source: Sophya/trunk/Cosmo/RadioBeam/mdish.h@ 4030

Last change on this file since 4030 was 4030, checked in by ansari, 14 years ago

Corrections papiers avec les commentaires du referee (1) - Reza 26/10/2011

File size: 6.6 KB
RevLine 
[3756]1// Classes to compute Multi-Dish or CRT-like radio interferometer response
2// R. Ansari - Avril-Mai 2010
3
4#ifndef MDISH_SEEN
5#define MDISH_SEEN
6
7#include "machdefs.h" // SOPHYA .h
8#include "sopnamsp.h" // SOPHYA .h
9#include <math.h>
10#include <iostream>
11#include <vector>
12#include <string>
13
14#include "genericfunc.h" // SOPHYA .h
15#include "array.h" // SOPHYA .h
[3783]16#include "qhist.h"
[3756]17
[3783]18#ifndef DeuxPI
[3756]19#define DeuxPI 2.*M_PI
[3783]20#endif
[3756]21
[3796]22// -- Four2DResponse : Reponse instrumentale ds le plan k_x,k_y (frequences angulaires theta,phi)
[3973]23// typ=1 : Reponse gaussienne parabole diametre D exp[ - 2 (lambda k_g / D )^2 ]
[3756]24// typ=2 : Reponse parabole diametre D Triangle <= kmax= 2 pi D / lambda
25// typ=3 : Reponse rectangle Dx x Dy Triangle (|kx|,|k_y|) <= (2 pi Dx / lambda, 2 pi Dx / lambda)
[3796]26// typ=22 : Reponse parabole diametre D Triangle <= kmax= 2 pi D / lambda avec un trou au centre
27
[3756]28class Four2DResponse {
29public:
30 // On donne dx=D/lambda=Dx/lambda , dy=Dy/lambda
[3789]31 Four2DResponse(int typ, double dx, double dy, double lambda=1.);
[3756]32
33 Four2DResponse(Four2DResponse const& a)
[3789]34 { typ_ = a.typ_; dx_=a.dx_; dy_=a.dy_; lambdaref_=a.lambdaref_;
35 lambda_=a.lambda_; lambda_ratio_=a.lambda_ratio_; }
[3756]36 Four2DResponse& operator=(Four2DResponse const& a)
[3789]37 { typ_ = a.typ_; dx_=a.dx_; dy_=a.dy_; lambdaref_=a.lambdaref_;
38 lambda_=a.lambda_; lambda_ratio_=a.lambda_ratio_; return (*this); }
[3756]39
[3787]40 inline void setLambdaRef(double lambda=1.)
41 { lambdaref_ = lambda; }
42 inline void setLambda(double lambda=1.)
[3789]43 { lambda_ = lambda; lambda_ratio_ = lambda_/lambdaref_; }
[3947]44
45 inline double getLambdaRef() { return lambdaref_; }
46 inline double getLambda() { return lambda_; }
[3787]47
[3756]48 // Return the 2D response for wave vector (kx,ky)
49 virtual double Value(double kx, double ky);
50 inline double operator()(double kx, double ky)
51 { return Value(kx, ky); }
[4030]52 // Retourne l'histo de reponse en fonction de k_x,k_y
[3930]53 virtual Histo2D GetResponse(int nx=255, int ny=255);
[4030]54 // Retourne l'histo de reponse en fonction de u=k_x/2 pi, v=k_y/2 pi
55 virtual Histo2D GetResponseUV(int nx=255, int ny=255);
56
[3947]57 // Retourne le niveau moyen du bruit projete 1D en fonction (sqrt(u^2+v^2)
58 HProf GetProjNoiseLevel(int nbin=128, bool fgnorm1=true);
59 // Retourne la reponse moyenne projetee 1D en fonction (sqrt(u^2+v^2)
60 HProf GetProjResponse(int nbin=128, bool fgnorm1=true);
61
[3756]62 inline double D() { return dx_; } ;
63 inline double Dx() { return dx_; } ;
64 inline double Dy() { return dy_; } ;
65
66 int typ_;
67 double dx_, dy_;
[3787]68 double lambdaref_, lambda_;
69 double lambda_ratio_; // lambdaref_/lambda_;
70
[3756]71};
72
[3788]73
[3756]74// -- Four2DRespTable : Reponse tabulee instrumentale ds le plan k_x,k_y (angles theta,phi)
75class Four2DRespTable : public Four2DResponse {
76public:
[3792]77 // Constructeur sans argument, utilise pour lire depuis un fichier
78 Four2DRespTable();
[3756]79 // On donne dx=D/lambda=Dx/lambda , dy=Dy/lambda
[3792]80 Four2DRespTable(Histo2D const & hrep, double d, double lambda=1.);
[3796]81 // Apres renormalisaton Value(kx,ky) <= max
82 double renormalize(double max=1.);
[3756]83 // Return the 2D response for wave vector (kx,ky)
84 virtual double Value(double kx, double ky);
[3792]85
86 void writeToPPF(string flnm);
87 void readFromPPF(string flnm);
88
[3756]89 Histo2D hrep_;
90};
91
[3788]92
93// -- Four2DRespRatio: Retourne le rapport de la reponse entre deux objets Four2DResponse
