source: Sophya/trunk/Cosmo/RadioBeam/sensfgnd21cm.tex@ 4022

Last change on this file since 4022 was 4022, checked in by ansari, 14 years ago

modifs pour pouvoir imposer la moyenne en temp des plans X,Y des cubes lors de l'extraction du signal HI, Reza 28/9/2011

File size: 91.2 KB
Line 
1%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2% BAORadio : LAL/UPS, Irfu/SPP
3% 21cm LSS P(k) sensitivity and foreground substraction
4% R. Ansari, C. Magneville, J. Rich, C. Yeche et al
5% 2010 - 2011
6%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
7% aa.dem
8% AA vers. 7.0, LaTeX class for Astronomy & Astrophysics
9% demonstration file
10% (c) Springer-Verlag HD
11% revised by EDP Sciences
12%-----------------------------------------------------------------------
13%
14% \documentclass[referee]{aa} % for a referee version
15%\documentclass[onecolumn]{aa} % for a paper on 1 column
16%\documentclass[longauth]{aa} % for the long lists of affiliations
17%\documentclass[rnote]{aa} % for the research notes
18%\documentclass[letter]{aa} % for the letters
19%
20\documentclass[structabstract]{aa}
21%\documentclass[traditabstract]{aa} % for the abstract without structuration
22 % (traditional abstract)
23%
24\usepackage{amsmath}
25\usepackage{amssymb}
26
27\usepackage{graphicx}
28\usepackage{color}
29
30%% Commande pour les references
31\newcommand{\citep}[1]{(\cite{#1})}
32%% \newcommand{\citep}[1]{ { (\tt{#1}) } }
33
34%% Definitions diverses
35\newcommand{\HI}{$\mathrm{H_I}$ }
36\newcommand{\kb}{k_B} % Constante de Boltzmann
37\newcommand{\Tsys}{T_{sys}} % instrument noise (system) temperature
38\newcommand{\TTnu}{ T_{21}(\vec{\Theta} ,\nu) }
39\newcommand{\TTnuz}{ T_{21}(\vec{\Theta} ,\nu(z)) }
40\newcommand{\TTlam}{ T_{21}(\vec{\Theta} ,\lambda) }
41\newcommand{\TTlamz}{ T_{21}(\vec{\Theta} ,\lambda(z)) }
42
43\newcommand{\dlum}{d_L}
44\newcommand{\dang}{d_A}
45\newcommand{\hub}{ h_{70} }
46\newcommand{\hubb}{ h_{100} } % h_100
47
48\newcommand{\etaHI}{ n_{\tiny HI} }
49\newcommand{\fHI}{ f_{H_I}(z)}
50\newcommand{\gHI}{ f_{H_I}}
51\newcommand{\gHIz}{ f_{H_I}(z)}
52
53\newcommand{\vis}{{\cal V}_{12} }
54
55\newcommand{\LCDM}{$\Lambda \mathrm{CDM}$ }
56
57\newcommand{\lgd}{\mathrm{log_{10}}}
58
59%% Definition fonction de transfer
60\newcommand{\TrF}{\mathbf{T}}
61
62
63%%% Definition pour la section sur les param DE par C.Y
64\def\Mpc{\mathrm{Mpc}}
65\def\hMpcm{\,h \,\Mpc^{-1}}
66\def\hmMpc{\,h^{-1}\Mpc}
67\def\kperp{k_\perp}
68\def\kpar{k_\parallel}
69\def\koperp{k_{BAO\perp }}
70\def\kopar{k_{BAO\parallel}}
71
72%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
73\usepackage{txfonts}
74%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
75%
76\begin{document}
77%
78 \title{21 cm observation of LSS at z $\sim$ 1 }
79
80 \subtitle{Instrument sensitivity and foreground subtraction}
81
82 \author{
83 R. Ansari
84 \inst{1} \inst{2}
85 \and
86 J.E. Campagne \inst{3}
87 \and
88 P.Colom \inst{5}
89 \and
90 J.M. Le Goff \inst{4}
91 \and
92 C. Magneville \inst{4}
93 \and
94 J.M. Martin \inst{5}
95 \and
96 M. Moniez \inst{3}
97 \and
98 J.Rich \inst{4}
99 \and
100 C.Y\`eche \inst{4}
101 }
102
103 \institute{
104 Universit\'e Paris-Sud, LAL, UMR 8607, F-91898 Orsay Cedex, France
105 \and
106 CNRS/IN2P3, F-91405 Orsay, France \\
107 \email{ansari@lal.in2p3.fr}
108 \and
109 Laboratoire de lÍAcc\'el\'erateur Lin\'eaire, CNRS-IN2P3, Universit\'e Paris-Sud,
110 B.P. 34, 91898 Orsay Cedex, France
111 % \thanks{The university of heaven temporarily does not
112 % accept e-mails}
113 \and
114 CEA, DSM/IRFU, Centre d'Etudes de Saclay, F-91191 Gif-sur-Yvette, France
115 \and
116 GEPI, UMR 8111, Observatoire de Paris, 61 Ave de l'Observatoire, 75014 Paris, France
117 }
118
119 \date{Received August 5, 2011; accepted xxxx, 2011}
