source: Sophya/trunk/Cosmo/RadioBeam/sensfgnd21cm.tex@ 3975

Last change on this file since 3975 was 3949, checked in by ansari, 15 years ago

Ajout papier sensibilite, version envoyee ce jour, Reza 17/02/2011

File size: 42.9 KB
Line 
1%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2% BAORadio : LAL/UPS, Irfu/SPP
3% 21cm LSS P(k) sensitivity and foreground substraction
4% R. Ansari, C. Magneville, J. Rich, C. Yeche et al
5% 2010 - 2011
6%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
7% aa.dem
8% AA vers. 7.0, LaTeX class for Astronomy & Astrophysics
9% demonstration file
10% (c) Springer-Verlag HD
11% revised by EDP Sciences
12%-----------------------------------------------------------------------
13%
14%\documentclass[referee]{aa} % for a referee version
15%\documentclass[onecolumn]{aa} % for a paper on 1 column
16%\documentclass[longauth]{aa} % for the long lists of affiliations
17%\documentclass[rnote]{aa} % for the research notes
18%\documentclass[letter]{aa} % for the letters
19%
20\documentclass[structabstract]{aa}
21%\documentclass[traditabstract]{aa} % for the abstract without structuration
22 % (traditional abstract)
23%
24\usepackage{amsmath}
25\usepackage{amssymb}
26
27\usepackage{graphicx}
28\usepackage{color}
29
30\newcommand{\HI}{$\mathrm{H_I}$ }
31\newcommand{\kb}{k_B} % Constante de Boltzmann
32\newcommand{\Tsys}{T_{sys}} % instrument noise (system) temperature
33\newcommand{\TTnu}{ T_{21}(\vec{\Theta} ,\nu) }
34\newcommand{\TTnuz}{ T_{21}(\vec{\Theta} ,\nu(z)) }
35\newcommand{\TTlam}{ T_{21}(\vec{\Theta} ,\lambda) }
36\newcommand{\TTlamz}{ T_{21}(\vec{\Theta} ,\lambda(z)) }
37
38\newcommand{\dlum}{d_L}
39\newcommand{\dang}{d_A}
40\newcommand{\hub}{ h_{70} }
41\newcommand{\hubb}{ h_{100} }
42
43\newcommand{\etaHI}{ \eta_{\tiny HI} }
44\newcommand{\fHI}{ f_{H_I}(z)}
45\newcommand{\gHI}{ g_{H_I}}
46\newcommand{\gHIz}{ g_{H_I}(z)}
47
48\newcommand{\vis}{{\cal V}_{12} }
49
50\newcommand{\LCDM}{$\Lambda \mathrm{CDM}$ }
51
52\newcommand{\citep}[1]{ (\cite{#1}) }
53%% \newcommand{\citep}[1]{ { (\tt{#1}) } }
54
55%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
56\usepackage{txfonts}
57%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
58%
59\begin{document}
60%
61 \title{21 cm observation of LSS at z $\sim$ 1 }
62
63 \subtitle{Instrument sensitivity and foreground subtraction}
64
65 \author{
66 R. Ansari
67 \inst{1} \inst{2}
68 \and
69 J.E. Campagne \inst{3}
70 \and
71 P.Colom \inst{5}
72 \and
73 J.M. Le Goff \inst{4}
74 \and
75 C. Magneville \inst{4}
76 \and
77 J.M. Martin \inst{5}
78 \and
79 M. Moniez \inst{3}
80 \and
81 J.Rich \inst{4}
82 \and
83 C.Y\`eche \inst{4}
84 }
85
86 \institute{
87 Universit\'e Paris-Sud, LAL, UMR 8607, F-91898 Orsay Cedex, France
88 \and
89 CNRS/IN2P3, F-91405 Orsay, France \\
90 \email{ansari@lal.in2p3.fr}
91 \and
92 Laboratoire de lÍAcc\'el\'erateur Lin\'eaire, CNRS-IN2P3, Universit\'e Paris-Sud,
93 B.P. 34, 91898 Orsay Cedex, France
94 % \thanks{The university of heaven temporarily does not
95 % accept e-mails}
96 \and
97 CEA, DSM/IRFU, Centre d'Etudes de Saclay, F-91191 Gif-sur-Yvette, France
98 \and
99 GEPI, UMR 8111, Observatoire de Paris, 61 Ave de l'Observatoire, 75014 Paris, France
100 }
101
102 \date{Received December 15, 2010; accepted xxxx, 2011}
103
104% \abstract{}{}{}{}{}
105% 5 {} token are mandatory
106
107 \abstract
108 % context heading (optional)
109 % {} leave it empty if necessary
110 { Large Scale Structures (LSS) in the universe can be traced using the neutral atomic hydrogen \HI through its 21
111cm emission. Such a 3D matter distribution map can be used to test the Cosmological model and to constrain the Dark Energy
112properties or its equation of state. A novel approach, called intensity mapping can be used to map the \HI distribution,
113using radio interferometers with large instanteneous field of view and waveband}
114 % aims heading (mandatory)
115 { In this paper, we study the sensitivity of different radio interferometer configuration for the observation of large scale structures
116 and BAO oscillations in 21 cm and we discuss the problem of foreground removal. }
117 % methods heading (mandatory)
118 { For each configuration, we determine instrument response by computing the (u,v) plane (Fourier angular frequency plane)
119 coverage using visibilities. The (u,v) plane response is then used to compute the three dimensional noise power spectrum,
120hence the instrument sensitivity for LSS P(k) measurement. We describe also a simple foreground subtraction method to
121separate LSS 21 cm signal from the foreground due to the galactic synchrotron and radio sources emission. }
122 % results heading (mandatory)
123 { We have computed the noise power spectrum for different instrument configuration as well as the extracted
124 LSS power spectrum, after separation of 21cm-LSS signal from the foregrounds. }
125 % conclusions heading (optional), leave it empty if necessary
126 { We show that an interferometer with few hundred elements and a surface coverage of
127 $\lesssim 10000 \mathrm{m^2}$ will be able to detect BAO signal at redshift z $\sim 1$ }
128
129 \keywords{ Cosmology:LSS --
130 Cosmology:Dark energy
131 }
132
133 \maketitle
134%
135%________________________________________________________________
136% {\color{red} \large \bf A discuter : liste des auteurs, plans du papier et repartition des taches
137% Toutes les figures sont provisoires }
138
139\section{Introduction}
140
141% {\color{red} \large \it Jim ( + M. Moniez ) } \\[1mm]
142The study of the statistical properties of Large Scale Structure (LSS) in the Universe and their evolution
143with redshift is one the major tools in observational cosmology. Theses structures are usually mapped through
144optical observation of galaxies which are used as tracers of the underlying matter distribution.
