// Classes to compute Multi-Dish or CRT-like radio interferometer response // R. Ansari - Avril-Mai 2010 #ifndef MDISH_SEEN #define MDISH_SEEN #include "machdefs.h" // SOPHYA .h #include "sopnamsp.h" // SOPHYA .h #include #include #include #include #include "genericfunc.h" // SOPHYA .h #include "array.h" // SOPHYA .h #include "histats.h" // SOPHYA .h #define DeuxPI 2.*M_PI // -- Four2DResponse : Reponse instrumentale ds le plan k_x,k_y (angles theta,phi) // typ=1 : Reponse gaussienne parabole diametre D exp[ - 0.5 (lambda k_g / D )^2 ] // typ=2 : Reponse parabole diametre D Triangle <= kmax= 2 pi D / lambda // typ=3 : Reponse rectangle Dx x Dy Triangle (|kx|,|k_y|) <= (2 pi Dx / lambda, 2 pi Dx / lambda) class Four2DResponse { public: // On donne dx=D/lambda=Dx/lambda , dy=Dy/lambda Four2DResponse(int typ, double dx, double dy); Four2DResponse(Four2DResponse const& a) { typ_ = a.typ_; dx_=a.dx_; dy_=a.dy_; } Four2DResponse& operator=(Four2DResponse const& a) { typ_ = a.typ_; dx_=a.dx_; dy_=a.dy_; return (*this); } // Return the 2D response for wave vector (kx,ky) virtual double Value(double kx, double ky); inline double operator()(double kx, double ky) { return Value(kx, ky); } virtual Histo2D GetResponse(int nx=256, int ny=256); inline double D() { return dx_; } ; inline double Dx() { return dx_; } ; inline double Dy() { return dy_; } ; int typ_; double dx_, dy_; }; // -- Four2DRespTable : Reponse tabulee instrumentale ds le plan k_x,k_y (angles theta,phi) class Four2DRespTable : public Four2DResponse { public: // On donne dx=D/lambda=Dx/lambda , dy=Dy/lambda Four2DRespTable(Histo2D const & hrep, double d); // Return the 2D response for wave vector (kx,ky) virtual double Value(double kx, double ky); Histo2D hrep_; }; // Classe toute simple pour representer un element de reception de type dish class Dish { public: // Circular dish Dish(int id, double x, double y, double diam) : id_(id), X(x), Y(y), D(diam), Dx(0.), Dy(0.), fgcirc_(true) { } // Receiver with rectangular type answer in kx,ky plane Dish(int id, double x, double y, double dx, double dy) : id_(id), X(x), Y(y), D(0.), Dx(dx), Dy(dy), fgcirc_(false) { } Dish(Dish const& a) : id_(a.id_), X(a.X), Y(a.Y), D(a.D), Dx(a.Dx), Dy(a.Dy), fgcirc_(a.fgcirc_) { } inline bool isCircular() { return fgcirc_; } inline int ReflectorId() { return id_; } int id_; // numero de reflecteur double D,X,Y; double Dx, Dy; bool fgcirc_; // false -> rectangular dish }; // ----------------------------------- // -- Classe ressemblant a un histo 2D class QHis2D { public: QHis2D(); QHis2D(r_8 xMin,r_8 xMax,int_4 nxBin,r_8 yMin,r_8 yMax,int_4 nyBin); void Define(r_8 xMin,r_8 xMax,int_4 nxBin,r_8 yMin,r_8 yMax,int_4 nyBin); double Add(r_8 x, r_8 y, r_8 w, bool fgfh); inline double WBinX() { return dxb; } inline double WBinY() { return dyb; } Histo2D Convert(); r_8 xmin,xmax,ymin,ymax; r_8 dxb,dyb; sa_size_t nx,ny; TArray aw; double sumw0; }; // ------------------------------------------------------------------- // -- Pour calculer la reponse ds le plan kx,ky d'un system MultiDish class MultiDish { public: MultiDish(double lambda, double dmax, vector& dishes, bool fgnoauto=false); inline void SetThetaPhiRange(double thetamax=0., int ntet=1, double phimax=0., int nphi=1) { thetamax_=thetamax; ntet_=ntet; phimax_=phimax; nphi_=nphi; } inline void SetRespHisNBins(int nx=128, int ny=128) { nx_=nx; ny_=ny; } Histo2D GetResponse(); double CumulResp(Four2DResponse& rd, double theta=0., double phi=0.); inline size_t NbDishes() { return dishes_.size(); } double AddToHisto(double kx0, double ky0, double x, double y, double w, bool fgfh); double lambda_, dmax_; vector dishes_; bool fgnoauto_; double thetamax_, phimax_; int ntet_,nphi_; int nx_, ny_; // Histo2D h2w_, h2cnt_; QHis2D h2w_; int mcnt_; }; #endif