120
121% \abstract{}{}{}{}{}
122% 5 {} token are mandatory
123
124 \abstract
125 % context heading (optional)
126 % {} leave it empty if necessary
127 { Large Scale Structures (LSS) in the universe can be traced using the neutral atomic hydrogen \HI through its 21
128cm emission. Such a 3D matter distribution map can be used to test the Cosmological model and to constrain the Dark Energy
129properties or its equation of state. A novel approach, called intensity mapping can be used to map the \HI distribution,
130using radio interferometers with large instantaneous field of view and waveband.}
131 % aims heading (mandatory)
132 { In this paper, we study the sensitivity of different radio interferometer configurations, or multi-beam
133instruments for the observation of large scale structures and BAO oscillations in 21 cm and we discuss the problem of foreground removal. }
134 % methods heading (mandatory)
135 { For each configuration, we determine instrument response by computing the (u,v) or Fourier angular frequency
136plane coverage using visibilities. The (u,v) plane response is the noise power spectrum,
137hence the instrument sensitivity for LSS P(k) measurement. We describe also a simple foreground subtraction method to
138separate LSS 21 cm signal from the foreground due to the galactic synchrotron and radio sources emission. }
139 % results heading (mandatory)
140 { We have computed the noise power spectrum for different instrument configuration as well as the extracted
141 LSS power spectrum, after separation of 21cm-LSS signal from the foregrounds. We have also obtained
142 the uncertainties on the Dark Energy parameters for an optimized 21 cm BAO survey.}
143 % conclusions heading (optional), leave it empty if necessary
144 { We show that a radio instrument with few hundred simultaneous beams and a collecting area of
145 $\sim 10000 \mathrm{m^2}$ will be able to detect BAO signal at redshift z $\sim 1$ and will be
146 competitive with optical surveys. }
147
148 \keywords{ large-scale structure of Universe --
149 dark energy -- Instrumentation: interferometers --
150 Radio lines; galaxies -- Radio continuum: general }
151
152 \maketitle
153%
154%________________________________________________________________
155% {\color{red} \large \bf A discuter : liste des auteurs, plans du papier et repartition des taches
156% Toutes les figures sont provisoires }
157
158\section{Introduction}
159
160% {\color{red} \large \it Jim ( + M. Moniez ) } \\[1mm]
161The study of the statistical properties of Large Scale Structure (LSS) in the Universe and their evolution
162with redshift is one the major tools in observational cosmology. These structures are usually mapped through
163optical observation of galaxies which are used as a tracer of the underlying matter distribution.
164An alternative and elegant approach for mapping the matter distribution, using neutral atomic hydrogen
165(\HI) as a tracer with intensity mapping, has been proposed in recent years \citep{peterson.06} \citep{chang.08}.
166Mapping the matter distribution using HI 21 cm emission as a tracer has been extensively discussed in literature
167\citep{furlanetto.06} \citep{tegmark.09} and is being used in projects such as LOFAR \citep{rottgering.06} or
168MWA \citep{bowman.07} to observe reionisation at redshifts z $\sim$ 10.
169
170Evidence in favor of the acceleration of the expansion of the universe have been
171accumulated over the last twelve years, thanks to the observation of distant supernovae,
172CMB anisotropies and detailed analysis of the LSS.
173A cosmological Constant ($\Lambda$) or new cosmological
174energy density called {\em Dark Energy} has been advocated as the origin of this acceleration.
