| 1 | //  Classes to compute Multi-Dish or CRT-like radio interferometer response | 
|---|
| 2 | //  R. Ansari - Avril-Mai 2010 | 
|---|
| 3 |  | 
|---|
| 4 | #ifndef MDISH_SEEN | 
|---|
| 5 | #define MDISH_SEEN | 
|---|
| 6 |  | 
|---|
| 7 | #include "machdefs.h"      // SOPHYA .h | 
|---|
| 8 | #include "sopnamsp.h"      // SOPHYA .h | 
|---|
| 9 | #include <math.h> | 
|---|
| 10 | #include <iostream> | 
|---|
| 11 | #include <vector> | 
|---|
| 12 | #include <string> | 
|---|
| 13 |  | 
|---|
| 14 | #include "genericfunc.h"   // SOPHYA .h | 
|---|
| 15 | #include "array.h"         // SOPHYA .h | 
|---|
| 16 | #include "histats.h"       // SOPHYA .h | 
|---|
| 17 |  | 
|---|
| 18 | #define DeuxPI 2.*M_PI | 
|---|
| 19 |  | 
|---|
| 20 | // -- Four2DResponse : Reponse instrumentale ds le plan k_x,k_y (angles theta,phi) | 
|---|
| 21 | // typ=1 : Reponse gaussienne parabole diametre D exp[ - 0.5  (lambda  k_g / D )^2 ] | 
|---|
| 22 | // typ=2 : Reponse parabole diametre D  Triangle <= kmax= 2 pi D / lambda | 
|---|
| 23 | // typ=3 : Reponse rectangle Dx x Dy  Triangle (|kx|,|k_y|) <= (2 pi Dx / lambda, 2 pi Dx / lambda) | 
|---|
| 24 | class Four2DResponse  { | 
|---|
| 25 | public: | 
|---|
| 26 | // On donne dx=D/lambda=Dx/lambda , dy=Dy/lambda | 
|---|
| 27 | Four2DResponse(int typ, double dx, double dy); | 
|---|
| 28 |  | 
|---|
| 29 | Four2DResponse(Four2DResponse const& a) | 
|---|
| 30 | { typ_ = a.typ_; dx_=a.dx_; dy_=a.dy_; } | 
|---|
| 31 | Four2DResponse& operator=(Four2DResponse const& a) | 
|---|
| 32 | { typ_ = a.typ_; dx_=a.dx_; dy_=a.dy_; return (*this); } | 
|---|
| 33 |  | 
|---|
| 34 | // Return the 2D response for wave vector (kx,ky) | 
|---|
| 35 | virtual double Value(double kx, double ky); | 
|---|
| 36 | inline  double operator()(double kx, double ky) | 
|---|
| 37 | { return Value(kx, ky); } | 
|---|
| 38 | virtual Histo2D GetResponse(int nx=256, int ny=256); | 
|---|
| 39 | inline double D() { return dx_; } ; | 
|---|
| 40 | inline double Dx() { return dx_; } ; | 
|---|
| 41 | inline double Dy() { return dy_; } ; | 
|---|
| 42 |  | 
|---|
| 43 | int typ_; | 
|---|
| 44 | double dx_, dy_; | 
|---|
| 45 | }; | 
|---|
| 46 |  | 
|---|
| 47 | // -- Four2DRespTable : Reponse tabulee instrumentale ds le plan k_x,k_y (angles theta,phi) | 
|---|
| 48 | class Four2DRespTable : public  Four2DResponse { | 
|---|
| 49 | public: | 
|---|
| 50 | // On donne dx=D/lambda=Dx/lambda , dy=Dy/lambda | 
|---|
| 51 | Four2DRespTable(Histo2D const & hrep, double d); | 
|---|
| 52 | // Return the 2D response for wave vector (kx,ky) | 
|---|
| 53 | virtual double Value(double kx, double ky); | 
|---|
| 54 | Histo2D hrep_; | 
|---|
| 55 | }; | 
|---|
| 56 |  | 
|---|
| 57 | // Classe toute simple pour representer un element de reception de type dish | 
|---|
| 58 | class Dish { | 
|---|
| 59 | public: | 
|---|
| 60 | // Circular dish | 
|---|
| 61 | Dish(int id, double x, double y, double diam) | 
|---|