145An alternative and elegant approach for mapping the matter distribution, using neutral atomic hydrogen
146(\HI) as tracer with Total Intensity Mapping, has been proposed in recent years \citep{peterson.06} \citep{chang.08}.
147Mapping the matter distribution using HI 21 cm emission as a tracer has been extensively discussed in literature
148\citep{furlanetto.06} \citep{tegmark.08} and is being used in projects such as LOFAR \citep{rottgering.06} or
149MWA \citep{bowman.07} to observe reionisation at redshifts z $\sim$ 10.
150
151Evidences in favor of the acceleration of the expansion of the universe have been
152accumulated over the last twelve years, thank to the observation of distant supernovae,
153CMB anisotropies and detailed analysis of the LSS.
154A cosmological Constant ($\Lambda$) or new cosmological
155energy density called {\em Dark Energy} has been advocated as the origin of this acceleration.
156Dark Energy is considered as one the most intriguing puzzles in Physics and Cosmology.
157% Constraining the properties of this new cosmic fluid, more precisely
158% its equation of state is central to current cosmological researches.
159Several cosmological probes can be used to constrain the properties of this new cosmic fluid,
160more precisely its equation of state: The Hubble Diagram, or luminosity distance as a function
161of redshift of supernovae as standard candles, galaxy clusters, weak shear observations
162and Baryon Acoustic Oscillations (BAO).
163
164BAO are features imprinted in the distribution of galaxies, due to the frozen
165sound waves which were present in the photons baryons plasma prior to recombination
166at z $\sim$ 1100.
167This scale, which can be considered as a standard ruler with a comoving
168length of $\sim 150 Mpc$.
169Theses features have been first observed in the CMB anisotropies
170and are usually referred to as {\em acoustic pics} \citep{mauskopf.00} \citep{hinshaw.08}.
171The BAO modulation has been subsequently observed in the distribution of galaxies
172at low redshift ( $z < 1$) in the galaxy-galaxy correlation function by the SDSS
173\citep{eisenstein.05} \citep{percival.07} and 2dGFRS \citep{cole.05} optical galaxy surveys.
174
175Ongoing or future surveys plan to measure precisely the BAO scale in the redshift range
176$0 \lesssim z \lesssim 3$, using either optical observation of galaxies or through 3D mapping
177Lyman $\alpha$ absorption lines toward distant quasars \citep{baorss} \cite{baolya}.
178Mapping matter distribution using 21 cm emission of neutral hydrogen appears as
179a very promising technique to map matter distribution up to redshift $z \sim 3$,
180complementary to optical surveys, especially in the optical redshift desert range
181$1 \lesssim z \lesssim 2$.
182
183In section 2, we discuss the intensity mapping and its potential for measurement of the
184\HI mass distribution power spectrum. The method used in this paper to characterize
185a radio instrument response and sensitivity for $P_{\mathrm{H_I}}(k)$ is presented in section 3.
186We show also the results for the 3D noise power spectrum for several instrument configurations.
187The contribution of foreground emissions due to the galactic synchrotron and radio sources
188is described in section 4, as well as a simple component separation method The performance of this
189method using sky model or known radio sources are also presented in section 4.
190The constraints which can be obtained on the Dark Energy parameters and DETF figure
191of merit for typical 21 cm intensity mapping survey are shown in section 5.
192
193\citep{ansari.08}
194
195
196%__________________________________________________________________
197
198\section{Intensity mapping and \HI power spectrum}
199
200% {\color{red} \large \it Reza (+ P. Colom ?) } \\[1mm]
201
202\subsection{21 cm intensity mapping}
203%%%
204Most of the cosmological information in the LSS is located at large scales
205($ \gtrsim 1 \mathrm{deg}$), while the interpretation at smallest scales
206might suffer from the uncertainties on the non linear clustering effects.
207The BAO features in particular are at the degree angular scale on the sky
208and thus can be resolved easily with a rather modest size radio instrument
209($D \lesssim 100 \mathrm{m}$). The specific BAO clustering scale ($k_{\mathrm{BAO}}$
210can be measured both in the transverse plane (angular correlation function, $k_{\mathrm{BAO}}^\perp$)
211or along the longitudinal (line of sight or redshift, $k_{\mathrm{BAO}}^\parallel$ ) direction. A direct measurement of
212the Hubble parameter $H(z)$ can be obtained by comparing the longitudinal and transverse
213BAO scale. A reasonably good redshift resolution $\delta z \lesssim 0.01$ is needed to resolve
214longitudinal BAO clustering, which is a challenge for photometric optical surveys.
215
216In order to obtain a measurement of the LSS power spectrum with small enough statistical
217uncertainties (sample or cosmic variance), a large volume of the universe should be observed,
218typically few $Gpc^3$. Moreover, stringent constrain on DE parameters can be obtained when
219comparing the distance or Hubble parameter measurements as a function of redshift with
220DE models, which translates into a survey depth $\Delta z \gtrsim 1$.
221
222Radio instruments intended for BAO surveys must thus have large instantaneous field
223of view (FOV $\gtrsim 10 \mathrm{deg^2}$) and large bandwidth ($\Delta \nu \gtrsim 100 \, \mathrm{MHz}$).
224
225Although the application of 21 cm radio survey to cosmology, in particular LSS mapping has been
226discussed in length in the framework of large future instruments, such as the SKA (e.g \cite{ska.science}),
227the method envisaged has been mostly through the detection of galaxies as \HI compact sources.
228However, extremely large radio telescopes are required to detected \HI sources at cosmological distances.
229The sensitivity (or detection threshold) limit $S_{lim}$ for a radio instrument
230characterized by an effective collecting area $A$, and system temperature $\Tsys$ can be written as
231\begin{equation}
232S_{lim} = \frac{ 2 \kb \, \Tsys }{ A \, \sqrt{t_{int} \delta \nu} }
233\end{equation}
234where $t_{int}$ is the total integration time $\delta \nu$ is the detection frequency band. In table
235\ref{slims21} (left) we have computed the sensitivity for 4 different set of instrument effective area and system
236temperature, with a total integration time of 86400 seconds (1 day) over a frequency band of 1 MHz.
