source: Sophya/trunk/Cosmo/RadioBeam/mdish.cc@ 3987

Last change on this file since 3987 was 3987, checked in by ansari, 14 years ago

Correction bug ds calcul rapport de deux Four2DResponse, Reza 06/05/2011

File size: 13.7 KB
Line 
1// Classes to compute 2D
2// R. Ansari - Nov 2008, May 2010
3
4#include "mdish.h"
5
6
7//--------------------------------------------------
8// -- Four2DResponse class
9//--------------------------------------------------
10// Constructor
11Four2DResponse::Four2DResponse(int typ, double dx, double dy, double lambda)
12 : typ_(typ), dx_((dx>1.e-3)?dx:1.), dy_((dy>1.e-3)?dy:1.)
13{
14 setLambdaRef(lambda);
15 setLambda(lambda);
16}
17
18// Return the response for the wave vecteor (kx,ky)
19double Four2DResponse::Value(double kx, double ky)
20{
21 kx *= lambda_ratio_;
22 ky *= lambda_ratio_;
23 double wk,wkx,wky;
24 switch (typ_)
25 {
26 case 1: // Reponse gaussienne parabole diametre D exp[ -(1/8) (lambda k_g / D )^2 ]
27 wk = sqrt(kx*kx+ky*ky)/dx_;
28 wk = wk*wk/8.;
29 return exp(-wk);
30 break;
31 case 2: // Reponse parabole diametre D Triangle <= kmax= 2 pi D / lambda
32 wk = sqrt(kx*kx+ky*ky)/dx_/2./M_PI;
33 return ( (wk<1.)?(1.-wk):0.);
34 break;
35 case 22: // Reponse parabole diametre D Triangle <= kmax= 2 pi D / lambda + trou au centre
36 wk = sqrt(kx*kx+ky*ky)/dx_/2./M_PI;
37 if (wk<0.025) return 39.*wk;
38 else if (wk<1.) return (1.-wk);
39 else return 0.;
40 break;
41 case 3: // Reponse rectangle Dx x Dy Triangle (|kx|,|k_y|) <= (2 pi Dx / lambda, 2 pi Dx / lambda)
42 wkx = fabs(kx)/2./M_PI/dx_;
43 wky = fabs(ky)/2./M_PI/dy_;
44 return ( ((wkx<1.)&&(wky<1.))?((1.-wkx)*(1-wky)):0.);
45 break;
46 default:
47 return 1.;
48 }
49}
50// Return a vector representing the power spectrum (for checking)
51Histo2D Four2DResponse::GetResponse(int nx, int ny)
52{
53 double kxmx = 1.2*DeuxPI*dx_;
54 double kymx = 1.2*DeuxPI*dy_;
55 if (typ_<3) kymx=kxmx;
56 Histo2D h2(-kxmx,kxmx,nx,-kymx,kymx,ny);
57
58 double xbc,ybc;
59 for(int_4 j=0; j<h2.NBinY(); j++)
60 for(int_4 i=0; i<h2.NBinX(); i++) {
61 h2.BinCenter(i,j,xbc,ybc);
62 h2(i,j) = Value(xbc,ybc);
63 }
64 return h2;
65}
66
67HProf Four2DResponse::GetProjNoiseLevel(int nbin, bool fgnorm1)
68{
69 Histo2D h2w = GetResponse(2*nbin, 2*nbin);
70 r_8 vmin=h2w.VMin();
71 r_8 vmax=h2w.VMax();
72 double seuil=vmax/10000.;
73 if (seuil<1.e-6) seuil=1.e-6;
74 r_8 facnorm=((fgnorm1)?vmax:1.);
75 cout << " Four2DResponse::GetProjNoiseLevel Min,Max=" << vmin << " , " << vmax
76 << " facnorm=" << facnorm << " seuil=" << seuil << endl;
77 double kmax=2.*M_PI*D();
78 HProf hp(0,kmax,nbin);
79 double x,y;
80 for(sa_size_t j=0; j<h2w.NBinY(); j++) {
81 for(sa_size_t i=0; i<h2w.NBinX(); i++) {
82 h2w.BinCenter(i,j,x,y);
83 double yw=h2w(i,j);
84 if (yw<seuil) continue;
85 hp.Add(sqrt(x*x+y*y),facnorm/yw);
86 }
87 }
88 return hp;
89}
90
91HProf Four2DResponse::GetProjResponse(int nbin, bool fgnorm1)
92{
93 Histo2D h2w = GetResponse(2*nbin, 2*nbin);
94 r_8 vmin=h2w.VMin();
95 r_8 vmax=h2w.VMax();
96 r_8 facnorm=((fgnorm1)?(1./vmax):1.);
97 cout << " Four2DResponse::GetProjResponse Min,Max=" << vmin << " , " << vmax
98 << " facnorm=" << facnorm << endl;
99 double kmax=2.*M_PI*D();
100 HProf hp(0,kmax,nbin);
101 double x,y;
102 for(sa_size_t j=0; j<h2w.NBinY(); j++) {
103 for(sa_size_t i=0; i<h2w.NBinX(); i++) {
104 h2w.BinCenter(i,j,x,y);
105 hp.Add(sqrt(x*x+y*y),h2w(i,j)*facnorm);
106 }
107 }
108 return hp;
109}
110
111//---------------------------------------------------------------
112// -- Four2DRespTable : Reponse tabulee instrumentale ds le plan k_x,k_y (angles theta,phi)
113//---------------------------------------------------------------
114Four2DRespTable::Four2DRespTable()
115 : Four2DResponse(0,1.,1.)
