fabs(ky)/2./M_PI/dy_; 
      return ( ((wkx<1.)&&(wky<1.))?((1.-wkx)*(1-wky)):0.);
      break;
    default:
      return 1.;
    }
}
// Return a 2 D histrogram as the response(kx,ky)
Histo2D Four2DResponse::GetResponse(int nx, int ny)
{
  double kxmx = 1.2*DeuxPI*dx_;
  double kymx = 1.2*DeuxPI*dy_;
  if (typ_<3) kymx=kxmx; 
  Histo2D h2(-kxmx,kxmx,nx,-kymx,kymx,ny);
  double xbc,ybc;
  for(int_4 j=0; j
> hrep_;
  pin >> dvinfo;
  dx_ = dy_ = dvinfo["DoL"];
  setLambdaRef((double)dvinfo["LambdaRef"]);
  setLambda((double)dvinfo["Lambda"]); 
}
//---------------------------------------------------------------
// -- Four2DRespRatio : rapport de la reponse entre deux objets Four2DResponse
//---------------------------------------------------------------
Four2DRespRatio::Four2DRespRatio(Four2DResponse& a, Four2DResponse& b, double maxratio)
  : Four2DResponse(0, a.D(), a.D()), a_(a), b_(b), maxratio_(maxratio), zerothr_(.5/maxratio)
{
}
double Four2DRespRatio::Value(double kx, double ky)
{
  double ra = a_.Value(kx,ky);
  double rb = b_.Value(kx,ky);
  if ((ra cp=1, sp=0.;
  double ct = cos(tet);
  double st = sin(tet);
  // Le Pi/2 echange les axes X<>Y pour theta=phi=0 !
  //  double cf = cos(phi+M_PI/2);
  //  double sf = sin(phi+M_PI/2);
  double cf = cos(phi);
  double sf = sin(phi);
  double cp = 1.; // cos((double)pO);
  double sp = 0.; // sin((double)pO);
  RE[0][0] = cf*cp-sf*ct*sp;     RE[0][1] = sf*cp+cf*ct*sp;      RE[0][2] = st*sp;
  RE[1][0] = -cf*sp-sf*ct*cp;    RE[1][1] = -sf*sp+cf*ct*cp;     RE[1][2] = st*cp;
  RE[2][0] = sf*st;              RE[2][1] = -cf*st;              RE[2][2] = ct;
  }
  inline void Do(double& x, double& y)
  {
    double xx=x; 
    double yy=y;
    x = RE[0][0]*xx+RE[0][1]*yy;
    y = RE[1][0]*xx+RE[1][1]*yy;
  }
  double RE[3][3];
};
//----------------------------------------------------------------------
//  -- Pour calculer la reponse ds le plan kx,ky d'un system MultiDish 
//----------------------------------------------------------------------
MultiDish::MultiDish(double lambda, double dmax, vector& dishes, bool fgnoauto)
  : lambda_(lambda), dmax_(dmax), dishes_(dishes), fgnoauto_(fgnoauto)
{ 
  SetThetaPhiRange();
  SetRespHisNBins();
  SetBeamNSamples();
  SetPrtLevel();
  fgcomputedone_=false;
  mcnt_=0;
}
void MultiDish::ComputeResponse()
{
  cout << " MultiDish::ComputeResponse() - NDishes=" << dishes_.size() << " nx=" << nx_ << " ny=" << ny_ << endl;
  double kmx = 1.2*DeuxPI*dmax_/lambda_;
  double dkmx = kmx/(double)nx_;
  double dkmy = kmx/(double)ny_;
  double kmxx = ((double)nx_+0.5)*dkmx;
  double kmxy = ((double)ny_+0.5)*dkmy;
  h2w_.Define(-kmxx,kmxx,2*nx_+1,-kmxy,kmxy,2*ny_+1);