237The width of this frequency band is well adapted to detection of \HI source with an intrinsic velocity
238dispersion of few 100 km/s. Theses detection limits should be compared with the expected 21 cm brightness
239$S_{21}$ of compact sources which can be computed using the expression below:
240\begin{equation}
241 S_{21} \simeq 0.021 \mathrm{\mu Jy} \, \frac{M_{H_I} }{M_\odot} \times
242\left( \frac{ 1\, \mathrm{Mpc}}{\dlum} \right)^2 \times \frac{200 \, \mathrm{km/s}}{\sigma_v}
243\end{equation}
244 where $ M_{H_I} $ is the neutral hydrogen mass, $\dlum$ is the luminosity distance and $\sigma_v$
245is the source velocity dispersion.
246{\color{red} Faut-il developper le calcul en annexe ? }
247
248In table \ref{slims21} (right), we show the 21 cm brightness for
249compact objects with a total \HI \, mass of $10^{10} M_\odot$ and an intrinsic velocity dispersion of
250$200 \mathrm{km/s}$. The luminosity distance is computed for the standard
251WMAP \LCDM universe. $10^9 - 10^{10} M_\odot$ of neutral gas mass
252is typical for large galaxies \citep{lah.09}. It is clear that detection of \HI sources at cosmological distances
253would require collecting area in the range of $10^6 \mathrm{m^2}$.
254
255Intensity mapping has been suggested as an alternative and economic method to map the
2563D distribution of neutral hydrogen \citep{chang.08} \citep{ansari.08}. In this approach,
257sky brightness map with angular resolution $\sim 10-30 \mathrm{arc.min}$ is made for a
258wide range of frequencies. Each 3D pixel (2 angles $\vec{\Theta}$, frequency $\nu$ or wavelength $\lambda$)
259would correspond to a cell with a volume of $\sim 10 \mathrm{Mpc^3}$, containing hundreds of galaxies and a total
260\HI mass $ \gtrsim 10^{12} M_\odot$. If we neglect local velocities relative to the Hubble flow,
261the observed frequency $\nu$ would be translated to the emission redshift $z$ through
262the well known relation:
263\begin{eqnarray}
264 z(\nu) & = & \frac{\nu_{21} -\nu}{\nu}
265\, ; \, \nu(z) = \frac{\nu_{21}}{(1+z)}
266\hspace{1mm} \mathrm{with} \hspace{1mm} \nu_{21} = 1420.4 \, \mathrm{MHz} \\
267 z(\lambda) & = & \frac{\lambda - \lambda_{21}}{\lambda_{21}}
268\, ; \, \lambda(z) = \lambda_{21} \times (1+z)
269\hspace{1mm} \mathrm{with} \hspace{1mm} \lambda_{21} = 0.211 \, \mathrm{m}
270\end{eqnarray}
271The large scale distribution of the neutral hydrogen, down to angular scales of $\sim 10 \mathrm{arc.min}$
272can then be observed without the detection of individual compact \HI sources, using the set of sky brightness
273map as a function frequency (3D-brightness map) $B_{21}(\vec{\Theta},\lambda)$. The sky brightness $B_{21}$
274(radiation power/unit solid angle/unit surface/unit frequency).
275can be converted to brightness temperature using the well known black body Rayleigh-Jeans approximation:
276$$ B(T,\lambda) = \frac{ 2 \kb T }{\lambda^2} $$
277
278%%%%%%%%
279\begin{table}
280\begin{center}
281\begin{tabular}{|c|c|c|}
282\hline
283$A (\mathrm{m^2})$ & $ T_{sys} (K) $ & $ S_{lim} \mathrm{\mu Jy} $ \\
284\hline
2855000 & 50 & 66 \\
2865000 & 25 & 33 \\
287100 000 & 50 & 3.5 \\
288100 000 & 25 & 1.7 \\
289500 000 & 50 & 0.66 \\
290500 000 & 25 & 0.33 \\
291\hline
292\end{tabular}
293%%
294\hspace{3mm}
295%%
296\begin{tabular}{|c|c|c|}
297\hline
298$z$ & $\dlum \mathrm{(Mpc)}$ & $S_{21} \mathrm{( \mu Jy)} $ \\
299\hline
3000.25 & 1235 & 140 \\
3010.50 & 2800 & 27 \\
3021.0 & 6600 & 4.8 \\
3031.5 & 10980 & 1.74 \\
3042.0 & 15710 & 0.85 \\
3052.5 & 20690 & 0.49 \\
306\hline
307\end{tabular}
308\caption{Sensitivity or source detection limit for 1 day integration time (86400 s) and 1 MHz
309frequency band (left). Source 21 cm brightness for $10^{10} M_\odot$ \HI for different redshifts (right) }
310\label{slims21}
311\end{center}
312\end{table}
313
314\subsection{ \HI power spectrum and BAO}
315In the absence of any foreground or background radiation, the brightness temperature
316for a given direction and wavelength $\TTlam$ would be proportional to
317the local \HI number density $\etaHI(\vec{\Theta},z)$ through the relation:
318\begin{equation}
319 \TTlamz = \frac{3}{32 \pi} \, \frac{h}{\kb} \, A_{21} \, \lambda_{21}^2 \times
320 \frac{c}{H(z)} \, (1+z)^2 \times \etaHI (\vec{\Theta}, z)
321\end{equation}
322where $A_{21}=1.87 \, 10^{-15} \mathrm{s^{-1}}$ is the spontaneous 21 cm emission
323coefficient, $h$ is the Planck constant, $c$ the speed of light, $\kb$ the Boltzmann
324constant and $H(z)$ is the Hubble parameter at the emission redshift.
325For a \LCDM universe and neglecting radiation energy density, the Hubble parameter
326can be expressed as:
327\begin{equation}
328H(z) \simeq \hub \, \left[ \Omega_m (1+z)^3 + \Omega_\Lambda \right]^{\frac{1}{2}}
329\times 70 \, \, \mathrm{km/s/Mpc}
330\end{equation}
331Introducing the \HI mass fraction relative to the total baryon mass $\gHI$, the
332neutral hydrogen number density can be written as:
333\begin{equation}
334\etaHI (\vec{\Theta}, z(\lambda) ) = \gHIz \times \Omega_B \frac{\rho_{crit}}{m_{H}} \times
335\frac{\delta \rho_{H_I}}{\bar{\rho}_{H_I}} (\vec{\Theta},z)
336\end{equation}
337where $\Omega_B, \rho_{crit}$ are respectively the present day mean baryon cosmological
338and critical densities, $m_{H}$ is the hydrogen atom mass, and
339$\frac{\delta \rho_{H_I}}{\bar{\rho}_{H_I}}$ is the \HI density fluctuations.
