source: Sophya/trunk/Cosmo/RadioBeam/mdish.cc@ 3756

Last change on this file since 3756 was 3756, checked in by ansari, 15 years ago

Ajout des programmes de calcul de la sensibilite de l'interfero (plan(u,v), PNoise(k)) , Reza 28/04/2010

File size: 9.1 KB
Line 
1// Classes to compute 2D
2// R. Ansari - Nov 2008, May 2010
3
4#include "mdish.h"
5
6
7//--------------------------------------------------
8// -- Four2DResponse class
9//--------------------------------------------------
10// Constructor
11Four2DResponse::Four2DResponse(int typ, double dx, double dy)
12 : typ_(typ), dx_((dx>1.e-3)?dx:1.), dy_((dy>1.e-3)?dy:1.)
13{
14}
15
16// Return the response for the wave vecteor (kx,ky)
17double Four2DResponse::Value(double kx, double ky)
18{
19 double wk,wkx,wky;
20 switch (typ_)
21 {
22 case 1: // Reponse gaussienne parabole diametre D exp[ - 0.5 (lambda k_g / D )^2 ]
23 wk = sqrt(kx*kx+ky*ky)/dx_;
24 wk = 0.5*wk*wk;
25 return exp(-wk);
26 break;
27 case 2: // Reponse parabole diametre D Triangle <= kmax= 2 pi D / lambda
28 wk = sqrt(kx*kx+ky*ky)/dx_/2./M_PI;
29 return ( (wk<1.)?(1.-wk):0.);
30 break;
31 case 3: // Reponse rectangle Dx x Dy Triangle (|kx|,|k_y|) <= (2 pi Dx / lambda, 2 pi Dx / lambda)
32 wkx = kx/2./M_PI/dx_;
33 wky = ky/2./M_PI/dy_;
34 return ( ((wkx<1.)&&(wky<1.))?((1.-wkx)*(1-wky)):0.);
35 break;
36 default:
37 return 1.;
38 }
39}
40// Return a vector representing the power spectrum (for checking)
41Histo2D Four2DResponse::GetResponse(int nx, int ny)
42{
43 double kxmx = 1.2*DeuxPI*dx_;
44 double kymx = 1.2*DeuxPI*dy_;
45 if (typ_<3) kymx=kxmx;
46 Histo2D h2(0.,kxmx,nx,0.,kymx,ny);
47
48 for(int j=0; j<h2.NBinY(); j++)
49 for(int i=0; i<h2.NBinX(); i++)
50 h2(i,j) = Value((i+0.5)*h2.WBinX(), (j+0.5)*h2.WBinY());
51 return h2;
52}
53
54//---------------------------------------------------------------
55// -- Four2DRespTable : Reponse tabulee instrumentale ds le plan k_x,k_y (angles theta,phi)
56//---------------------------------------------------------------
57Four2DRespTable::Four2DRespTable(Histo2D const & hrep, double d)
58 : Four2DResponse(0,d,d) , hrep_(hrep)
59{
60}
61
62double Four2DRespTable::Value(double kx, double ky)
63{
64 int_4 i,j;
65 if ( (kx<=hrep_.XMin())||(kx>=hrep_.XMax()) ||
66 (ky<=hrep_.YMin())||(ky>=hrep_.YMax()) ) return 0.;
67 hrep_.FindBin(kx, ky, i, j);
68 return hrep_(i, j);
69}
70
71//--- Classe simple pour le calcul de rotation
72class Rotation {
73public:
74 Rotation(double tet, double phi)
75 {
76// (Teta,Phi) = Direction de visee
77// Les angles d'Euler correspondants sont Teta, Phi+Pi/2
78// Le Pi/2 vient que les rotations d'euler se font dans l'ordre
79// Autour de oZ d'angle Phi, autour de oN (nouvel axe X) d'angle Teta
80// Autour du nouvel axe Z (x3) d'angle Psi (Psi=0 -> cp=1, sp=0.;
81 double ct = cos(tet);
82 double st = sin(tet);
83 // Le Pi/2 echange les axes X<>Y pour theta=phi=0 !
84 // double cf = cos(phi+M_PI/2);
85 // double sf = sin(phi+M_PI/2);
86 double cf = cos(phi);
87 double sf = sin(phi);
88 double cp = 1.; // cos((double)pO);
89 double sp = 0.; // sin((double)pO);
90 RE[0][0] = cf*cp-sf*ct*sp; RE[0][1] = sf*cp+cf*ct*sp; RE[0][2] = st*sp;
91 RE[1][0] = -cf*sp-sf*ct*cp; RE[1][1] = -sf*sp+cf*ct*cp; RE[1][2] = st*cp;
92 RE[2][0] = sf*st; RE[2][1] = -cf*st; RE[2][2] = ct;
93 }
94 inline void Do(double& x, double& y)
95 {
96 double xx=x;
97 double yy=y;
98 x = RE[0][0]*xx+RE[0][1]*yy;
99 y = RE[1][0]*xx+RE[1][1]*yy;
100 }
101 double RE[3][3];
102};
103
104// -----------------------------------
105// -- Classe ressemblant a un histo 2D
106// -----------------------------------
107QHis2D::QHis2D()
108 : nx(0),ny(0),xmin(0),xmax(0),ymin(0),ymax(0),sumw0(0.)
