1 | // Classes to compute 2D
|
---|
2 | // R. Ansari - Nov 2008, May 2010
|
---|
3 |
|
---|
4 | #include "mdish.h"
|
---|
5 |
|
---|
6 |
|
---|
7 | //--------------------------------------------------
|
---|
8 | // -- Four2DResponse class
|
---|
9 | //--------------------------------------------------
|
---|
10 | // Constructor
|
---|
11 | Four2DResponse::Four2DResponse(int typ, double dx, double dy)
|
---|
12 | : typ_(typ), dx_((dx>1.e-3)?dx:1.), dy_((dy>1.e-3)?dy:1.)
|
---|
13 | {
|
---|
14 | }
|
---|
15 |
|
---|
16 | // Return the response for the wave vecteor (kx,ky)
|
---|
17 | double Four2DResponse::Value(double kx, double ky)
|
---|
18 | {
|
---|
19 | double wk,wkx,wky;
|
---|
20 | switch (typ_)
|
---|
21 | {
|
---|
22 | case 1: // Reponse gaussienne parabole diametre D exp[ - 0.5 (lambda k_g / D )^2 ]
|
---|
23 | wk = sqrt(kx*kx+ky*ky)/dx_;
|
---|
24 | wk = 0.5*wk*wk;
|
---|
25 | return exp(-wk);
|
---|
26 | break;
|
---|
27 | case 2: // Reponse parabole diametre D Triangle <= kmax= 2 pi D / lambda
|
---|
28 | wk = sqrt(kx*kx+ky*ky)/dx_/2./M_PI;
|
---|
29 | return ( (wk<1.)?(1.-wk):0.);
|
---|
30 | break;
|
---|
31 | case 3: // Reponse rectangle Dx x Dy Triangle (|kx|,|k_y|) <= (2 pi Dx / lambda, 2 pi Dx / lambda)
|
---|
32 | wkx = kx/2./M_PI/dx_;
|
---|
33 | wky = ky/2./M_PI/dy_;
|
---|
34 | return ( ((wkx<1.)&&(wky<1.))?((1.-wkx)*(1-wky)):0.);
|
---|
35 | break;
|
---|
36 | default:
|
---|
37 | return 1.;
|
---|
38 | }
|
---|
39 | }
|
---|
40 | // Return a vector representing the power spectrum (for checking)
|
---|
41 | Histo2D Four2DResponse::GetResponse(int nx, int ny)
|
---|
42 | {
|
---|
43 | double kxmx = 1.2*DeuxPI*dx_;
|
---|
44 | double kymx = 1.2*DeuxPI*dy_;
|
---|
45 | if (typ_<3) kymx=kxmx;
|
---|
46 | Histo2D h2(0.,kxmx,nx,0.,kymx,ny);
|
---|
47 |
|
---|
48 | for(int j=0; j<h2.NBinY(); j++)
|
---|
49 | for(int i=0; i<h2.NBinX(); i++)
|
---|
50 | h2(i,j) = Value((i+0.5)*h2.WBinX(), (j+0.5)*h2.WBinY());
|
---|
51 | return h2;
|
---|
52 | }
|
---|
53 |
|
---|
54 | //---------------------------------------------------------------
|
---|
55 | // -- Four2DRespTable : Reponse tabulee instrumentale ds le plan k_x,k_y (angles theta,phi)
|
---|
56 | //---------------------------------------------------------------
|
---|