175Dark Energy is considered as one of the most intriguing puzzles in Physics and Cosmology.
176% Constraining the properties of this new cosmic fluid, more precisely
177% its equation of state is central to current cosmological researches.
178Several cosmological probes can be used to constrain the properties of this new cosmic fluid,
179more precisely its equation of state: The Hubble Diagram, or luminosity distance as a function
180of redshift of supernovae as standard candles, galaxy clusters, weak shear observations
181and Baryon Acoustic Oscillations (BAO).
182
183BAO are features imprinted in the distribution of galaxies, due to the frozen
184sound waves which were present in the photon-baryon plasma prior to recombination
185at z $\sim$ 1100.
186This scale can be considered as a standard ruler with a comoving
187length of $\sim 150 \mathrm{Mpc}$.
188These features have been first observed in the CMB anisotropies
189and are usually referred to as {\em acoustic peaks} (\cite{mauskopf.00}, \cite{larson.11}).
190The BAO modulation has been subsequently observed in the distribution of galaxies
191at low redshift ( $z < 1$) in the galaxy-galaxy correlation function by the SDSS
192\citep{eisenstein.05} \citep{percival.07} \citep{percival.10}, 2dGFRS \citep{cole.05} as well as
193WiggleZ \citep{blake.11} optical galaxy surveys.
194
195Ongoing \citep{eisenstein.11} or future surveys \citep{lsst.science}
196plan to measure precisely the BAO scale in the redshift range
197$0 \lesssim z \lesssim 3$, using either optical observation of galaxies
198or through 3D mapping Lyman $\alpha$ absorption lines toward distant quasars
199\citep{baolya},\citep{baolya2}.
200Radio observation of the 21 cm emission of neutral hydrogen appears as
201a very promising technique to map matter distribution up to redshift $z \sim 3$,
202complementary to optical surveys, especially in the optical redshift desert range
203$1 \lesssim z \lesssim 2$, and possibly up to the reionization redshift \citep{wyithe.08}.
204
205In section 2, we discuss the intensity mapping and its potential for measurement of the
206\HI mass distribution power spectrum. The method used in this paper to characterize
207a radio instrument response and sensitivity for $P_{\mathrm{H_I}}(k)$ is presented in section 3.
208We show also the results for the 3D noise power spectrum for several instrument configurations.
209The contribution of foreground emissions due to the galactic synchrotron and radio sources
210is described in section 4, as well as a simple component separation method. The performance of this
211method using two different sky models is also presented in section 4.
212The constraints which can be obtained on the Dark Energy parameters and DETF figure
213of merit for typical 21 cm intensity mapping survey are discussed in section 5.
214
215
216%__________________________________________________________________
217
218\section{Intensity mapping and \HI power spectrum}
219
220% {\color{red} \large \it Reza (+ P. Colom ?) } \\[1mm]
221
222\subsection{21 cm intensity mapping}
223%%%
224Most of the cosmological information in the LSS is located at large scales
225($ \gtrsim 1 \mathrm{deg}$), while the interpretation at smallest scales
226might suffer from the uncertainties on the non linear clustering effects.
227The BAO features in particular are at the degree angular scale on the sky
228and thus can be resolved easily with a rather modest size radio instrument
229(diameter $D \lesssim 100 \, \mathrm{m}$). The specific BAO clustering scale ($k_{\mathrm{BAO}}$)
230can be measured both in the transverse plane (angular correlation function, ($k_{\mathrm{BAO}}^\perp$)
231or along the longitudinal (line of sight or redshift ($k_{\mathrm{BAO}}^\parallel$) direction. A direct measurement of
232the Hubble parameter $H(z)$ can be obtained by comparing the longitudinal and transverse
233BAO scales. A reasonably good redshift resolution $\delta z \lesssim 0.01$ is needed to resolve
234longitudinal BAO clustering, which is a challenge for photometric optical surveys.
235
236In order to obtain a measurement of the LSS power spectrum with small enough statistical
237uncertainties (sample or cosmic variance), a large volume of the universe should be observed,
238typically few $\mathrm{Gpc^3}$. Moreover, stringent constraint on DE parameters can only be
239obtained when comparing the distance or Hubble parameter measurements with
240DE models as a function of redshift, which requires a significant survey depth $\Delta z \gtrsim 1$.
