// Classes to compute Multi-Dish or CRT-like radio interferometer response // R. Ansari - Avril-Mai 2010 #ifndef MDISH_SEEN #define MDISH_SEEN #include "machdefs.h" // SOPHYA .h #include "sopnamsp.h" // SOPHYA .h #include #include #include #include #include "genericfunc.h" // SOPHYA .h #include "array.h" // SOPHYA .h #include "qhist.h" #ifndef DeuxPI #define DeuxPI 2.*M_PI #endif // -- Four2DResponse : Reponse instrumentale ds le plan k_x,k_y (frequences angulaires theta,phi) // typ=1 : Reponse gaussienne parabole diametre D exp[ - 2 (lambda k_g / D )^2 ] // typ=2 : Reponse parabole diametre D Triangle <= kmax= 2 pi D / lambda // typ=3 : Reponse rectangle Dx x Dy Triangle (|kx|,|k_y|) <= (2 pi Dx / lambda, 2 pi Dx / lambda) // typ=22 : Reponse parabole diametre D Triangle <= kmax= 2 pi D / lambda avec un trou au centre class Four2DResponse { public: // On donne dx=D/lambda=Dx/lambda , dy=Dy/lambda Four2DResponse(int typ, double dx, double dy, double lambda=1.); Four2DResponse(Four2DResponse const& a) { typ_ = a.typ_; dx_=a.dx_; dy_=a.dy_; lambdaref_=a.lambdaref_; lambda_=a.lambda_; lambda_ratio_=a.lambda_ratio_; } Four2DResponse& operator=(Four2DResponse const& a) { typ_ = a.typ_; dx_=a.dx_; dy_=a.dy_; lambdaref_=a.lambdaref_; lambda_=a.lambda_; lambda_ratio_=a.lambda_ratio_; return (*this); } inline void setLambdaRef(double lambda=1.) { lambdaref_ = lambda; } inline void setLambda(double lambda=1.) { lambda_ = lambda; lambda_ratio_ = lambda_/lambdaref_; } inline double getLambdaRef() { return lambdaref_; } inline double getLambda() { return lambda_; } // Return the 2D response for wave vector (kx,ky) virtual double Value(double kx, double ky); inline double operator()(double kx, double ky) { return Value(kx, ky); } virtual Histo2D GetResponse(int nx=255, int ny=255); // Retourne le niveau moyen du bruit projete 1D en fonction (sqrt(u^2+v^2) HProf GetProjNoiseLevel(int nbin=128, bool fgnorm1=true); // Retourne la reponse moyenne projetee 1D en fonction (sqrt(u^2+v^2) HProf GetProjResponse(int nbin=128, bool fgnorm1=true); inline double D() { return dx_; } ; inline double Dx() { return dx_; } ; inline double Dy() { return dy_; } ; int typ_; double dx_, dy_; double lambdaref_, lambda_; double lambda_ratio_; // lambdaref_/lambda_; }; // -- Four2DRespTable : Reponse tabulee instrumentale ds le plan k_x,k_y (angles theta,phi) class Four2DRespTable : public Four2DResponse { public: // Constructeur sans argument, utilise pour lire depuis un fichier Four2DRespTable(); // On donne dx=D/lambda=Dx/lambda , dy=Dy/lambda Four2DRespTable(Histo2D const & hrep, double d, double lambda=1.); // Apres renormalisaton Value(kx,ky) <= max double renormalize(double max=1.); // Return the 2D response for wave vector (kx,ky) virtual double Value(double kx, double ky); void writeToPPF(string flnm); void readFromPPF(string flnm); Histo2D hrep_; }; // -- Four2DRespRatio: Retourne le rapport de la reponse entre deux objets Four2DResponse class Four2DRespRatio : public Four2DResponse { public: Four2DRespRatio(Four2DResponse& a, Four2DResponse& b, double maxratio=10.); // Return the ratio a.Value(kx,ky) / b.Value(kx, ky) - with protection against divide by zero virtual double Value(double kx, double ky); Four2DResponse& a_; Four2DResponse& b_; double maxratio_; }; // Classe toute simple pour representer un element de reception de type dish class Dish { public: // Circular dish Dish(int id, double x, double y, double diam) : id_(id), X(x), Y(y), D(diam), Dx(D), Dy(D), fgcirc_(true), gain_(1.) { } // Receiver with rectangular type answer in kx,ky plane Dish(int id, double x, double y, double dx, double dy) : id_(id), X(x), Y(y), D(sqrt(dx*dy)), Dx(dx), Dy(dy), fgcirc_(false), gain_(1.) { } Dish(Dish const& a) : id_(a.id_), X(a.X), Y(a.Y), D(a.D), Dx(a.Dx), Dy(a.Dy), fgcirc_(a.fgcirc_), gain_(a.gain_) { } inline void setGain(double gain) { gain_=gain; return; } inline bool isCircular() { return fgcirc_; } inline int ReflectorId() { return id_; } inline double Diameter() { return D; } inline double DiameterX() { return Dx; } inline double DiameterY() { return Dy; } inline double Gain() { return gain_; } int id_; // numero de reflecteur double X,Y,D; double Dx, Dy; bool fgcirc_; // false -> rectangular dish double gain_; }; // ------------------------------------------------------------------- // -- Pour calculer la reponse ds le plan kx,ky d'un system MultiDish class MultiDish { public: MultiDish(double lambda, double dmax, vector& dishes, bool fgnoauto=false); // Pour phi, les angles phi, -phi, phi+pi, -(phi+pi) sont prises en compte inline void SetThetaPhiRange(double thetamax=0., int ntet=1, double phimax=0., int nphi=1) { thetamax_=thetamax; ntet_=ntet; phimax_=phimax; nphi_=nphi; } inline int SetPrtLevel(int lev=0, int prtmod=10) { int olev=prtlev_; prtlev_=lev; prtmodulo_=prtmod; return olev; } inline void SetRespHisNBins(int nx=128, int ny=128) { nx_=nx; ny_=ny; } inline void SetBeamNSamples(int nx=128, int ny=128) { beamnx_=nx; beamny_=ny; } // Calcul la reponse ds le plan 2D (u,v) = (kx,ky) void ComputeResponse(); // Retourne la reponse 2D ds le plan (u,v) = (kx,ky) sous forme d'histo 2D Histo2D GetResponse(); // Retourne le niveau moyen du bruit projete 1D en fonction (sqrt(u^2+v^2) HProf GetProjNoiseLevel(int nbin=128, bool fgnorm1=true); // Retourne la reponse moyenne projetee 1D en fonction (sqrt(u^2+v^2) HProf GetProjResponse(int nbin=128, bool fgnorm1=true); double CumulResp(Four2DResponse& rd, double theta=0., double phi=0.); inline size_t NbDishes() { return dishes_.size(); } inline Dish& operator[](size_t k) { return dishes_[k]; } virtual Histo2D PosDist(int nx=30, int ny=30, double dmax=0.); protected: double AddToHisto(double kx0, double ky0, double x, double y, double w, bool fgfh); double lambda_, dmax_, kmax_; vector dishes_; bool fgnoauto_; double thetamax_, phimax_; int ntet_,nphi_; int nx_, ny_; // nb de bins de l'histo de reponse int beamnx_, beamny_; // nb de points d'echantillonnage du beam // Histo2D h2w_, h2cnt_; QHis2D h2w_; bool fgcomputedone_; int mcnt_; int prtlev_,prtmodulo_; }; #endif