116{
117}
118
119Four2DRespTable::Four2DRespTable(Histo2D const & hrep, double d, double lambda)
120 : Four2DResponse(0,d,d,lambda) , hrep_(hrep)
121{
122}
123
124double Four2DRespTable::Value(double kx, double ky)
125{
126 kx *= lambda_ratio_;
127 ky *= lambda_ratio_;
128 int_4 i,j;
129 if ( (kx<=hrep_.XMin())||(kx>=hrep_.XMax()) ||
130 (ky<=hrep_.YMin())||(ky>=hrep_.YMax()) ) return 0.;
131 hrep_.FindBin(kx, ky, i, j);
132 return hrep_(i, j);
133}
134
135double Four2DRespTable::renormalize(double max)
136{
137 double cmx = hrep_.VMax();
138 hrep_ *= (max/cmx);
139 return cmx;
140}
141
142void Four2DRespTable::writeToPPF(string flnm)
143{
144 DVList dvinfo;
145 dvinfo["DoL"] = dx_;
146 dvinfo["LambdaRef"] = lambdaref_;
147 dvinfo["Lambda"] = lambda_;
148 POutPersist po(flnm);
149 po << hrep_;
150 po << dvinfo;
151}
152
153void Four2DRespTable::readFromPPF(string flnm)
154{
155 PInPersist pin(flnm);
156 DVList dvinfo;
157 pin >> hrep_;
158 pin >> dvinfo;
159 dx_ = dy_ = dvinfo["DoL"];
160 setLambdaRef((double)dvinfo["LambdaRef"]);
161 setLambda((double)dvinfo["Lambda"]);
162}
163
164
165
166//---------------------------------------------------------------
167// -- Four2DRespRatio : rapport de la reponse entre deux objets Four2DResponse
168//---------------------------------------------------------------
169Four2DRespRatio::Four2DRespRatio(Four2DResponse& a, Four2DResponse& b, double maxratio)
170 : Four2DResponse(0, a.D(), a.D()), a_(a), b_(b), maxratio_(maxratio)
171{
172}
173
174double Four2DRespRatio::Value(double kx, double ky)
175{
176 double ra = a_.Value(kx,ky);
177 double rb = b_.Value(kx,ky);
178 if (ra<rb) {
179 if (rb>1.e-9) return(ra/rb);
180 else return 0.;
181 }
182 double rval=1.;
183 if (rb>1.e-9) rval=ra/rb;
184 if (rval<maxratio_) return rval;
185 return maxratio_;
186}
187
188//---------------------------------------------------------------
189//--- Classe simple pour le calcul de rotation
190class Rotation {
191public:
192 Rotation(double tet, double phi)
193 {
194// (Teta,Phi) = Direction de visee
195// Les angles d'Euler correspondants sont Teta, Phi+Pi/2
196// Le Pi/2 vient que les rotations d'euler se font dans l'ordre
197// Autour de oZ d'angle Phi, autour de oN (nouvel axe X) d'angle Teta
198// Autour du nouvel axe Z (x3) d'angle Psi (Psi=0 -> cp=1, sp=0.;
199 double ct = cos(tet);
200 double st = sin(tet);
201 // Le Pi/2 echange les axes X<>Y pour theta=phi=0 !