241
242Radio instruments intended for BAO surveys must thus have large instantaneous field
243of view (FOV $\gtrsim 10 \, \mathrm{deg^2}$) and large bandwidth ($\Delta \nu \gtrsim 100 \, \mathrm{MHz}$)
244to explore large redshift domains.
245
246Although the application of 21 cm radio survey to cosmology, in particular LSS mapping has been
247discussed in length in the framework of large future instruments, such as the SKA (e.g \cite{ska.science}, \cite{abdalla.05}),
248the method envisaged has been mostly through the detection of galaxies as \HI compact sources.
249However, extremely large radio telescopes are required to detected \HI sources at cosmological distances.
250The sensitivity (or detection threshold) limit $S_{lim}$ for the total power from the two polarisations
251of a radio instrument characterized by an effective collecting area $A$, and system temperature $\Tsys$ can be written as
252\begin{equation}
253S_{lim} = \frac{ \sqrt{2} \, \kb \, \Tsys }{ A \, \sqrt{t_{int} \delta \nu} }
254\end{equation}
255where $t_{int}$ is the total integration time and $\delta \nu$ is the detection frequency band. In table
256\ref{slims21} (left) we have computed the sensitivity for 6 different sets of instrument effective area and system
257temperature, with a total integration time of 86400 seconds (1 day) over a frequency band of 1 MHz.
258The width of this frequency band is well adapted to detection of \HI source with an intrinsic velocity
259dispersion of few 100 km/s. These detection limits should be compared with the expected 21 cm brightness
260$S_{21}$ of compact sources which can be computed using the expression below (e.g.\cite{binney.98}) :
261\begin{equation}
262 S_{21} \simeq 0.021 \mathrm{\mu Jy} \, \frac{M_{H_I} }{M_\odot} \times
263\left( \frac{ 1\, \mathrm{Mpc}}{\dlum(z)} \right)^2 \times \frac{200 \, \mathrm{km/s}}{\sigma_v} (1+z)
264\end{equation}
265 where $ M_{H_I} $ is the neutral hydrogen mass, $\dlum(z)$ is the luminosity distance and $\sigma_v$
266is the source velocity dispersion.
267% {\color{red} Faut-il developper le calcul en annexe ? }
268
269In table \ref{slims21} (right), we show the 21 cm brightness for
270compact objects with a total \HI \, mass of $10^{10} M_\odot$ and an intrinsic velocity dispersion of
271$200 \, \mathrm{km/s}$. The luminosity distance is computed for the standard
272WMAP \LCDM universe. $10^9 - 10^{10} M_\odot$ of neutral gas mass
273is typical for large galaxies \citep{lah.09}. It is clear that detection of \HI sources at cosmological distances
274would require collecting area in the range of $10^6 \mathrm{m^2}$.
275
276Intensity mapping has been suggested as an alternative and economic method to map the
2773D distribution of neutral hydrogen by \citep{chang.08} and further studied by \citep{ansari.08} \citep{seo.10}.
278In this approach, sky brightness map with angular resolution $\sim 10-30 \, \mathrm{arc.min}$ is made for a
279wide range of frequencies. Each 3D pixel (2 angles $\vec{\Theta}$, frequency $\nu$ or wavelength $\lambda$)
280would correspond to a cell with a volume of $\sim 10^3 \mathrm{Mpc^3}$, containing ten to hundred galaxies
281and a total \HI mass $ \sim 10^{12} M_\odot$. If we neglect local velocities relative to the Hubble flow,
282the observed frequency $\nu$ would be translated to the emission redshift $z$ through
283the well known relation:
284\begin{eqnarray}
285 z(\nu) & = & \frac{\nu_{21} -\nu}{\nu}
286\, ; \, \nu(z) = \frac{\nu_{21}}{(1+z)}
287\hspace{1mm} \mathrm{with} \hspace{1mm} \nu_{21} = 1420.4 \, \mathrm{MHz} \\