340
341The present day neutral hydrogen fraction $\gHI(0)$ has been measured to be
342$\sim 1\%$ of the baryon density \citep{zwann.05}:
343$$ \Omega_{H_I} \simeq 3.5 \, 10^{-4} \sim 0.008 \times \Omega_B $$
344The neutral hydrogen fraction is expected to increase with redshift. Study
345of Lyman-$\alpha$ absorption indicate a factor 3 increase in the neutral hydrogen
346fraction at $z=1.5$, compared to the its present day value $\gHI(z=1.5) \sim 0.025$
347\citep{wolf.05}.
348The 21 cm brightness temperature and the corresponding power spectrum can be written as \citep{wyithe.07} :
349\begin{eqnarray}
350 \TTlamz & = & \bar{T}_{21}(z) \times \frac{\delta \rho_{H_I}}{\bar{\rho}_{H_I}} (\vec{\Theta},z) \\
351 P_{T_{21}}(k) & = & \left( \bar{T}_{21}(z) \right)^2 \, P(k) \\
352 \bar{T}_{21}(z) & \simeq & 0.054 \, \mathrm{mK}
353\frac{ (1+z)^2 \, \hub }{\sqrt{ \Omega_m (1+z)^3 + \Omega_\Lambda } }
354 \dfrac{\Omega_B}{0.044} \, \frac{\gHIz}{0.01}
355\end{eqnarray}
356
357The table \ref{tabcct21} below shows the mean 21 cm brightness temperature for the
358standard \LCDM cosmology and either a constant \HI mass fraction $\gHI = 0.01$, or
359linearly increasing $\gHI \simeq 0.008 \times (1+z) $. Figure \ref{figpk21} shows the
36021 cm emission power spectrum at several redshifts, with a constant neutral fraction at 2\%
361($\gHI=0.02$). The matter power spectrum has been computed using the
362\cite{eisenhu.98} parametrisation. The correspondence with the angular scales is also
363shown for the standard WMAP \LCDM cosmology, according to the relation:
364\begin{equation}
365\mathrm{ang.sc} = \frac{2 \pi}{k^{comov} \, \dang(z) \, (1+z) }
366\hspace{3mm}
367k^{comov} = \frac{2 \pi}{ \mathrm{ang.sc} \, \dang(z) \, (1+z) }
368\end{equation}
369where $k^{comov}$ is the comoving wave vector and $ \dang(z) $ is the angular diameter distance.
370It should be noted that the maximum transverse $k^{comov} $ sensitivity range
371for an instrument corresponds approximately to half of its angular resolution.
372{\color{red} Faut-il developper completement le calcul en annexe ? }
373
374\begin{table}
375\begin{center}
376\begin{tabular}{|l|c|c|c|c|c|c|c|}
377\hline
378\hline
379 & 0.25 & 0.5 & 1. & 1.5 & 2. & 2.5 & 3. \\
380\hline
381(a) $\bar{T}_{21}$ (mK) & 0.08 & 0.1 & 0.13 & 0.16 & 0.18 & 0.2 & 0.21 \\
382\hline
383(b) $\bar{T}_{21}$ (mK) & 0.08 & 0.12 & 0.21 & 0.32 & 0.43 & 0.56 & 0.68 \\
384\hline
385\hline
386\end{tabular}
387\caption{Mean 21 cm brightness temperature in mK, as a function of redshift, for the
388standard \LCDM cosmology with constant \HI mass fraction at $\gHIz$=0.01 (a) or linearly
389increasing mass fraction (b) $\gHIz=0.008(1+z)$ }
390\label{tabcct21}
391\end{center}
392\end{table}
393
394\begin{figure}
395\centering
396\includegraphics[width=0.5\textwidth]{Figs/pk21cmz12.pdf}
397\caption{\HI 21 cm emission power spectrum at redshifts z=1 (blue) and z=2 (red), with
398neutral gas fraction $\gHI=2\%$}
399\label{figpk21}
400\end{figure}
401
402
403\section{interferometric observations and P(k) measurement sensitivity }
404
405\subsection{Instrument response}
406In astronomy we are usually interested in measuring the sky emission intensity,
407$I(\vec{\Theta},\lambda)$ in a given wave band, as a function the direction. In radio astronomy
408and interferometry in particular, receivers are sensitive to the sky emission complex
409amplitudes. However, for most sources, the phases vary randomly and bear no information:
410\begin{eqnarray}
411& &
412I(\vec{\Theta},\lambda) = | A(\vec{\Theta},\lambda) |^2 \hspace{2mm} , \hspace{1mm} I \in \mathbb{R}, A \in \mathbb{C} \\
413& & < A(\vec{\Theta},\lambda) A^*(\vec{\Theta '},\lambda) >_{time} = \delta( \vec{\Theta} - \vec{\Theta '} ) I(\vec{\Theta},\lambda)
414\end{eqnarray}
415A single receiver can be characterized by its angular complex amplitude response $B(\vec{\Theta},\nu)$ and
416its position $\vec{r}$ in a reference frame. the waveform complex amplitude $s$ measured by the receiver,
417for each frequency can be written as a function of the electromagnetic wave vector
418$\vec{k}_{EM}(\vec{\Theta}, \lambda) $ :
419\begin{equation}
420s(\lambda) = \iint d \vec{\Theta} \, \, \, A(\vec{\Theta},\lambda) B(\vec{\Theta},\lambda) e^{i ( \vec{k}_{EM} . \vec{r} )} \\
421\end{equation}
422We have set the electromagnetic (EM) phase origin at the center of the coordinate frame and
423the EM wave vector is related to the wavelength $\lambda$ through the usual
424$ | \vec{k}_{EM} | = 2 \pi / \lambda $. The receiver beam or antenna lobe $L(\vec{\Theta})$
425corresponds to the receiver intensity response:
426\begin{equation}
427L(\vec{\Theta}) = B(\vec{\Theta},\lambda) \, B^*(\vec{\Theta},\lambda)
428\end{equation}
429The visibility signal between two receivers corresponds to the time averaged correlation between
430signals from two receivers. If we assume a sky signal with random uncorrelated phase, the
431visibility $\vis$ signal from two identical receivers, located at the position $\vec{r_1}$ and
432$\vec{r_2}$ can simply be written as a function their position difference $\vec{\Delta r} = \vec{r_1}-\vec{r_2}$
433\begin{equation}
434\vis(\lambda) = < s_1(\lambda) s_2(\lambda)^* > = \iint d \vec{\Theta} \, \, I(\vec{\Theta},\lambda) L(\vec{\Theta},\lambda)
435e^{i ( \vec{k}_{EM} . \vec{\Delta r} ) }
436\end{equation}
437This expression can be simplified if we consider receivers with narrow field of view
438($ L(\vec{\Theta},\lambda) \simeq 0$ for $| \vec{\Theta} | \gtrsim 10 \mathrm{deg.} $ ),
439and coplanar in respect to their common axis.