57 | Four2DRespTable::Four2DRespTable(Histo2D const & hrep, double d)
|
---|
58 | : Four2DResponse(0,d,d) , hrep_(hrep)
|
---|
59 | {
|
---|
60 | }
|
---|
61 |
|
---|
62 | double Four2DRespTable::Value(double kx, double ky)
|
---|
63 | {
|
---|
64 | int_4 i,j;
|
---|
65 | if ( (kx<=hrep_.XMin())||(kx>=hrep_.XMax()) ||
|
---|
66 | (ky<=hrep_.YMin())||(ky>=hrep_.YMax()) ) return 0.;
|
---|
67 | hrep_.FindBin(kx, ky, i, j);
|
---|
68 | return hrep_(i, j);
|
---|
69 | }
|
---|
70 |
|
---|
71 | //--- Classe simple pour le calcul de rotation
|
---|
72 | class Rotation {
|
---|
73 | public:
|
---|
74 | Rotation(double tet, double phi)
|
---|
75 | {
|
---|
76 | // (Teta,Phi) = Direction de visee
|
---|
77 | // Les angles d'Euler correspondants sont Teta, Phi+Pi/2
|
---|
78 | // Le Pi/2 vient que les rotations d'euler se font dans l'ordre
|
---|
79 | // Autour de oZ d'angle Phi, autour de oN (nouvel axe X) d'angle Teta
|
---|
80 | // Autour du nouvel axe Z (x3) d'angle Psi (Psi=0 -> cp=1, sp=0.;
|
---|
81 | double ct = cos(tet);
|
---|
82 | double st = sin(tet);
|
---|
83 | // Le Pi/2 echange les axes X<>Y pour theta=phi=0 !
|
---|
84 | // double cf = cos(phi+M_PI/2);
|
---|
85 | // double sf = sin(phi+M_PI/2);
|
---|
86 | double cf = cos(phi);
|
---|
87 | double sf = sin(phi);
|
---|
88 | double cp = 1.; // cos((double)pO);
|
---|
89 | double sp = 0.; // sin((double)pO);
|
---|
90 | RE[0][0] = cf*cp-sf*ct*sp; RE[0][1] = sf*cp+cf*ct*sp; RE[0][2] = st*sp;
|
---|
91 | RE[1][0] = -cf*sp-sf*ct*cp; RE[1][1] = -sf*sp+cf*ct*cp; RE[1][2] = st*cp;
|
---|
92 | RE[2][0] = sf*st; RE[2][1] = -cf*st; RE[2][2] = ct;
|
---|
93 | }
|
---|
94 | inline void Do(double& x, double& y)
|
---|
95 | {
|
---|
96 | double xx=x;
|
---|
97 | double yy=y;
|
---|
98 | x = RE[0][0]*xx+RE[0][1]*yy;
|
---|
99 | y = RE[1][0]*xx+RE[1][1]*yy;
|
---|
100 | }
|
---|
101 | double RE[3][3];
|
---|
102 | };
|
---|
103 |
|
---|
104 | // -----------------------------------
|
---|
105 | // -- Classe ressemblant a un histo 2D
|
---|
106 | // -----------------------------------
|
---|
107 | QHis2D::QHis2D()
|
---|
108 | : nx(0),ny(0),xmin(0),xmax(0),ymin(0),ymax(0),sumw0(0.)
|
---|
109 | {
|
---|
110 | }
|
---|
111 | QHis2D::QHis2D(r_8 xMin,r_8 xMax,int_4 nxb,r_8 yMin,r_8 yMax,int_4 nyb)
|
---|
112 | : nx(0),ny(0),xmin(0),xmax(0),ymin(0),ymax(0),sumw0(0.)