288 z(\lambda) & = & \frac{\lambda - \lambda_{21}}{\lambda_{21}}
289\, ; \, \lambda(z) = \lambda_{21} \times (1+z)
290\hspace{1mm} \mathrm{with} \hspace{1mm} \lambda_{21} = 0.211 \, \mathrm{m}
291\end{eqnarray}
292The large scale distribution of the neutral hydrogen, down to angular scales of $\sim 10 \mathrm{arc.min}$
293can then be observed without the detection of individual compact \HI sources, using the set of sky brightness
294map as a function of frequency (3D-brightness map) $B_{21}(\vec{\Theta},\lambda)$. The sky brightness $B_{21}$
295(radiation power/unit solid angle/unit surface/unit frequency)
296can be converted to brightness temperature using the well known black body Rayleigh-Jeans approximation:
297$$ B(T,\lambda) = \frac{ 2 \kb T }{\lambda^2} $$
298
299%%%%%%%%
300\begin{table}
301\begin{center}
302\begin{tabular}{|c|c|c|}
303\hline
304$A (\mathrm{m^2})$ & $ T_{sys} (K) $ & $ S_{lim} \, \mathrm{\mu Jy} $ \\
305\hline
3065000 & 50 & 66 \\
3075000 & 25 & 33 \\
308100 000 & 50 & 3.3 \\
309100 000 & 25 & 1.66 \\
310500 000 & 50 & 0.66 \\
311500 000 & 25 & 0.33 \\
312\hline
313\end{tabular}
314%%
315\hspace{3mm}
316%%
317\begin{tabular}{|c|c|c|}
318\hline
319$z$ & $\dlum \mathrm{(Mpc)}$ & $S_{21} \mathrm{( \mu Jy)} $ \\
320\hline % dernier chiffre : sans le facteur (1+z)
3210.25 & 1235 & 175 \\ % 140
3220.50 & 2800 & 40 \\ % 27
3231.0 & 6600 & 9.6 \\ % 4.8
3241.5 & 10980 & 3.5 \\ % 1.74
3252.0 & 15710 & 2.5 \\ % 0.85
3262.5 & 20690 & 1.7 \\ % 0.49
327\hline
328\end{tabular}
329\caption{Sensitivity or source detection limit for 1 day integration time (86400 s) and 1 MHz
330frequency band (left). Source 21 cm brightness for $10^{10} M_\odot$ \HI for different redshifts (right) }
331\label{slims21}
332\end{center}
333\end{table}
334
335\subsection{ \HI power spectrum and BAO}
336In the absence of any foreground or background radiation, the brightness temperature
337for a given direction and wavelength $\TTlam$ would be proportional to
338the local \HI number density $\etaHI(\vec{\Theta},z)$ through the relation:
339\begin{equation}
340 \TTlamz = \frac{3}{32 \pi} \, \frac{h}{\kb} \, A_{21} \, \lambda_{21}^2 \times
341 \frac{c}{H(z)} \, (1+z)^2 \times \etaHI (\vec{\Theta}, z)
342\end{equation}
343where $A_{21}=2.85 \, 10^{-15} \mathrm{s^{-1}}$ \citep{astroformul} is the spontaneous 21 cm emission
344coefficient, $h$ is the Planck constant, $c$ the speed of light, $\kb$ the Boltzmann
345constant and $H(z)$ is the Hubble parameter at the emission redshift.
346For a \LCDM universe and neglecting radiation energy density, the Hubble parameter
347can be expressed as:
348\begin{equation}
349H(z) \simeq \hubb \, \left[ \Omega_m (1+z)^3 + \Omega_\Lambda \right]^{\frac{1}{2}}
350\times 100 \, \, \mathrm{km/s/Mpc}
351\label{eq:expHz}
352\end{equation}
353Introducing the \HI mass fraction relative to the total baryon mass $\gHI$, the
354neutral hydrogen number density and the corresponding 21 cm emission temperature
355can be written as a function of \HI relative density fluctuations:
356\begin{eqnarray}
357\etaHI (\vec{\Theta}, z(\lambda) ) & = & \gHIz \times \Omega_B \frac{\rho_{crit}}{m_{H}} \times
358\left( \frac{\delta \rho_{H_I}}{\bar{\rho}_{H_I}} (\vec{\Theta},z) + 1 \right) \\
359 \TTlamz & = & \bar{T}_{21}(z) \times \left( \frac{\delta \rho_{H_I}}{\bar{\rho}_{H_I}} (\vec{\Theta},z) + 1 \right)
360\end{eqnarray}
361where $\Omega_B, \rho_{crit}$ are respectively the present day mean baryon cosmological
362and critical densities, $m_{H}$ is the hydrogen atom mass, and
363$\frac{\delta \rho_{H_I}}{\bar{\rho}_{H_I}}$ is the \HI density fluctuations.
