[3756] | 1 | // Classes to compute Multi-Dish or CRT-like radio interferometer response
|
---|
| 2 | // R. Ansari - Avril-Mai 2010
|
---|
| 3 |
|
---|
| 4 | #ifndef MDISH_SEEN
|
---|
| 5 | #define MDISH_SEEN
|
---|
| 6 |
|
---|
| 7 | #include "machdefs.h" // SOPHYA .h
|
---|
| 8 | #include "sopnamsp.h" // SOPHYA .h
|
---|
| 9 | #include <math.h>
|
---|
| 10 | #include <iostream>
|
---|
| 11 | #include <vector>
|
---|
| 12 | #include <string>
|
---|
| 13 |
|
---|
| 14 | #include "genericfunc.h" // SOPHYA .h
|
---|
| 15 | #include "array.h" // SOPHYA .h
|
---|
[3783] | 16 | #include "qhist.h"
|
---|
[3756] | 17 |
|
---|
[3783] | 18 | #ifndef DeuxPI
|
---|
[3756] | 19 | #define DeuxPI 2.*M_PI
|
---|
[3783] | 20 | #endif
|
---|
[3756] | 21 |
|
---|
[3796] | 22 | // -- Four2DResponse : Reponse instrumentale ds le plan k_x,k_y (frequences angulaires theta,phi)
|
---|
[3973] | 23 | // typ=1 : Reponse gaussienne parabole diametre D exp[ - 2 (lambda k_g / D )^2 ]
|
---|
[3756] | 24 | // typ=2 : Reponse parabole diametre D Triangle <= kmax= 2 pi D / lambda
|
---|
| 25 | // typ=3 : Reponse rectangle Dx x Dy Triangle (|kx|,|k_y|) <= (2 pi Dx / lambda, 2 pi Dx / lambda)
|
---|
[3796] | 26 | // typ=22 : Reponse parabole diametre D Triangle <= kmax= 2 pi D / lambda avec un trou au centre
|
---|
| 27 |
|
---|
[3756] | 28 | class Four2DResponse {
|
---|
| 29 | public:
|
---|
| 30 | // On donne dx=D/lambda=Dx/lambda , dy=Dy/lambda
|
---|
[3789] | 31 | Four2DResponse(int typ, double dx, double dy, double lambda=1.);
|
---|
[3756] | 32 |
|
---|
| 33 | Four2DResponse(Four2DResponse const& a)
|
---|
[3789] | 34 | { typ_ = a.typ_; dx_=a.dx_; dy_=a.dy_; lambdaref_=a.lambdaref_;
|
---|
| 35 | lambda_=a.lambda_; lambda_ratio_=a.lambda_ratio_; }
|
---|
[3756] | 36 | Four2DResponse& operator=(Four2DResponse const& a)
|
---|
[3789] | 37 | { typ_ = a.typ_; dx_=a.dx_; dy_=a.dy_; lambdaref_=a.lambdaref_;
|
---|
| 38 | lambda_=a.lambda_; lambda_ratio_=a.lambda_ratio_; return (*this); }
|
---|
[3756] | 39 |
|
---|
[3787] | 40 | inline void setLambdaRef(double lambda=1.)
|
---|
| 41 | { lambdaref_ = lambda; }
|
---|
| 42 | inline void setLambda(double lambda=1.)