  h2w_.SetZeroBin(0.,0.);
  kmax_=kmx;
  double dold = dishes_[0].Diameter()/lambda_;
  double dolx = dishes_[0].DiameterX()/lambda_;
  double doly = dishes_[0].DiameterY()/lambda_;
  Four2DResponse rd(2, dold, dold);
  Four2DResponse rdr(3, dolx, doly);
  if (!dishes_[0].isCircular())  rd = rdr;
  double dtet = thetamax_/(double)ntet_;
  double dphi = phimax_/(double)nphi_;
  cout << " MultiDish::ComputeResponse() - ThetaMax=" << thetamax_ << " NTheta=" << ntet_ 
       << " PhiMax=" <<  phimax_ << " NPhi=" << nphi_ << endl;
  double sumw = 0.;
  for(int kt=0; kt0) 
      cout << "  MultiDish::ComputeResponse() done ktheta=" << kt << " / MaxNTheta= " 
	   << ntet_ << endl; 
  }
  r_8 rmin,rmax;
  h2w_.GetMinMax(rmin,rmax);
  cout << "  MultiDish::ComputeResponse() finished : Rep_min,max=" << rmin << "," << rmax << " sumW0=" 
       << sumw << " ?=" << h2w_.SumWBinZero() << endl;
  fgcomputedone_=true;
  return;
}
Histo2D MultiDish::GetResponse()
{
  if (!fgcomputedone_) ComputeResponse();
  double kx1 = DeuxPI*(dishes_[0].DiameterX())/lambda_;
  double ky1 = DeuxPI*(dishes_[0].DiameterY())/lambda_;
  int_4 ib,jb;
  //  h2w_ /= h2cnt_; 
  Histo2D h2 = h2w_.Convert();
  h2.FindBin(kx1, ky1, ib, jb);
  if ((kx1<0)||(ky1<0)||(kx1>=h2.NBinX())||(ky1>=h2.NBinY())) {
    cout << " MultiDish::GetResponse[1]/ERROR kx1,ky1=" << kx1 <<","<< ky1 << " --> ib,jb=" << ib <<","<< jb << endl;
    ib=jb=0;
  }
  double sumw=h2w_.SumWBinZero();
  double vmax=h2.VMax();
  cout << " MultiDish::GetResponse[1] VMin=" << h2.VMin() << " VMax= " << vmax  
       << " h(0,0)=" << h2(0,0) << " kx1,ky1->h(" << ib <<"," << jb << ")=" << h2(ib,jb) < sumw) {
    fnorm=(double)dishes_.size()/h2.VMax();
    cout << " MultiDish::GetResponse[2]/Warning h2.VMax()=" << vmax << " >  sumw=" << sumw << endl;  
    cout << "   ... NDishes=" << dishes_.size() << " sumw=" << sumw 
	 << " Renormalizing x NDishes/VMax  " << fnorm << endl;
  }
  else {
    fnorm=(double)dishes_.size()/sumw;
    cout << " MultiDish::GetResponse[3] NDishes=" << dishes_.size() << " sumw=" << sumw  
	 << " Renormalizing x NDishes/sumw   " << fnorm << endl;
  }
  h2 *= fnorm;
  cout << " ---- MultiDish::GetResponse/[4] APRES VMin=" << h2.VMin() << " VMax= " << h2.VMax() << " h(0,0)=" 
       << h2(0,0) << endl;
  return h2;
}
HProf MultiDish::GetProjNoiseLevel(int nbin, bool fgnorm1)
{
  r_8 vmin,vmax;
  h2w_.GetMinMax(vmin,vmax);
  double seuil=vmax/10000.;
  if (seuil<1.e-6) seuil=1.e-6;
  r_8 facnorm=((fgnorm1)?vmax:1.);
  cout << " MultiDish::GetProjNoiseLevel Min,Max=" << vmin << " , " << vmax 
       << " facnorm=" << facnorm << " seuil=" << seuil << endl;  
  HProf hp(0,kmax_,nbin);
  for(sa_size_t j=0; j