364
365The present day neutral hydrogen fraction $\gHI(0)$ present in local galaxies has been
366measured to be $\sim 1\%$ of the baryon density \citep{zwann.05}:
367$$ \Omega_{H_I} \simeq 3.5 \, 10^{-4} \sim 0.008 \times \Omega_B $$
368The neutral hydrogen fraction is expected to increase with redshift, as gas is used
369in star formation during galaxy formation and evolution. Study of Lyman-$\alpha$ absorption
370indicate a factor 3 increase in the neutral hydrogen
371fraction at $z=1.5$ in the intergalactic medium \citep{wolf.05},
372compared to its present day value $\gHI(z=1.5) \sim 0.025$.
373The 21 cm brightness temperature and the corresponding power spectrum can be written as
374(\cite{barkana.07} and \cite{madau.97}) :
375\begin{eqnarray}
376 P_{T_{21}}(k) & = & \left( \bar{T}_{21}(z) \right)^2 \, P(k) \label{eq:pk21z} \\
377 \bar{T}_{21}(z) & \simeq & 0.084 \, \mathrm{mK}
378\frac{ (1+z)^2 \, \hubb }{\sqrt{ \Omega_m (1+z)^3 + \Omega_\Lambda } }
379 \dfrac{\Omega_B}{0.044} \, \frac{\gHIz}{0.01}
380\label{eq:tbar21z}
381\end{eqnarray}
382
383The table \ref{tabcct21} shows the mean 21 cm brightness temperature for the
384standard \LCDM cosmology and either a constant \HI mass fraction $\gHI = 0.01$, or
385linearly increasing $\gHI \simeq 0.008 \times (1+z) $. Figure \ref{figpk21} shows the
38621 cm emission power spectrum at several redshifts, with a constant neutral fraction at 2\%
387($\gHI=0.02$). The matter power spectrum has been computed using the
388\cite{eisenhu.98} parametrisation. The correspondence with the angular scales is also
389shown for the standard WMAP \LCDM cosmology, according to the relation:
390\begin{equation}
391\theta_k = \frac{2 \pi}{k \, \dang(z) \, (1+z) }
392\hspace{3mm}
393k = \frac{2 \pi}{ \theta_k \, \dang(z) \, (1+z) }
394\end{equation}
395where $k$ is the comoving wave vector and $ \dang(z) $ is the angular diameter distance.
396% It should be noted that the maximum transverse $k^{comov} $ sensitivity range
397% for an instrument corresponds approximately to half of its angular resolution.
398% {\color{red} Faut-il developper completement le calcul en annexe ? }
399
400\begin{table}
401\begin{center}
402\begin{tabular}{|l|c|c|c|c|c|c|c|}
403\hline
404\hline
405 z & 0.25 & 0.5 & 1. & 1.5 & 2. & 2.5 & 3. \\
406\hline
407(a) $\bar{T}_{21}$ & 0.085 & 0.107 & 0.145 & 0.174 & 0.195 & 0.216 & 0.234 \\
408\hline
409(b) $\bar{T}_{21}$ & 0.085 & 0.128 & 0.232 & 0.348 & 0.468 & 0.605 & 0.749 \\
410\hline
411\hline
412\end{tabular}
413\caption{Mean 21 cm brightness temperature in mK, as a function of redshift, for the
414standard \LCDM cosmology with constant \HI mass fraction at $\gHIz$=0.01 (a) or linearly
415increasing mass fraction (b) $\gHIz=0.008(1+z)$ }
416\label{tabcct21}
417\end{center}
418\end{table}
419
420\begin{figure}
421\vspace*{-11mm}
422\hspace{-5mm}
423\includegraphics[width=0.57\textwidth]{Figs/pk21cmz12.pdf}
424\vspace*{-10mm}
425\caption{\HI 21 cm emission power spectrum at redshifts z=1 (blue) and z=2 (red), with
426neutral gas fraction $\gHI=2\%$}
427\label{figpk21}
428\end{figure}
429
430
431\section{interferometric observations and P(k) measurement sensitivity }
432\label{pkmessens}
433\subsection{Instrument response}
434\label{instrumresp}
435We introduce briefly here the principles of interferometric observations and the definition of
436quantities useful for our calculations. Interested reader may refer to \citep{radastron} for a detailed
437and complete presentation of observation methods and signal processing in radio astronomy.