|
---|
[3789] | 43 | { lambda_ = lambda; lambda_ratio_ = lambda_/lambdaref_; }
|
---|
[3947] | 44 |
|
---|
| 45 | inline double getLambdaRef() { return lambdaref_; }
|
---|
| 46 | inline double getLambda() { return lambda_; }
|
---|
[3787] | 47 |
|
---|
[3756] | 48 | // Return the 2D response for wave vector (kx,ky)
|
---|
| 49 | virtual double Value(double kx, double ky);
|
---|
| 50 | inline double operator()(double kx, double ky)
|
---|
| 51 | { return Value(kx, ky); }
|
---|
[4030] | 52 | // Retourne l'histo de reponse en fonction de k_x,k_y
|
---|
[3930] | 53 | virtual Histo2D GetResponse(int nx=255, int ny=255);
|
---|
[4030] | 54 | // Retourne l'histo de reponse en fonction de u=k_x/2 pi, v=k_y/2 pi
|
---|
| 55 | virtual Histo2D GetResponseUV(int nx=255, int ny=255);
|
---|
| 56 |
|
---|
[3947] | 57 | // Retourne le niveau moyen du bruit projete 1D en fonction (sqrt(u^2+v^2)
|
---|
| 58 | HProf GetProjNoiseLevel(int nbin=128, bool fgnorm1=true);
|
---|
| 59 | // Retourne la reponse moyenne projetee 1D en fonction (sqrt(u^2+v^2)
|
---|
| 60 | HProf GetProjResponse(int nbin=128, bool fgnorm1=true);
|
---|
| 61 |
|
---|
[3756] | 62 | inline double D() { return dx_; } ;
|
---|
| 63 | inline double Dx() { return dx_; } ;
|
---|
| 64 | inline double Dy() { return dy_; } ;
|
---|
| 65 |
|
---|
| 66 | int typ_;
|
---|
| 67 | double dx_, dy_;
|
---|
[3787] | 68 | double lambdaref_, lambda_;
|
---|
| 69 | double lambda_ratio_; // lambdaref_/lambda_;
|
---|
| 70 |
|
---|
[3756] | 71 | };
|
---|
| 72 |
|
---|
[3788] | 73 |
|
---|
[3756] | 74 | // -- Four2DRespTable : Reponse tabulee instrumentale ds le plan k_x,k_y (angles theta,phi)
|
---|
| 75 | class Four2DRespTable : public Four2DResponse {
|
---|
| 76 | public:
|
---|
[3792] | 77 | // Constructeur sans argument, utilise pour lire depuis un fichier
|
---|
| 78 | Four2DRespTable();
|
---|
[3756] | 79 | // On donne dx=D/lambda=Dx/lambda , dy=Dy/lambda
|
---|
[3792] | 80 | Four2DRespTable(Histo2D const & hrep, double d, double lambda=1.);
|
---|
[3796] | 81 | // Apres renormalisaton Value(kx,ky) <= max
|
---|
| 82 | double renormalize(double max=1.);
|
---|
[3756] | 83 | // Return the 2D response for wave vector (kx,ky)
|
---|
| 84 | virtual double Value(double kx, double ky);
|
---|
[3792] | 85 |
|
---|
| 86 | void writeToPPF(string flnm);
|
---|
| 87 | void readFromPPF(string flnm);
|
---|
| 88 |
|
---|
[3756] | 89 | Histo2D hrep_;
|
---|
| 90 | };
|
---|
| 91 |
|
---|
[3788] | 92 |
|
---|
| 93 | // -- Four2DRespRatio: Retourne le rapport de la reponse entre deux objets Four2DResponse
|
---|
| 94 | class Four2DRespRatio : public Four2DResponse {
|
---|
| 95 | public:
|
---|
[3986] | 96 | Four2DRespRatio(Four2DResponse& a, Four2DResponse& b, double maxratio=10.);
|
---|
[3788] | 97 | // Return the ratio a.Value(kx,ky) / b.Value(kx, ky) - with protection against divide by zero
|
---|
| 98 | virtual double Value(double kx, double ky);
|
---|
| 99 | Four2DResponse& a_;
|
---|
| 100 | Four2DResponse& b_;
|
---|
[3991] | 101 | double maxratio_, zerothr_;
|
---|
[3788] | 102 | };
|
---|
| 103 |
|
---|
[3756] | 104 | // Classe toute simple pour representer un element de reception de type dish
|
---|
| 105 | class Dish {
|
---|
| 106 | public:
|
---|
| 107 | // Circular dish
|
---|
| 108 | Dish(int id, double x, double y, double diam)
|
---|
[3947] | 109 | : id_(id), X(x), Y(y), D(diam), Dx(D), Dy(D), fgcirc_(true), gain_(1.) { }
|
---|
[3756] | 110 | // Receiver with rectangular type answer in kx,ky plane
|
---|
| 111 | Dish(int id, double x, double y, double dx, double dy)
|
---|
[3947] | 112 | : id_(id), X(x), Y(y), D(sqrt(dx*dy)), Dx(dx), Dy(dy), fgcirc_(false), gain_(1.) { }
|
---|