| 62 | :  id_(id), X(x), Y(y), D(diam), Dx(0.), Dy(0.), fgcirc_(true)   {   } | 
|---|
| 63 | // Receiver with rectangular type answer in kx,ky plane | 
|---|
| 64 | Dish(int id, double x, double y, double dx, double dy) | 
|---|
| 65 | :  id_(id), X(x), Y(y), D(0.), Dx(dx), Dy(dy), fgcirc_(false)   {   } | 
|---|
| 66 | Dish(Dish const& a) | 
|---|
| 67 | :  id_(a.id_), X(a.X), Y(a.Y), D(a.D), Dx(a.Dx), Dy(a.Dy), fgcirc_(a.fgcirc_)     {   } | 
|---|
| 68 | inline bool isCircular() { return fgcirc_; } | 
|---|
| 69 | inline int ReflectorId() { return id_; } | 
|---|
| 70 |  | 
|---|
| 71 | int id_;   // numero de reflecteur | 
|---|
| 72 | double D,X,Y; | 
|---|
| 73 | double Dx, Dy; | 
|---|
| 74 | bool fgcirc_;  // false -> rectangular dish | 
|---|
| 75 | }; | 
|---|
| 76 |  | 
|---|
| 77 | // ----------------------------------- | 
|---|
| 78 | // -- Classe ressemblant a un histo 2D | 
|---|
| 79 | class QHis2D { | 
|---|
| 80 | public: | 
|---|
| 81 | QHis2D(); | 
|---|
| 82 | QHis2D(r_8 xMin,r_8 xMax,int_4 nxBin,r_8 yMin,r_8 yMax,int_4 nyBin); | 
|---|
| 83 | void Define(r_8 xMin,r_8 xMax,int_4 nxBin,r_8 yMin,r_8 yMax,int_4 nyBin); | 
|---|
| 84 | double Add(r_8 x, r_8 y, r_8 w, bool fgfh); | 
|---|
| 85 | inline double WBinX() { return dxb; } | 
|---|
| 86 | inline double WBinY() { return dyb; } | 
|---|
| 87 | Histo2D Convert(); | 
|---|
| 88 |  | 
|---|
| 89 | r_8 xmin,xmax,ymin,ymax; | 
|---|
| 90 | r_8 dxb,dyb; | 
|---|
| 91 | sa_size_t nx,ny; | 
|---|
| 92 | TArray<r_8> aw; | 
|---|
| 93 | double sumw0; | 
|---|
| 94 | }; | 
|---|
| 95 |  | 
|---|
| 96 | // ------------------------------------------------------------------- | 
|---|
| 97 | // -- Pour calculer la reponse ds le plan kx,ky d'un system MultiDish | 
|---|
| 98 | class MultiDish { | 
|---|
| 99 | public: | 
|---|
| 100 | MultiDish(double lambda, double dmax, vector<Dish>& dishes, bool fgnoauto=false); | 
|---|
| 101 |  | 
|---|
| 102 | inline void SetThetaPhiRange(double thetamax=0., int ntet=1, double phimax=0., int nphi=1) | 
|---|
| 103 | { thetamax_=thetamax; ntet_=ntet; phimax_=phimax; nphi_=nphi; } | 
|---|
| 104 |  | 
|---|
| 105 | inline void SetRespHisNBins(int nx=128, int ny=128) | 
|---|
| 106 | { nx_=nx; ny_=ny; } | 
|---|
| 107 | Histo2D GetResponse(); | 
|---|
| 108 |  | 
|---|
| 109 | double CumulResp(Four2DResponse& rd, double theta=0., double phi=0.); | 
|---|
| 110 | inline size_t NbDishes() { return dishes_.size(); } | 
|---|
| 111 |  | 
|---|
| 112 | double AddToHisto(double kx0, double ky0, double x, double y, double w, bool fgfh); | 
|---|
| 113 |  | 
|---|
| 114 | double lambda_, dmax_; | 
|---|
| 115 | vector<Dish> dishes_; | 
|---|
| 116 | bool fgnoauto_; | 
|---|
| 117 | double thetamax_, phimax_; | 
|---|
| 118 | int ntet_,nphi_; | 
|---|
| 119 | int nx_, ny_; | 
|---|
| 120 | //   Histo2D h2w_, h2cnt_; | 
|---|
| 121 | QHis2D h2w_; | 
|---|
| 122 | int mcnt_; | 
|---|
| 123 | }; | 
|---|
| 124 |  | 
|---|
| 125 |  | 
|---|
| 126 | #endif | 
|---|