109{
110}
111QHis2D::QHis2D(r_8 xMin,r_8 xMax,int_4 nxb,r_8 yMin,r_8 yMax,int_4 nyb)
112 : nx(0),ny(0),xmin(0),xmax(0),ymin(0),ymax(0),sumw0(0.)
113{
114 Define(xMin, xMax, nxb, yMin, yMax, nyb);
115}
116void QHis2D::Define(r_8 xMin,r_8 xMax,int_4 nxb,r_8 yMin,r_8 yMax,int_4 nyb)
117{
118 nx=nxb; ny=nyb;
119 xmin=xMin; xmax=xMax;
120 ymin=yMin; ymax=yMax;
121 dxb=(xmax-xmin)/(double)nx;
122 dyb=(ymax-ymin)/(double)ny;
123 sa_size_t sz[5]; sz[0]=nx; sz[1]=ny;
124 aw.ReSize(2,sz);
125 sumw0=0.;
126 return;
127}
128double QHis2D::Add(r_8 x, r_8 y, r_8 w, bool fgfh)
129{
130 sa_size_t ix = (sa_size_t)((x-xmin)/dxb);
131 sa_size_t jy = (sa_size_t)((y-ymin)/dyb);
132 if ((ix<0)||(ix>=nx)||(jy<0)||(jy>=ny)) return 0.;
133 double rw = ((ix==0)&&(jy==0)) ? w : 0.;
134 sumw0 += rw;
135 if (fgfh) aw(ix,jy) += w;
136 return rw;
137}
138Histo2D QHis2D::Convert()
139{
140 Histo2D h2(xmin,xmax,nx,ymin,ymax,ny);
141 for(int_4 j=0; j<ny; j++)
142 for(int_4 i=0; i<nx; i++) h2(i,j) = aw(i,j);
143 return h2;
144}
145
146//----------------------------------------------------------------------
147// -- Pour calculer la reponse ds le plan kx,ky d'un system MultiDish
148//----------------------------------------------------------------------
149MultiDish::MultiDish(double lambda, double dmax, vector<Dish>& dishes, bool fgnoauto)
150 : lambda_(lambda), dmax_(dmax), dishes_(dishes), fgnoauto_(fgnoauto)
151{
152 SetThetaPhiRange();
153 SetRespHisNBins();
154 mcnt_=0;
155}
156
157Histo2D MultiDish::GetResponse()
158{
159 cout << " MultiDish::GetResponse() - NDishes=" << dishes_.size() << " nx=" << nx_ << " ny=" << ny_ << endl;
160 double kmx = 1.2*DeuxPI*dmax_/lambda_;
161 /*
162 h2w_= Histo2D(0.,kmx,nx_,0.,kmx,ny_);
163 h2cnt_= Histo2D(0.,kmx,nx_,0.,kmx,ny_);
164 h2w_.Zero();
165 h2cnt_.Zero();
166 */
167 h2w_.Define(0.,kmx,nx_,0.,kmx,ny_);
168
169 double dold = dishes_[0].D/lambda_;
170 double dolx = dishes_[0].Dx/lambda_;
171 double doly = dishes_[0].Dy/lambda_;
172
173 Four2DResponse rd(2, dold, dold);
174 Four2DResponse rdr(3, dolx, doly);
175
176 if (!dishes_[0].isCircular()) rd = rdr;
177
178 double dtet = thetamax_/(double)ntet_;
179 double dphi = phimax_/(double)ntet_;
180
181 double sumw = 0.;
182 for(int kt=0; kt<ntet_; kt++)
183 for(int jp=0; jp<nphi_; jp++)
184 sumw += CumulResp(rd, (double)kt*dtet, (double)jp*dphi);
185
186 double kx0 = DeuxPI*fabs(dishes_[1].X-dishes_[0].X)/lambda_;
187 double ky0 = DeuxPI*fabs(dishes_[1].Y-dishes_[0].Y)/lambda_;
188 int_4 ib, jb;
189 // h2w_ /= h2cnt_;
190 Histo2D h2 = h2w_.Convert();
191 h2.FindBin(kx0, ky0, ib, jb);
192 cout << " ---- MultiDish::GetResponse() VMin=" << h2.VMin() << " VMax= " << h2.VMax()
193 << " h(0,0)=" << h2(0,0) << " h(" << ib <<"," << jb << ")=" << h2(ib,jb) <<endl;
194 // double fnorm=sqrt((double)dishes_.size())/h2.VMax();
195 double fnorm=1.;
196 if (h2.VMax() > sumw) {
197 fnorm=(double)dishes_.size()/h2.VMax();
198 cout << " ---- MultiDish::GetResponse() NDishes=" << dishes_.size() << " sumw=" << sumw
199 << " Renormalizing x NDishes/sumw " << fnorm << endl;
200 }
201 else {
202 fnorm=(double)dishes_.size()/h2.VMax();