202 // double cf = cos(phi+M_PI/2);
203 // double sf = sin(phi+M_PI/2);
204 double cf = cos(phi);
205 double sf = sin(phi);
206 double cp = 1.; // cos((double)pO);
207 double sp = 0.; // sin((double)pO);
208 RE[0][0] = cf*cp-sf*ct*sp; RE[0][1] = sf*cp+cf*ct*sp; RE[0][2] = st*sp;
209 RE[1][0] = -cf*sp-sf*ct*cp; RE[1][1] = -sf*sp+cf*ct*cp; RE[1][2] = st*cp;
210 RE[2][0] = sf*st; RE[2][1] = -cf*st; RE[2][2] = ct;
211 }
212 inline void Do(double& x, double& y)
213 {
214 double xx=x;
215 double yy=y;
216 x = RE[0][0]*xx+RE[0][1]*yy;
217 y = RE[1][0]*xx+RE[1][1]*yy;
218 }
219 double RE[3][3];
220};
221
222
223//----------------------------------------------------------------------
224// -- Pour calculer la reponse ds le plan kx,ky d'un system MultiDish
225//----------------------------------------------------------------------
226MultiDish::MultiDish(double lambda, double dmax, vector<Dish>& dishes, bool fgnoauto)
227 : lambda_(lambda), dmax_(dmax), dishes_(dishes), fgnoauto_(fgnoauto)
228{
229 SetThetaPhiRange();
230 SetRespHisNBins();
231 SetBeamNSamples();
232 SetPrtLevel();
233 fgcomputedone_=false;
234 mcnt_=0;
235}
236
237void MultiDish::ComputeResponse()
238{
239 cout << " MultiDish::ComputeResponse() - NDishes=" << dishes_.size() << " nx=" << nx_ << " ny=" << ny_ << endl;
240 double kmx = 1.2*DeuxPI*dmax_/lambda_;
241 double dkmx = kmx/(double)nx_;
242 double dkmy = kmx/(double)ny_;
243 double kmxx = ((double)nx_+0.5)*dkmx;
244 double kmxy = ((double)ny_+0.5)*dkmy;
245 h2w_.Define(-kmxx,kmxx,2*nx_+1,-kmxy,kmxy,2*ny_+1);
246 h2w_.SetZeroBin(0.,0.);
247 kmax_=kmx;
248
249 double dold = dishes_[0].Diameter()/lambda_;
250 double dolx = dishes_[0].DiameterX()/lambda_;
251 double doly = dishes_[0].DiameterY()/lambda_;
252
253 Four2DResponse rd(2, dold, dold);
254 Four2DResponse rdr(3, dolx, doly);
255
256 if (!dishes_[0].isCircular()) rd = rdr;
257
258 double dtet = thetamax_/(double)ntet_;
259 double dphi = phimax_/(double)nphi_;
260 cout << " MultiDish::ComputeResponse() - ThetaMax=" << thetamax_ << " NTheta=" << ntet_
261 << " PhiMax=" << phimax_ << " NPhi=" << nphi_ << endl;
262
263 double sumw = 0.;
264 for(int kt=0; kt<ntet_; kt++) {
265 double theta=(double)kt*dtet;
266 for(int jp=0; jp<nphi_; jp++) {
267 double phi=(double)jp*dphi;
268 sumw += CumulResp(rd, theta, phi);
269 if (theta<1.e-9) continue;
270 sumw += CumulResp(rd, theta, -phi);
271 sumw += CumulResp(rd, theta, phi+M_PI);
272 sumw += CumulResp(rd, theta, -(phi+M_PI));
273 }
274 if (prtlev_>0)
275 cout << " MultiDish::ComputeResponse() done ktheta=" << kt << " / MaxNTheta= "
276 << ntet_ << endl;
277 }
278 r_8 rmin,rmax;
279 h2w_.GetMinMax(rmin,rmax);
280 cout << " MultiDish::ComputeResponse() finished : Rep_min,max=" << rmin << "," << rmax << " sumW0="
281 << sumw << " ?=" << h2w_.SumWBinZero() << endl;
282 fgcomputedone_=true;
283 return;
284}
285
286Histo2D MultiDish::GetResponse()
287{
288 if (!fgcomputedone_) ComputeResponse();
289
290 double kx1 = DeuxPI*(dishes_[0].DiameterX())/lambda_;
291 double ky1 = DeuxPI*(dishes_[0].DiameterY())/lambda_;
292 int_4 ib,jb;