94class Four2DRespRatio : public Four2DResponse {
95public:
[3986]96 Four2DRespRatio(Four2DResponse& a, Four2DResponse& b, double maxratio=10.);
[3788]97 // Return the ratio a.Value(kx,ky) / b.Value(kx, ky) - with protection against divide by zero
98 virtual double Value(double kx, double ky);
99 Four2DResponse& a_;
100 Four2DResponse& b_;
[3991]101 double maxratio_, zerothr_;
[3788]102};
103
[3756]104// Classe toute simple pour representer un element de reception de type dish
105class Dish {
106public:
107 // Circular dish
108 Dish(int id, double x, double y, double diam)
[3947]109 : id_(id), X(x), Y(y), D(diam), Dx(D), Dy(D), fgcirc_(true), gain_(1.) { }
[3756]110 // Receiver with rectangular type answer in kx,ky plane
111 Dish(int id, double x, double y, double dx, double dy)
[3947]112 : id_(id), X(x), Y(y), D(sqrt(dx*dy)), Dx(dx), Dy(dy), fgcirc_(false), gain_(1.) { }
[3756]113 Dish(Dish const& a)
[3947]114 : id_(a.id_), X(a.X), Y(a.Y), D(a.D), Dx(a.Dx), Dy(a.Dy), fgcirc_(a.fgcirc_), gain_(a.gain_) { }
115 inline void setGain(double gain) { gain_=gain; return; }
[3756]116 inline bool isCircular() { return fgcirc_; }
117 inline int ReflectorId() { return id_; }
[3769]118 inline double Diameter() { return D; }
119 inline double DiameterX() { return Dx; }
[3930]120 inline double DiameterY() { return Dy; }
[3947]121 inline double Gain() { return gain_; }
[3756]122
123 int id_; // numero de reflecteur
[3988]124 double X,Y,D;
[3756]125 double Dx, Dy;
126 bool fgcirc_; // false -> rectangular dish
[3947]127 double gain_;
[3756]128};
129
130
131// -------------------------------------------------------------------
132// -- Pour calculer la reponse ds le plan kx,ky d'un system MultiDish
133class MultiDish {
134public:
135 MultiDish(double lambda, double dmax, vector<Dish>& dishes, bool fgnoauto=false);
136
[3932]137 // Pour phi, les angles phi, -phi, phi+pi, -(phi+pi) sont prises en compte
[3756]138 inline void SetThetaPhiRange(double thetamax=0., int ntet=1, double phimax=0., int nphi=1)
139 { thetamax_=thetamax; ntet_=ntet; phimax_=phimax; nphi_=nphi; }
140
[3932]141 inline int SetPrtLevel(int lev=0, int prtmod=10)
142 { int olev=prtlev_; prtlev_=lev; prtmodulo_=prtmod; return olev; }
143
[3756]144 inline void SetRespHisNBins(int nx=128, int ny=128)
145 { nx_=nx; ny_=ny; }
[3933]146 inline void SetBeamNSamples(int nx=128, int ny=128)
147 { beamnx_=nx; beamny_=ny; }
148
[3947]149 // Calcul la reponse ds le plan 2D (u,v) = (kx,ky)
150 void ComputeResponse();
151 // Retourne la reponse 2D ds le plan (u,v) = (kx,ky) sous forme d'histo 2D
[3756]152 Histo2D GetResponse();
153
[3947]154 // Retourne le niveau moyen du bruit projete 1D en fonction (sqrt(u^2+v^2)
155 HProf GetProjNoiseLevel(int nbin=128, bool fgnorm1=true);
156 // Retourne la reponse moyenne projetee 1D en fonction (sqrt(u^2+v^2)
157 HProf GetProjResponse(int nbin=128, bool fgnorm1=true);
158
[3756]159 double CumulResp(Four2DResponse& rd, double theta=0., double phi=0.);
160 inline size_t NbDishes() { return dishes_.size(); }
[3769]161 inline Dish& operator[](size_t k) { return dishes_[k]; }
[3756]162
[3769]163 virtual Histo2D PosDist(int nx=30, int ny=30, double dmax=0.);
164
165protected:
[3756]166 double AddToHisto(double kx0, double ky0, double x, double y, double w, bool fgfh);
167
[3947]168 double lambda_, dmax_, kmax_;
[3756]169 vector<Dish> dishes_;
170 bool fgnoauto_;
171 double thetamax_, phimax_;
172 int ntet_,nphi_;
[3933]173 int nx_, ny_; // nb de bins de l'histo de reponse
174 int beamnx_, beamny_; // nb de points d'echantillonnage du beam
175
[3756]176 // Histo2D h2w_, h2cnt_;
177 QHis2D h2w_;
[3947]178 bool fgcomputedone_;
[3756]179 int mcnt_;
[3932]180 int prtlev_,prtmodulo_;
[3756]181};
182
183
184#endif
Note: See TracBrowser for help on using the repository browser.