[3756] | 113 | Dish(Dish const& a)
|
---|
[3947] | 114 | : id_(a.id_), X(a.X), Y(a.Y), D(a.D), Dx(a.Dx), Dy(a.Dy), fgcirc_(a.fgcirc_), gain_(a.gain_) { }
|
---|
| 115 | inline void setGain(double gain) { gain_=gain; return; }
|
---|
[3756] | 116 | inline bool isCircular() { return fgcirc_; }
|
---|
| 117 | inline int ReflectorId() { return id_; }
|
---|
[3769] | 118 | inline double Diameter() { return D; }
|
---|
| 119 | inline double DiameterX() { return Dx; }
|
---|
[3930] | 120 | inline double DiameterY() { return Dy; }
|
---|
[3947] | 121 | inline double Gain() { return gain_; }
|
---|
[3756] | 122 |
|
---|
| 123 | int id_; // numero de reflecteur
|
---|
[3988] | 124 | double X,Y,D;
|
---|
[3756] | 125 | double Dx, Dy;
|
---|
| 126 | bool fgcirc_; // false -> rectangular dish
|
---|
[3947] | 127 | double gain_;
|
---|
[3756] | 128 | };
|
---|
| 129 |
|
---|
| 130 |
|
---|
| 131 | // -------------------------------------------------------------------
|
---|
| 132 | // -- Pour calculer la reponse ds le plan kx,ky d'un system MultiDish
|
---|
| 133 | class MultiDish {
|
---|
| 134 | public:
|
---|
| 135 | MultiDish(double lambda, double dmax, vector<Dish>& dishes, bool fgnoauto=false);
|
---|
| 136 |
|
---|
[3932] | 137 | // Pour phi, les angles phi, -phi, phi+pi, -(phi+pi) sont prises en compte
|
---|
[3756] | 138 | inline void SetThetaPhiRange(double thetamax=0., int ntet=1, double phimax=0., int nphi=1)
|
---|
| 139 | { thetamax_=thetamax; ntet_=ntet; phimax_=phimax; nphi_=nphi; }
|
---|
| 140 |
|
---|
[3932] | 141 | inline int SetPrtLevel(int lev=0, int prtmod=10)
|
---|
| 142 | { int olev=prtlev_; prtlev_=lev; prtmodulo_=prtmod; return olev; }
|
---|
| 143 |
|
---|
[3756] | 144 | inline void SetRespHisNBins(int nx=128, int ny=128)
|
---|
| 145 | { nx_=nx; ny_=ny; }
|
---|
[3933] | 146 | inline void SetBeamNSamples(int nx=128, int ny=128)
|
---|
| 147 | { beamnx_=nx; beamny_=ny; }
|
---|
| 148 |
|
---|
[3947] | 149 | // Calcul la reponse ds le plan 2D (u,v) = (kx,ky)
|
---|
| 150 | void ComputeResponse();
|
---|
| 151 | // Retourne la reponse 2D ds le plan (u,v) = (kx,ky) sous forme d'histo 2D
|
---|
[3756] | 152 | Histo2D GetResponse();
|
---|
| 153 |
|
---|
[3947] | 154 | // Retourne le niveau moyen du bruit projete 1D en fonction (sqrt(u^2+v^2)
|
---|
| 155 | HProf GetProjNoiseLevel(int nbin=128, bool fgnorm1=true);
|
---|
| 156 | // Retourne la reponse moyenne projetee 1D en fonction (sqrt(u^2+v^2)
|
---|
| 157 | HProf GetProjResponse(int nbin=128, bool fgnorm1=true);
|
---|
| 158 |
|
---|
[3756] | 159 | double CumulResp(Four2DResponse& rd, double theta=0., double phi=0.);
|
---|
| 160 | inline size_t NbDishes() { return dishes_.size(); }
|
---|
[3769] | 161 | inline Dish& operator[](size_t k) { return dishes_[k]; }
|
---|
[3756] | 162 |
|
---|
[3769] | 163 | virtual Histo2D PosDist(int nx=30, int ny=30, double dmax=0.);
|
---|
| 164 |
|
---|
| 165 | protected:
|
---|
[3756] | 166 | double AddToHisto(double kx0, double ky0, double x, double y, double w, bool fgfh);
|
---|
| 167 |
|
---|
[3947] | 168 | double lambda_, dmax_, kmax_;
|
---|
[3756] | 169 | vector<Dish> dishes_;
|
---|
| 170 | bool fgnoauto_;
|
---|
| 171 | double thetamax_, phimax_;
|
---|
| 172 | int ntet_,nphi_;
|
---|
[3933] | 173 | int nx_, ny_; // nb de bins de l'histo de reponse
|
---|
| 174 | int beamnx_, beamny_; // nb de points d'echantillonnage du beam
|
---|
| 175 |
|
---|
[3756] | 176 | // Histo2D h2w_, h2cnt_;
|
---|
| 177 | QHis2D h2w_;
|
---|
[3947] | 178 | bool fgcomputedone_;
|
---|
[3756] | 179 | int mcnt_;
|
---|
[3932] | 180 | int prtlev_,prtmodulo_;
|
---|
[3756] | 181 | };
|
---|
| 182 |
|
---|
| 183 |
|
---|
| 184 | #endif
|
---|