440If we introduce two {\em Cartesian} like angular coordinates $(\alpha,\beta)$ centered at
441the common receivers axis, the visibilty would be written as the 2D Fourier transform
442of the product of the sky intensity and the receiver beam, for the angular frequency
443$2 \pi( \frac{\Delta x}{\lambda} , \frac{\Delta x}{\lambda} )$:
444\begin{equation}
445\vis(\lambda) \simeq \iint d\alpha d\beta \, \, I(\alpha, \beta) \, L(\alpha, \beta)
446\exp \left[ i 2 \pi \left( \alpha \frac{\Delta x}{\lambda} + \beta \frac{\Delta y}{\lambda} \right) \right]
447\end{equation}
448where $(\Delta x, \Delta y)$ are the two receiver distances on a plane perpendicular to
449the receiver axis. The $x$ and $y$ axis in the receiver plane are taken parallel to the
450two $(\alpha, \beta)$ angular planes.
451
452Furthermore, we introduce the conjugate Fourier variables $(u,v)$ and the Fourier transforms
453of the sky intensity and the receiver beam:
454\begin{center}
455\begin{tabular}{ccc}
456$(\alpha, \beta)$ & \hspace{2mm} $\longrightarrow $ \hspace{2mm} & $(u,v)$ \\
457$I(\alpha, \beta, \lambda)$ & \hspace{2mm} $\longrightarrow $ \hspace{2mm} & ${\cal I}(u,v, \lambda)$ \\
458$L(\alpha, \beta, \lambda)$ & \hspace{2mm} $\longrightarrow $ \hspace{2mm} & ${\cal L}(u,v, \lambda)$ \\
459\end{tabular}
460\end{center}
461
462The visibility can then be interpreted as the weighted sum of the sky intensity, in an angular
463wave number domain located around
464$(u, v)_{12}=2 \pi( \frac{\Delta x}{\lambda} , \frac{\Delta x}{\lambda} )$. The weight function is
465given by the receiver beam Fourier transform.
466\begin{equation}
467\vis(\lambda) \simeq \iint d u d v \, \, {\cal I}(u,v, \lambda) \, {\cal L}(u - 2 \pi \frac{\Delta x}{\lambda} , v - 2 \pi \frac{\Delta y}{\lambda} , \lambda)
468\end{equation}
469
470A single receiver instrument would measure the total power integrated in a spot centered around the
471origin in the $(u,v)$ or the angular wave mode plane. The shape of the spot depends on the receiver
472beam pattern, but its extent would be $\sim 2 \pi D / \lambda$, where $D$ is the receiver physical
473size. The correlation signal from a pair of receivers would measure the integrated signal on a similar
474spot, located around the central angular wave mode $(u, v)_{12}$ determined by the relative
475position of the two receivers (see figure \ref{figuvplane}).
476In an interferometer with multiple receivers, the area covered by different receiver pairs in the
477$(u,v)$ plane might overlap and some pairs might measure the same area (same base lines).
478Several beam can be formed using different combination of the correlation from different
479antenna pairs.
480
481\begin{figure}
482% \vspace*{-2mm}
483\centering
484\mbox{
485\includegraphics[width=0.5\textwidth]{Figs/uvplane.pdf}
486}
487\vspace*{-15mm}
488\caption{Schematic view of the $(u,v)$ plane coverage by interferometric measurement}
489\label{figuvplane}
490\end{figure}
491
492\subsection{Noise power spectrum}
493Let's consider a total power measurement using a receiver at wavelength $\lambda$, over a frequency
494bandwidth $\delta \nu$, with an integration time $t_{int}$, characterized by a system temperature
495$\Tsys$. The uncertainty or fluctuations of this measurement due to the receiver noise can be written as
496$\sigma_{noise}^2 = \frac{4 \Tsys^2}{t_{int} \, \delta \nu}$. This term
497corresponds also to the noise for the visibility $\vis$ measured from two identical receivers, with uncorrelated
498noise. If the receiver has an effective area $A \simeq \pi D^2$ or $A \simeq 4 D_x D_y$, the measurement
499corresponds to the integration of power over a spot in the angular frequency plane with an area $\sim A/\lambda^2$.
500The sky temperature measurement can thus be characterized by the noise spectral power density in
501the angular frequencies plane $P_{noise}^{(u,v)} \simeq \frac{\sigma_{noise}^2}{A / \lambda^2}$, in $\mathrm{Kelvin^2}$
502per unit area of angular frequencies $\frac{\delta u}{ 2 \pi} \times \frac{\delta v}{2 \pi}$:
503\begin{eqnarray}
504P_{noise}^{(u,v)} & = & \frac{\sigma_{noise}^2}{ A / \lambda^2 } \\
505P_{noise}^{(u,v)} & \simeq & \frac{ \Tsys^2 }{t_{int} \, \delta \nu} \, \frac{ \lambda^2 }{ D^2 }
506\hspace{5mm} \mathrm{units:} \, \mathrm{K^2 \times rad^2} \\
507\end{eqnarray}
508
509In a given instrument configuration, if several ($n$) receiver pairs have the same baseline,
510the noise power density in the corresponding $(u,v)$ plane area is reduced by a factor $1/n$.
511When the intensity maps are projected in a 3D box in the universe and the 3D power spectrum
512$P(k)$ is computed, angles are translated into comoving transverse distance scale,
513and frequencies or wavelengths into comoving radial distance, using the following relations:
514\begin{eqnarray}
515\delta \alpha , \beta & \rightarrow & \delta \ell_\perp = (1+z) \, \dang(z) \, \delta \alpha,\beta \\
516\delta \nu & \rightarrow & \delta \ell_\parallel = (1+z) \frac{c}{H(z)} \frac{\delta \nu}{\nu}
517 = (1+z) \frac{\lambda}{H(z)} \delta \nu \\
518\delta u , v & \rightarrow & \delta k_\perp = \frac{ \delta u , v }{ (1+z) \, \dang(z) } \\
519\frac{1}{\delta \nu} & \rightarrow & \delta k_\parallel = \frac{H(z)}{c} \frac{1}{(1+z)} \, \frac{\nu}{\delta \nu}
520 = \frac{H(z)}{c} \frac{1}{(1+z)^2} \, \frac{\nu_{21}}{\delta \nu}
521\end{eqnarray}
522
523The three dimensional projected noise spectral density can then be written as:
524\begin{equation}
525P_{noise}(k) = \frac{\Tsys^2}{t_{int} \, \nu_{21} } \, \frac{\lambda^2}{D^2} \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4
526\end{equation}
527
528$P_{noise}(k)$ would be in units of $\mathrm{mK^2 \, Mpc^3}$ with $\Tsys$ expressed in $\mathrm{mK}$,
529$t_{int}$ in second, $\nu_{21}$ in $\mathrm{Hz}$, $c$ in $\mathrm{km/s}$, $\dang$ in $\mathrm{Mpc}$ and
530 $H(z)$ in $\mathrm{km/s/Mpc}$.