293 // h2w_ /= h2cnt_;
294 Histo2D h2 = h2w_.Convert();
295 h2.FindBin(kx1, ky1, ib, jb);
296 if ((kx1<0)||(ky1<0)||(kx1>=h2.NBinX())||(ky1>=h2.NBinY())) {
297 cout << " MultiDish::GetResponse[1]/ERROR kx1,ky1=" << kx1 <<","<< ky1 << " --> ib,jb=" << ib <<","<< jb << endl;
298 ib=jb=0;
299 }
300 double sumw=h2w_.SumWBinZero();
301 double vmax=h2.VMax();
302 cout << " MultiDish::GetResponse[1] VMin=" << h2.VMin() << " VMax= " << vmax
303 << " h(0,0)=" << h2(0,0) << " kx1,ky1->h(" << ib <<"," << jb << ")=" << h2(ib,jb) <<endl;
304 // double fnorm=sqrt((double)dishes_.size())/h2.VMax();
305 double fnorm=1.;
306 if (vmax > sumw) {
307 fnorm=(double)dishes_.size()/h2.VMax();
308 cout << " MultiDish::GetResponse[2]/Warning h2.VMax()=" << vmax << " > sumw=" << sumw << endl;
309 cout << " ... NDishes=" << dishes_.size() << " sumw=" << sumw
310 << " Renormalizing x NDishes/VMax " << fnorm << endl;
311 }
312 else {
313 fnorm=(double)dishes_.size()/sumw;
314 cout << " MultiDish::GetResponse[3] NDishes=" << dishes_.size() << " sumw=" << sumw
315 << " Renormalizing x NDishes/sumw " << fnorm << endl;
316 }
317 h2 *= fnorm;
318 cout << " ---- MultiDish::GetResponse/[4] APRES VMin=" << h2.VMin() << " VMax= " << h2.VMax() << " h(0,0)="
319 << h2(0,0) << endl;
320 return h2;
321}
322
323HProf MultiDish::GetProjNoiseLevel(int nbin, bool fgnorm1)
324{
325 r_8 vmin,vmax;
326 h2w_.GetMinMax(vmin,vmax);
327 double seuil=vmax/10000.;
328 if (seuil<1.e-6) seuil=1.e-6;
329 r_8 facnorm=((fgnorm1)?vmax:1.);
330 cout << " MultiDish::GetProjNoiseLevel Min,Max=" << vmin << " , " << vmax
331 << " facnorm=" << facnorm << " seuil=" << seuil << endl;
332 HProf hp(0,kmax_,nbin);
333 for(sa_size_t j=0; j<h2w_.NBinY(); j++) {
334 double y=h2w_.Y(j);
335 for(sa_size_t i=0; i<h2w_.NBinX(); i++) {
336 double x=h2w_.X(i);
337 double yw=h2w_(i,j);
338 if (yw<seuil) continue;
339 hp.Add(sqrt(x*x+y*y),facnorm/yw);
340 }
341 }
342 return hp;
343}
344
345HProf MultiDish::GetProjResponse(int nbin, bool fgnorm1)
346{
347 r_8 vmin,vmax;
348 h2w_.GetMinMax(vmin,vmax);
349 r_8 facnorm=((fgnorm1)?(1./vmax):1.);
350 cout << " MultiDish::GetProjResponse Min,Max=" << vmin << " , " << vmax
351 << " facnorm=" << facnorm << endl;
352 HProf hp(0,kmax_,nbin);
353 for(sa_size_t j=0; j<h2w_.NBinY(); j++) {
354 double y=h2w_.Y(j);
355 for(sa_size_t i=0; i<h2w_.NBinX(); i++) {
356 double x=h2w_.X(i);
357 hp.Add(sqrt(x*x+y*y),h2w_(i,j)*facnorm);
358 }
359 }
360 return hp;
361}
362
363
364Histo2D MultiDish::PosDist(int nx, int ny, double dmax)
365{
366 if (dmax<1e-3) dmax=nx*dishes_[0].Diameter();
367 double dd = dmax/nx/2.;
368 Histo2D hpos(-dd,dmax+dd,nx+1,-dd,dmax+dd,ny+1);
369 for(size_t i=0; i<NbDishes(); i++) {
370 hpos.Add(dishes_[i].X, dishes_[i].Y);
371 }
372 return hpos;
373}
374
375double MultiDish::AddToHisto(double kx0, double ky0, double x, double y, double w, bool fgfh)
376{
377 double xxp = kx0+x;
378 double yyp = ky0+y;
379 double sumw=0.;
380 sumw += h2w_.Add(xxp, yyp, w, fgfh);
381 double xxm=kx0-x;
382 double yym=ky0-y;
383 // if (xxm>0.) {
384 sumw += h2w_.Add(xxm, yyp, w, fgfh);
385 // if (yym>0.)