|
---|
113 | {
|
---|
114 | Define(xMin, xMax, nxb, yMin, yMax, nyb);
|
---|
115 | }
|
---|
116 | void QHis2D::Define(r_8 xMin,r_8 xMax,int_4 nxb,r_8 yMin,r_8 yMax,int_4 nyb)
|
---|
117 | {
|
---|
118 | nx=nxb; ny=nyb;
|
---|
119 | xmin=xMin; xmax=xMax;
|
---|
120 | ymin=yMin; ymax=yMax;
|
---|
121 | dxb=(xmax-xmin)/(double)nx;
|
---|
122 | dyb=(ymax-ymin)/(double)ny;
|
---|
123 | sa_size_t sz[5]; sz[0]=nx; sz[1]=ny;
|
---|
124 | aw.ReSize(2,sz);
|
---|
125 | sumw0=0.;
|
---|
126 | return;
|
---|
127 | }
|
---|
128 | double QHis2D::Add(r_8 x, r_8 y, r_8 w, bool fgfh)
|
---|
129 | {
|
---|
130 | sa_size_t ix = (sa_size_t)((x-xmin)/dxb);
|
---|
131 | sa_size_t jy = (sa_size_t)((y-ymin)/dyb);
|
---|
132 | if ((ix<0)||(ix>=nx)||(jy<0)||(jy>=ny)) return 0.;
|
---|
133 | double rw = ((ix==0)&&(jy==0)) ? w : 0.;
|
---|
134 | sumw0 += rw;
|
---|
135 | if (fgfh) aw(ix,jy) += w;
|
---|
136 | return rw;
|
---|
137 | }
|
---|
138 | Histo2D QHis2D::Convert()
|
---|
139 | {
|
---|
140 | Histo2D h2(xmin,xmax,nx,ymin,ymax,ny);
|
---|
141 | for(int_4 j=0; j<ny; j++)
|
---|
142 | for(int_4 i=0; i<nx; i++) h2(i,j) = aw(i,j);
|
---|
143 | return h2;
|
---|
144 | }
|
---|
145 |
|
---|
146 | //----------------------------------------------------------------------
|
---|
147 | // -- Pour calculer la reponse ds le plan kx,ky d'un system MultiDish
|
---|
148 | //----------------------------------------------------------------------
|
---|
149 | MultiDish::MultiDish(double lambda, double dmax, vector<Dish>& dishes, bool fgnoauto)
|
---|
150 | : lambda_(lambda), dmax_(dmax), dishes_(dishes), fgnoauto_(fgnoauto)
|
---|
151 | {
|
---|
152 | SetThetaPhiRange();
|
---|
153 | SetRespHisNBins();
|
---|
154 | mcnt_=0;
|
---|
155 | }
|
---|
156 |
|
---|
157 | Histo2D MultiDish::GetResponse()
|
---|
158 | {
|
---|
159 | cout << " MultiDish::GetResponse() - NDishes=" << dishes_.size() << " nx=" << nx_ << " ny=" << ny_ << endl;
|
---|
160 | double kmx = 1.2*DeuxPI*dmax_/lambda_;
|
---|
161 | /*
|
---|
162 | h2w_= Histo2D(0.,kmx,nx_,0.,kmx,ny_);
|
---|
163 | h2cnt_= Histo2D(0.,kmx,nx_,0.,kmx,ny_);
|
---|
164 | h2w_.Zero();
|
---|
165 | h2cnt_.Zero();
|
---|
166 | */
|
---|
167 | h2w_.Define(0.,kmx,nx_,0.,kmx,ny_);
|
---|
168 |
|
---|
169 | double dold = dishes_[0].D/lambda_;
|
---|
170 | double dolx = dishes_[0].Dx/lambda_;
|
---|
171 | double doly = dishes_[0].Dy/lambda_;
|
---|
172 |
|
---|
173 | Four2DResponse rd(2, dold, dold);
|
---|
174 | Four2DResponse rdr(3, dolx, doly);
|
---|
175 |
|
---|
176 | if (!dishes_[0].isCircular()) rd = rdr;
|
---|
177 |
|
---|
178 | double dtet = thetamax_/(double)ntet_;