531The matter or \HI distribution power spectrum determination statistical errors vary as the number of
532observed Fourier modes, which is inversely proportional to volume of the universe
533which is observed (sample variance).
534
535In the following, we will consider the survey of a fixed
536fraction of the sky, defined by total solid angle $\Omega_{tot}$, performed during a fixed total
537observation time $t_{obs}$. We will consider several instrument configurations, having
538comparable instantaneous bandwidth, and comparable system receiver noise $\Tsys$:
539\begin{enumerate}
540\item Single dish instrument, diameter $D$ with one or several independent feeds (beams) in the focal plane
541\item Filled square shaped arrays, made of $n = q \times q$ dishes of diameter $D_{dish}$
542\item Packed or unpacked cylinder arrays
543\item Semi-filled array of $n$ dishes
544\end{enumerate}
545
546We compute below a simple expression for the noise spectral power density for radio
547sky 3D mapping surveys.
548It is important to notice that the instruments we are considering do not have a flat
549response in the $(u,v)$ plane, and the observations provide no information above
550$u_{max},v_{max}$. One has to take into account either a damping of the
551observed sky power spectrum or an increase of the noise spectral power if
552the observed power spectrum is corrected for damping. The white noise
553expressions given below should thus be considered as a lower limit or floor of the
554instrument noise spectral density.
555
556% \noindent {\bf Single dish instrument} \\
557A single dish instrument with diameter $D$ would have an instantaneous field of view
558(or 2D pixel size) $\Omega_{FOV} \sim \left( \frac{\lambda}{D} \right)^2$, and would require
559a number of pointing $N_{point} = \frac{\Omega_{tot}}{\Omega_{FOV}}$ to cover the survey area.
560The noise power spectral density could then be written as:
561\begin{equation}
562P_{noise}^{survey}(k) = \frac{\Tsys^2 \, \Omega_{tot} }{t_{obs} \, \nu_{21} } \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4
563\end{equation}
564For a single dish instrument equipped with a multi-feed or phase array receiver system,
565with $n$ independent beam on sky, the noise spectral density decreases by a factor $n$,
566thanks to the an increase of per pointing integration time.
567
568For a single dish of diameter $D$, or an interferometric instrument with maximal extent $D$,
569observations provide information up to $u,v_{max} \lesssim 2 \pi D / \lambda $. This value of
570$u,v_{max}$ would be mapped to a maximum transverse cosmological wave number
571$k^{comov}_{\perp \, max}$:
572\begin{eqnarray}
573k^{comov}_{\perp} & = & \frac{(u,v)}{(1+z) \dang} \\
574k^{comov}_{\perp \, max} & \lesssim & \frac{2 \pi}{\dang \, (1+z)^2} \frac{D}{\lambda_{21}}
575\end{eqnarray}
576
577Figure \ref{pnkmaxfz} shows the evolution of a radio 3D temperature mapping
578$P_{noise}^{survey}(k)$ as a function of survey redshift.
579The survey is supposed to cover a quarter of sky $\Omega_{tot} = \pi \mathrm{srad}$, in one
580year. The maximum comoving wave number $k^{comov}$ is also shown as a function
581of redshift, for an instrument with $D=100 \mathrm{m}$ maximum extent. In order
582to take into account the radial component of $\vec{k^{comov}}$ and the increase of
583the instrument noise level with $k^{comov}_{\perp}$, we have taken:
584\begin{equation}
585k^{comov}_{ max} (z) = \frac{\pi}{\dang \, (1+z)^2} \frac{D=100 \mathrm{m}}{\lambda_{21}}
586\end{equation}
587
588\begin{figure}
589\vspace*{-10mm}
590\centering
591\mbox{
592\hspace*{-10mm}
593\includegraphics[width=0.6\textwidth]{Figs/pnkmaxfz.pdf}
594}
595\vspace*{-35mm}
596\caption{Minimal noise level for a 100 beam instrument as a function of redshift (top).
597 Maximum $k$ value for a 100 meter diameter primary antenna (bottom) }
598\label{pnkmaxfz}
599\end{figure}
600
601
602\subsection{Instrument configurations and noise power spectrum}
603
604We have numerically computed the instrument response in the (u,v) plane for several
605instrument configurations, at redshift $z=1$.
606\begin{itemize}
607\item[{\bf a} :] A packed array of $n=121 \, D_{dish}=5 \mathrm{m}$ dishes, arranged in
608a square $11 \times 11$ configuration ($q=11$). This array covers an area of
609$55 \times 55 \, \mathrm{m^2}$
610\item [{\bf b} :] An array of $n=128 \, D_{dish}=5 \mathrm{m}$ dishes, arranged
611in 8 rows, each with 16 dishes. These 128 dishes are spread over an area
612$80 \times 80 \, \mathrm{m^2}$
613\item [{\bf c} :] An array of $n=129 \, D_{dish}=5 \mathrm{m}$ dishes, arranged
614 over an area $80 \times 80 \, \mathrm{m^2}$. This configuration has in
615particular 4 sub-arrays of packed 16 dishes ($4\times4$), located in the
616four array corners.
617\item [{\bf d} :] A single dish instrument, with diameter $D=75 \mathrm{m}$,
618equipped with a 100 beam focal plane instrument.
619\item[{\bf e} :] A packed array of $n=400 \, D_{dish}=5 \mathrm{m}$ dishes, arranged in
620a square $20 \times 20$ configuration ($q=20$). This array covers an area of
621$100 \times 100 \, \mathrm{m^2}$
622\item[{\bf f} :] A packed array of 4 cylindrical reflectors, each 85 meter long and 12 meter
623wide. The focal line of each cylinder is equipped with 100 receivers, each with length
624$2 \lambda$, which corresponds to $\sim 0.85 \mathrm{m}$ at $z=1$.