386 sumw += h2w_.Add(xxm, yym, w, fgfh);
387 // }
388 // if (yym>0.)
389 sumw += h2w_.Add(xxp, yym, w, fgfh);
390 return sumw;
391}
392
393double MultiDish::CumulResp(Four2DResponse& rd, double theta, double phi)
394{
395 // cout << " MultiDish::CumulResp() theta=" << theta << " phi=" << phi << endl;
396 /*
397 double dx = h2w_.WBinX()/5;
398 double dy = h2w_.WBinY()/5;
399 int nbx = DeuxPI*rd.Dx()/dx+1;
400 int nby = DeuxPI*rd.Dy()/dy+1;
401 */
402 double dx,dy;
403 int nbx=beamnx_;
404 int nby=beamny_;
405 dx = DeuxPI*rd.Dx()/(double)nbx;
406 dy = DeuxPI*rd.Dy()/(double)nby;
407 if (mcnt_==0)
408 cout << " CumulResp() nbx=" << nbx << " nby=" << nby << " dx=" << dx << " dy=" << dy << endl;
409 mcnt_++;
410
411 double sumw = 0.;
412 Rotation rot(theta, phi);
413
414 for(size_t i=0; i<dishes_.size(); i++) {
415 for(size_t j=i; j<dishes_.size(); j++) {
416 double kx0 = DeuxPI*(dishes_[i].X-dishes_[j].X)/lambda_;
417 double ky0 = DeuxPI*(dishes_[i].Y-dishes_[j].Y)/lambda_;
418 double pgain=dishes_[i].Gain()*dishes_[j].Gain();
419 rot.Do(kx0, ky0);
420 // if (kx0<0) kx0=-kx0;
421 // if (ky0<0) ky0=-ky0;
422 bool fgfh= (!fgnoauto_ || (dishes_[i].ReflectorId()!=dishes_[j].ReflectorId()));
423 for(int ix=0; ix<nbx; ix++)
424 for(int jy=0; jy<nby; jy++) {
425 double x = ix*dx;
426 double y = jy*dy;
427 if ((ix>0)&&(jy>0)) {
428 sumw += AddToHisto(kx0, ky0, x, y, rd(x,y)*pgain, fgfh);
429 if (j!=i) sumw += AddToHisto(-kx0, -ky0, x, y, rd(x,y)*pgain, fgfh);
430 }
431 else {
432 if ((ix==0)&&(jy==0)) {
433 sumw += h2w_.Add(kx0, ky0, rd(0.,0.)*pgain, fgfh);
434 if (j!=i) sumw += h2w_.Add(-kx0, -ky0, rd(0.,0.)*pgain, fgfh);
435 }
436 else {
437 double w = rd(x,y)*pgain;
438 if (ix==0) {
439 sumw += h2w_.Add(kx0, ky0+y, w, fgfh);
440 sumw += h2w_.Add(kx0, ky0-y, w, fgfh);
441 if (j!=i) {
442 sumw += h2w_.Add(-kx0, -ky0+y, w, fgfh);
443 sumw += h2w_.Add(-kx0, -ky0-y, w, fgfh);
444 }
445 }
446 else {
447 sumw += h2w_.Add(kx0+x, ky0, w, fgfh);
448 sumw += h2w_.Add(kx0-x, ky0, w, fgfh);
449 if (j!=i) {
450 sumw += h2w_.Add(-kx0+x, -ky0, w, fgfh);
451 sumw += h2w_.Add(-kx0-x, -ky0, w, fgfh);
452 }
453 }
454 }
455 //
456 }
457 }
458 // if (i%10==0)
459 // cout << " MultiDish::CumulResp() done i=" << i << " / imax=" << dishes_.size()
460 // << " theta=" << theta << " phi=" << phi << endl;
461 }
462 }
463 return sumw;
464}
465
Note: See TracBrowser for help on using the repository browser.