203 cout << " ---- MultiDish::GetResponse() NDishes=" << dishes_.size() << " VMax=" << h2.VMax()
204 << " Renormalizing x NDishes/h2.VMax() " << fnorm << endl;
205 }
206 h2 *= fnorm;
207 cout << " ---- MultiDish::GetResponse() APRES VMin=" << h2.VMin() << " VMax= " << h2.VMax() << " h(0,0)="
208 << h2(0,0) << endl;
209 return h2;
210}
211
212/*
213double MultiDish::AddToHisto(double kx0, double ky0, double x, double y, double w, bool fgfh)
214{
215 double xxp = kx0+x;
216 double yyp = ky0+y;
217 double sumw=0.;
218 int_4 ib, jb;
219 h2w_.FindBin(xxp, yyp, ib, jb);
220 if ((ib==0)&&(jb==0)) sumw+=w;
221 if (fgfh) {
222 h2w_.Add(xxp, yyp, w);
223 h2cnt_.Add(xxp, yyp, 1.);
224 }
225 double xxm=kx0-x;
226 double yym=ky0-y;
227 if (xxm>0.) {
228 h2w_.FindBin(xxm, yyp, ib, jb);
229 if ((ib==0)&&(jb==0)) sumw+=w;
230 if (fgfh) {
231 h2w_.Add(xxm, yyp, w);
232 h2cnt_.Add(xxm, yyp, 1.);
233 }
234 if (yym>0.) {
235 h2w_.FindBin(xxm, yym, ib, jb);
236 if ((ib==0)&&(jb==0)) sumw+=w;
237 if (fgfh) {
238 h2w_.Add(xxm, yym, w);
239 h2cnt_.Add(xxm, yym, 1.);
240 }
241 }
242 }
243 if (yym>0.) {
244 h2w_.FindBin(xxp, yym, ib, jb);
245 if ((ib==0)&&(jb==0)) sumw+=w;
246 if (fgfh) {
247 h2w_.Add(xxp, yym, w);
248 h2cnt_.Add(xxp, yym, 1.);
249 }
250 }
251 return sumw;
252}
253*/
254
255double MultiDish::AddToHisto(double kx0, double ky0, double x, double y, double w, bool fgfh)
256{
257 double xxp = kx0+x;
258 double yyp = ky0+y;
259 double sumw=0.;
260 sumw += h2w_.Add(xxp, yyp, w, fgfh);
261 double xxm=kx0-x;
262 double yym=ky0-y;
263 if (xxm>0.) {
264 sumw += h2w_.Add(xxm, yyp, w, fgfh);
265 if (yym>0.) sumw += h2w_.Add(xxm, yym, w, fgfh);
266 }
267 if (yym>0.) sumw += h2w_.Add(xxp, yym, w, fgfh);
268 return sumw;
269}
270
271double MultiDish::CumulResp(Four2DResponse& rd, double theta, double phi)
272{
273 // cout << " MultiDish::CumulResp() theta=" << theta << " phi=" << phi << endl;
274
275 double dx = h2w_.WBinX()/5;
276 double dy = h2w_.WBinY()/5;
277 int nbx = DeuxPI*rd.Dx()/dx;
278 int nby = DeuxPI*rd.Dy()/dy;
279 dx = DeuxPI*rd.Dx()/(double)nbx;
280 dy = DeuxPI*rd.Dy()/(double)nby;
281 if (mcnt_==0)
282 cout << " CumulResp() nbx=" << nbx << " nby=" << nby << " dx=" << dx << " dy=" << dy << endl;
283 mcnt_++;
284
285 double sumw = 0.;
286 Rotation rot(theta, phi);
287
288 for(size_t i=0; i<dishes_.size(); i++) {
289 for(size_t j=i; j<dishes_.size(); j++) {
290 double kx0 = DeuxPI*fabs(dishes_[i].X-dishes_[j].X)/lambda_;
291 double ky0 = DeuxPI*fabs(dishes_[i].Y-dishes_[j].Y)/lambda_;
292 rot.Do(kx0, ky0);
293 if (kx0<0) kx0=-kx0;
294 if (ky0<0) ky0=-ky0;
295 bool fgfh= (!fgnoauto_ || (dishes_[i].ReflectorId()!=dishes_[j].ReflectorId()));
296 for(int ix=0; ix<nbx; ix++)
297 for(int jy=0; jy<nby; jy++) {
298 double x = ix*dx;
299 double y = jy*dy;
300 sumw += AddToHisto(kx0, ky0, x, y, rd(x,y), fgfh);
301 }
302 }
303 // if (i%10==0)
304 // cout << " MultiDish::CumulResp() done i=" << i << " / imax=" << dishes_.size()
305 // << " theta=" << theta << " phi=" << phi << endl;
306 }
307 return sumw;
308}
309
Note: See TracBrowser for help on using the repository browser.