625This array covers an area of $48 \times 85 \, \mathrm{m^2}$, and have
626a total of $400$ receivers per polarisation, as in the (e) configuration.
627We have computed the noise power spectrum for {\em perfect}
628cylinders, where all receiver pair correlations are used (fp), or for
629a non perfect instrument, where only correlations between receivers
630from different cylinders are used.
631\item[{\bf g} :] A packed array of 8 cylindrical reflectors, each 102 meter long and 12 meter
632wide. The focal line of each cylinder is equipped with 100 receivers, each with length
633$2 \lambda$, which corresponds to $\sim 0.85 \mathrm{m}$ at $z=1$.
634This array covers an area of $96 \times 102 \, \mathrm{m^2}$ and has
635a total of 960 receivers per polarisation. As for the (f) configuration,
636we have computed the noise power spectrum for {\em perfect}
637cylinders, where all receiver pair correlations are used (gp), or for
638a non perfect instrument, where only correlations between receivers
639from different cylinders are used.
640\end{itemize}
641The array layout for configurations (b) and (c) are shown in figure \ref{figconfab}.
642\begin{figure}
643\centering
644\vspace*{-15mm}
645\mbox{
646\hspace*{-10mm}
647\includegraphics[width=0.5\textwidth]{Figs/configab.pdf}
648}
649\vspace*{-15mm}
650\caption{ Array layout for configurations (b) and (c) with 128 and 129 D=5 meter
651diameter dishes. }
652\label{figconfab}
653\end{figure}
654
655We have used simple triangular shaped dish response in the $(u,v)$ plane.
656However, we have introduced a fill factor or illumination efficiency
657$\eta$, relating the effective dish diameter $D_{ill}$ to the
658mechanical dish size $D^{ill} = \eta \, D_{dish}$.
659\begin{eqnarray}
660{\cal L}_\circ (u,v,\lambda) & = & \bigwedge_{[\pm 2 \pi D^{ill}/ \lambda]}(\sqrt{u^2+v^2}) \\
661 L_\circ (\alpha,\beta,\lambda) & = & \left[ \frac{ \sin (\pi (D^{ill}/\lambda) \sin \theta ) }{\pi (D^{ill}/\lambda) \sin \theta} \right]^2
662\hspace{4mm} \theta=\sqrt{\alpha^2+\beta^2}
663\end{eqnarray}
664For the multi-dish configuration studied here, we have taken the illumination efficiency factor
665{\bf $\eta = 0.9$}.
666
667For the receivers along the focal line of cylinders, we have assumed that the
668individual receiver response in the $(u,v)$ plane corresponds to one from a
669rectangular shaped antenna. The illumination efficiency factor has been taken
670equal to $\eta_x = 0.9$ in the direction of the cylinder width, and $\eta_y = 0.8$
671along the cylinder length. It should be noted that the small angle approximation
672used here for the expression of visibilities is not valid for the receivers along
673the cylinder axis. However, some preliminary numerical checks indicate that
674the results obtained here for the noise power would not be significantly changed.
675\begin{equation}
676 {\cal L}_\Box(u,v,\lambda) =
677\bigwedge_{[\pm 2 \pi D^{ill}_x / \lambda]} (u ) \times
678\bigwedge_{[\pm 2 \pi D^{ill}_y / \lambda ]} (v )
679\end{equation}
680Figure \ref{figuvcovabcd} for the four configurations with $\sim 100$ receivers per
681polarisation. The resulting projected noise spectral power density is shown in figure
682\ref{figpnoisea2g}. The increase of $P_{noise}(k)$ at low $k^{comov} \lesssim 0.02$
683is due to the fact that we have ignored all auto-correlation measurements.
684It can be seen that an instrument with $100$ beams and $\Tsys = 50 \mathrm{K}$
685should have enough sensitivity to map LSS in 21 cm at redshift z=1.
686
687\begin{figure*}
688\centering
689\mbox{
690\hspace*{-10mm}
691\includegraphics[width=0.90\textwidth]{Figs/uvcovabcd.pdf}
692}
693\caption{(u,v) plane coverage for four configurations.
694(a) 121 D=5 meter diameter dishes arranged in a compact, square array
695of $11 \times 11$, (b) 128 dishes arranged in 8 row of 16 dishes each,
696(c) 129 dishes arranged as above, single D=65 meter diameter, with 100 beams.
697color scale : black $<1$, blue, green, yellow, red $\gtrsim 80$ }
698\label{figuvcovabcd}
699\end{figure*}
700
701\begin{figure*}
702\vspace*{-10mm}
703\centering
704\mbox{
705\hspace*{-10mm}
706\includegraphics[width=\textwidth]{Figs/pnoisea2g.pdf}
707}
708\vspace*{-10mm}
709\caption{P(k) LSS power and noise power spectrum for several interferometer
710configurations ((a),(b),(c),(d),(e),(f),(g)) with 121, 128, 129, 400 and 960 receivers.}
711\label{figpnoisea2g}
712\end{figure*}
713
714
715\section{ Foregrounds and Component separation }
716
717\subsection{ Synchrotron and radio sources }
718% {\color{red} \large \it Reza (+ J.M. Martin ?) + CMV } \\[1mm]
719
720Description of the radio foregrounds for LSS@21cm and the sky models used
721\begin{itemize}
722\item Galactic synchrotron
723\item Radio sources : spectral behavior and brightness distribution
724\item GSM global sky model (Angelica)
725\item simple sky model : Synchrotron (HASLAM/WMAP) + sources (North20 / NVSS catalogue )
726\end{itemize}
727
728\subsection{ LSS signal extraction }
729{\color{red} \large \it CMV + Reza + J.M. Martin } \\[1mm]
730Description of the component separation method and the results
731\begin{itemize}
732\item Component separation method, based on instrument response correction and frequency
733smoothness / power law
734\item Foreground power spectrum
735\item Performance of component separation : comparison of frequency slices of recovered LSS
736and foreground maps, source catalogs
737\item Performance in statistical sense (power spectrum) : comparison of recovered P(k)-LSS
738and true P(k), residual noise/systematic effect power spectrum
739\end{itemize}
740
741
742\section{ BAO scale determination and constrain on dark energy parameters}
743{\color{red} \large \it CY ( + JR ) } \\[1mm]
744We compute reconstructed LSS-P(k) (after component separation) at different z's
745and determine BAO scale as a function of redshifts.