|
---|
179 | double dphi = phimax_/(double)ntet_;
|
---|
180 |
|
---|
181 | double sumw = 0.;
|
---|
182 | for(int kt=0; kt<ntet_; kt++)
|
---|
183 | for(int jp=0; jp<nphi_; jp++)
|
---|
184 | sumw += CumulResp(rd, (double)kt*dtet, (double)jp*dphi);
|
---|
185 |
|
---|
186 | double kx0 = DeuxPI*fabs(dishes_[1].X-dishes_[0].X)/lambda_;
|
---|
187 | double ky0 = DeuxPI*fabs(dishes_[1].Y-dishes_[0].Y)/lambda_;
|
---|
188 | int_4 ib, jb;
|
---|
189 | // h2w_ /= h2cnt_;
|
---|
190 | Histo2D h2 = h2w_.Convert();
|
---|
191 | h2.FindBin(kx0, ky0, ib, jb);
|
---|
192 | cout << " ---- MultiDish::GetResponse() VMin=" << h2.VMin() << " VMax= " << h2.VMax()
|
---|
193 | << " h(0,0)=" << h2(0,0) << " h(" << ib <<"," << jb << ")=" << h2(ib,jb) <<endl;
|
---|
194 | // double fnorm=sqrt((double)dishes_.size())/h2.VMax();
|
---|
195 | double fnorm=1.;
|
---|
196 | if (h2.VMax() > sumw) {
|
---|
197 | fnorm=(double)dishes_.size()/h2.VMax();
|
---|
198 | cout << " ---- MultiDish::GetResponse() NDishes=" << dishes_.size() << " sumw=" << sumw
|
---|
199 | << " Renormalizing x NDishes/sumw " << fnorm << endl;
|
---|
200 | }
|
---|
201 | else {
|
---|
202 | fnorm=(double)dishes_.size()/h2.VMax();
|
---|
203 | cout << " ---- MultiDish::GetResponse() NDishes=" << dishes_.size() << " VMax=" << h2.VMax()
|
---|
204 | << " Renormalizing x NDishes/h2.VMax() " << fnorm << endl;
|
---|
205 | }
|
---|
206 | h2 *= fnorm;
|
---|
207 | cout << " ---- MultiDish::GetResponse() APRES VMin=" << h2.VMin() << " VMax= " << h2.VMax() << " h(0,0)="
|
---|
208 | << h2(0,0) << endl;
|
---|
209 | return h2;
|
---|
210 | }
|
---|
211 |
|
---|
212 | /*
|
---|
213 | double MultiDish::AddToHisto(double kx0, double ky0, double x, double y, double w, bool fgfh)
|
---|
214 | {
|
---|
215 | double xxp = kx0+x;
|
---|
216 | double yyp = ky0+y;
|
---|
217 | double sumw=0.;
|
---|
218 | int_4 ib, jb;
|
---|
219 | h2w_.FindBin(xxp, yyp, ib, jb);
|
---|
220 | if ((ib==0)&&(jb==0)) sumw+=w;
|
---|
221 | if (fgfh) {
|
---|
222 | h2w_.Add(xxp, yyp, w);
|
---|
223 | h2cnt_.Add(xxp, yyp, 1.);
|
---|
224 | }
|
---|
225 | double xxm=kx0-x;
|
---|
226 | double yym=ky0-y;
|
---|
227 | if (xxm>0.) {
|
---|
228 | h2w_.FindBin(xxm, yyp, ib, jb);
|
---|
229 | if ((ib==0)&&(jb==0)) sumw+=w;
|
---|
230 | if (fgfh) {
|
---|
231 | h2w_.Add(xxm, yyp, w);
|
---|
232 | h2cnt_.Add(xxm, yyp, 1.);
|
---|
233 | }
|
---|
234 | if (yym>0.) {
|
---|
235 | h2w_.FindBin(xxm, yym, ib, jb);
|
---|
236 | if ((ib==0)&&(jb==0)) sumw+=w;
|
---|
237 | if (fgfh) {
|
---|
238 | h2w_.Add(xxm, yym, w);
|
---|
239 | h2cnt_.Add(xxm, yym, 1.);
|
---|
240 | }
|