746We can this a large number of time ( ~ 100 \ldots 1000 ) to have the reconstructed P(k)
747with {\it realistic } errors. We can then determine the error on the reconstructed DE
748parameters
749
750\section{Conclusions}
751
752% \begin{acknowledgements}
753% \end{acknowledgements}
754
755%%% Quelques figures pour illustrer les resultats attendus
756
757
758
759\begin{figure*}
760\centering
761\includegraphics[width=0.85\textwidth]{Figs/compexlss.png}
762\caption{Comparison of the original simulated LSS (frequency plane) and the recovered LSS.
763Color scale in mK }
764\label{figcompexlss}
765\end{figure*}
766
767\begin{figure*}
768\centering
769\includegraphics[width=0.85\textwidth]{Figs/compexfg.png}
770\caption{Comparison of the original simulated foreground (frequency plane) and
771the recovered foreground map. Color scale in Kelvin }
772\label{figcompexfg}
773\end{figure*}
774
775\begin{figure*}
776\centering
777\includegraphics[width=0.7\textwidth]{Figs/pklssfg.pdf}
778\caption{Comparison of the LSS power spectrum at 21 cm at 900 MHz ($z \sim 0.6$)
779and the synchrotron/radio sources - GSM (Global Sky Model) foreground sky cube}
780\label{figcompexfg}
781\end{figure*}
782
783
784\begin{figure*}
785\centering
786\includegraphics[width=0.7\textwidth]{Figs/exlsspk.pdf}
787\caption{Recovered LSS power spectrum, after component separation - - GSM (Global Sky Model) foreground sky cube}
788\label{figexlsspk}
789\end{figure*}
790
791\bibliographystyle{aa}
792
793\begin{thebibliography}{}
794
795%%%
796\bibitem[Ansari et al. (2008)]{ansari.08} Ansari R., J.-M. Le Goff, C. Magneville, M. Moniez, N. Palanque-Delabrouille, J. Rich,
797 V. Ruhlmann-Kleider, \& C. Y\`eche , 2008 , ArXiv:0807.3614
798
799% MWA description
800\bibitem[Bowman et al. (2007)]{bowman.07} Bowman, J. D., Barnes, D.G., Briggs, F.H. et al 2007, \aj, 133, 1505-1518
801
802% Intensity mapping/HSHS
803\bibitem[Chang et al. (2008)]{chang.08} Chang, T., Pen, U.-L., Peterson, J.B. \& McDonald, P. 2008, \prl, 100, 091303
804
805% 2dFRS BAO observation
806\bibitem[Cole et al. (2005)]{cole.05} Cole, S. Percival, W.J., Peacock, J.A. {\it et al.} (the 2dFGRS Team) 2005, \mnras, 362, 505
807
808% Parametrisation P(k)
809\bibitem[Eisentein \& Hu (1998)]{eisenhu.98} Eisenstein D. \& Hu W. 1998, ApJ 496:605-614 (astro-ph/9709112)
810
811% :SDSS first BAO observation
812\bibitem[Eisentein et al. (2005)]{eisenstein.05} Eisenstein D. J., Zehavi, I., Hogg, D.W. {\it et al.}, (the SDSS Collaboration) 2005, \apj, 633, 560
813
814% 21 cm emission for mapping matter distribution
815\bibitem[Furlanetto et al. (2006)]{furlanetto.06} Furlanetto, S., Peng Oh, S. \& Briggs, F. 2006, \physrep, 433, 181-301
816
817% WMAP CMB anisotropies 2008
818\bibitem[Hinshaw et al. (2008)]{hinshaw.08} Hinshaw, G., Weiland, J.L., Hill, R.S. {\it et al.} 2008, arXiv:0803.0732)
819
820% HI mass in galaxies
821\bibitem[Lah et al. (2009)]{lah.09} Philip Lah, Michael B. Pracy, Jayaram N. Chengalur et al.
822MNRAS 2009, ( astro-ph/0907.1416)
823
824% Boomerang 2000, Acoustic pics
825\bibitem[Mauskopf et al. (2000)]{mauskopf.00} Mauskopf, P. D., Ade, P. A. R., de Bernardis, P. {\it et al.} 2000, \apjl, 536,59
826
827% Original CRT HSHS paper
828\bibitem[Peterson et al. (2006)]{peterson.06} Peterson, J.B., Bandura, K., \& Pen, U.-L. 2006, arXiv:astro-ph/0606104
829
830% SDSS BAO 2007
831\bibitem[Percival et al. (2007)]{percival.07} Percival, W.J., Nichol, R.C., Eisenstein, D.J. {\it et al.}, (the SDSS Collaboration) 2007, \apj, 657, 645
832
833%% LOFAR description
834\bibitem[Rottering et a,. (2006)]{rottgering.06} Rottgering H.J.A., Braun, r., Barthel, P.D. {\it et al.} 2006, arXiv:astro-ph/0610596
835%%%%
836
837% Frank H. Briggs, Matthew Colless, Roberto De Propris, Shaun Ferris, Brian P. Schmidt, Bradley E. Tucker
838
839\bibitem[SKA.Science]{ska.science}
840{\it Science with the Square Kilometre Array}, eds: C. Carilli, S. Rawlings,
841New Astronomy Reviews, Vol.48, Elsevier, December 2004 \\
842{ \tt http://www.skatelescope.org/pages/page\_sciencegen.htm }
843
844% FFT telescope
845\bibitem[Tegmark \& Zaldarriaga (2008)]{tegmark.08} Tegmark, M. \& Zaldarriaga, M. 2008, arXiv:0802.1710
846
847% Lyman-alpha, HI fraction
848\bibitem[Wolf et al.(2005)]{wolf.05} Wolfe, A. M., Gawiser, E. \& Prochaska, J.X. 2005 \araa, 43, 861
849
850% 21 cm temperature
851\bibitem[Wyithe et al.(2007)]{wyithe.07} Wyithe, S., Loeb, A. \& Geil, P. 2007 http://fr.arxiv.org/abs/0709.2955, submitted to \mnras
852
853%% Today HI cosmological density
854\bibitem[Zwaan et al.(2005)]{zwann.05} Zwaan, M.A., Meyer, M.J., Staveley-Smith, L., Webster, R.L. 2005, \mnras, 359, L30
855
856\end{thebibliography}
857
858\end{document}
859
860%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
861% Examples for figures using graphicx
862% A guide "Using Imported Graphics in LaTeX2e" (Keith Reckdahl)
863% is available on a lot of LaTeX public servers or ctan mirrors.
864% The file is : epslatex.pdf
865%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
866
867
868\end{document}
Note: See TracBrowser for help on using the repository browser.