---|
241 | }
|
---|
242 | }
|
---|
243 | if (yym>0.) {
|
---|
244 | h2w_.FindBin(xxp, yym, ib, jb);
|
---|
245 | if ((ib==0)&&(jb==0)) sumw+=w;
|
---|
246 | if (fgfh) {
|
---|
247 | h2w_.Add(xxp, yym, w);
|
---|
248 | h2cnt_.Add(xxp, yym, 1.);
|
---|
249 | }
|
---|
250 | }
|
---|
251 | return sumw;
|
---|
252 | }
|
---|
253 | */
|
---|
254 |
|
---|
255 | double MultiDish::AddToHisto(double kx0, double ky0, double x, double y, double w, bool fgfh)
|
---|
256 | {
|
---|
257 | double xxp = kx0+x;
|
---|
258 | double yyp = ky0+y;
|
---|
259 | double sumw=0.;
|
---|
260 | sumw += h2w_.Add(xxp, yyp, w, fgfh);
|
---|
261 | double xxm=kx0-x;
|
---|
262 | double yym=ky0-y;
|
---|
263 | if (xxm>0.) {
|
---|
264 | sumw += h2w_.Add(xxm, yyp, w, fgfh);
|
---|
265 | if (yym>0.) sumw += h2w_.Add(xxm, yym, w, fgfh);
|
---|
266 | }
|
---|
267 | if (yym>0.) sumw += h2w_.Add(xxp, yym, w, fgfh);
|
---|
268 | return sumw;
|
---|
269 | }
|
---|
270 |
|
---|
271 | double MultiDish::CumulResp(Four2DResponse& rd, double theta, double phi)
|
---|
272 | {
|
---|
273 | // cout << " MultiDish::CumulResp() theta=" << theta << " phi=" << phi << endl;
|
---|
274 |
|
---|
275 | double dx = h2w_.WBinX()/5;
|
---|
276 | double dy = h2w_.WBinY()/5;
|
---|
277 | int nbx = DeuxPI*rd.Dx()/dx;
|
---|
278 | int nby = DeuxPI*rd.Dy()/dy;
|
---|
279 | dx = DeuxPI*rd.Dx()/(double)nbx;
|
---|
280 | dy = DeuxPI*rd.Dy()/(double)nby;
|
---|
281 | if (mcnt_==0)
|
---|
282 | cout << " CumulResp() nbx=" << nbx << " nby=" << nby << " dx=" << dx << " dy=" << dy << endl;
|
---|
283 | mcnt_++;
|
---|
284 |
|
---|
285 | double sumw = 0.;
|
---|
286 | Rotation rot(theta, phi);
|
---|
287 |
|
---|
288 | for(size_t i=0; i<dishes_.size(); i++) {
|
---|
289 | for(size_t j=i; j<dishes_.size(); j++) {
|
---|
290 | double kx0 = DeuxPI*fabs(dishes_[i].X-dishes_[j].X)/lambda_;
|
---|
291 | double ky0 = DeuxPI*fabs(dishes_[i].Y-dishes_[j].Y)/lambda_;
|
---|
292 | rot.Do(kx0, ky0);
|
---|
293 | if (kx0<0) kx0=-kx0;
|
---|
294 | if (ky0<0) ky0=-ky0;
|
---|
295 | bool fgfh= (!fgnoauto_ || (dishes_[i].ReflectorId()!=dishes_[j].ReflectorId()));
|
---|
296 | for(int ix=0; ix<nbx; ix++)
|
---|
297 | for(int jy=0; jy<nby; jy++) {
|
---|
298 | double x = ix*dx;
|
---|
299 | double y = jy*dy;
|
---|
300 | sumw += AddToHisto(kx0, ky0, x, y, rd(x,y), fgfh);
|
---|
301 | }
|
---|
302 | }
|
---|
303 | // if (i%10==0)
|
---|
304 | // cout << " MultiDish::CumulResp() done i=" << i << " / imax=" << dishes_.size()
|
---|
305 | // << " theta=" << theta << " phi=" << phi << endl;
|
---|
306 | }
|
---|
307 | return sumw;
|
---|
308 | }
|
---|
309 |
|
---|