438In astronomy we are usually interested in measuring the sky emission intensity,
439$I(\vec{\Theta},\lambda)$ in a given wave band, as a function of the sky direction. In radio astronomy
440and interferometry in particular, receivers are sensitive to the sky emission complex
441amplitudes. However, for most sources, the phases vary randomly with a spatial correlation
442length significantly smaller than the instrument resolution.
443\begin{eqnarray}
444& &
445I(\vec{\Theta},\lambda) = | A(\vec{\Theta},\lambda) |^2 \hspace{2mm} , \hspace{1mm} I \in \mathbb{R}, A \in \mathbb{C} \\
446& & < A(\vec{\Theta},\lambda) A^*(\vec{\Theta '},\lambda) >_{time} = 0 \hspace{2mm} \mathrm{for} \hspace{1mm} \vec{\Theta} \ne \vec{\Theta '}
447\end{eqnarray}
448A single receiver can be characterized by its angular complex amplitude response $B(\vec{\Theta},\nu)$ and
449its position $\vec{r}$ in a reference frame. the waveform complex amplitude $s$ measured by the receiver,
450for each frequency can be written as a function of the electromagnetic wave vector
451$\vec{k}_{EM}(\vec{\Theta}, \lambda) $ :
452\begin{equation}
453s(\lambda) = \iint d \vec{\Theta} \, \, \, A(\vec{\Theta},\lambda) B(\vec{\Theta},\lambda) e^{i ( \vec{k}_{EM} . \vec{r} )} \\
454\end{equation}
455We have set the electromagnetic (EM) phase origin at the center of the coordinate frame and
456the EM wave vector is related to the wavelength $\lambda$ through the usual equation
457$ | \vec{k}_{EM} | = 2 \pi / \lambda $. The receiver beam or antenna lobe $L(\vec{\Theta},\lambda)$
458corresponds to the receiver intensity response:
459\begin{equation}
460L(\vec{\Theta}, \lambda) = B(\vec{\Theta},\lambda) \, B^*(\vec{\Theta},\lambda)
461\end{equation}
462The visibility signal of two receivers corresponds to the time averaged correlation between
463signals from two receivers. If we assume a sky signal with random uncorrelated phase, the
464visibility $\vis$ signal from two identical receivers, located at the position $\vec{r_1}$ and
465$\vec{r_2}$ can simply be written as a function of their position difference $\vec{\Delta r} = \vec{r_1}-\vec{r_2}$
466\begin{equation}
467\vis(\lambda) = < s_1(\lambda) s_2(\lambda)^* > = \iint d \vec{\Theta} \, \, I(\vec{\Theta},\lambda) L(\vec{\Theta},\lambda)
468e^{i ( \vec{k}_{EM} . \vec{\Delta r} ) }
469\end{equation}
470This expression can be simplified if we consider receivers with narrow field of view
471($ L(\vec{\Theta},\lambda) \simeq 0$ for $| \vec{\Theta} | \gtrsim 10 \, \mathrm{deg.} $ ),
472and coplanar in respect to their common axis.
473If we introduce two {\em Cartesian} like angular coordinates $(\alpha,\beta)$ centered at
474the common receivers axis, the visibilty would be written as the 2D Fourier transform
475of the product of the sky intensity and the receiver beam, for the angular frequency
476\mbox{$(u,v)_{12} = 2 \pi( \frac{\Delta x}{\lambda} , \frac{\Delta y}{\lambda} )$}:
477\begin{equation}
478\vis(\lambda) \simeq \iint d\alpha d\beta \, \, I(\alpha, \beta) \, L(\alpha, \beta)
479\exp \left[ i 2 \pi \left( \alpha \frac{\Delta x}{\lambda} + \beta \frac{\Delta y}{\lambda} \right) \right]
480\end{equation}
481where $(\Delta x, \Delta y)$ are the two receiver distances on a plane perpendicular to
482the receiver axis. The $x$ and $y$ axis in the receiver plane are taken parallel to the
483two $(\alpha, \beta)$ angular planes.
484
485Furthermore, we introduce the conjugate Fourier variables $(u,v)$ and the Fourier transforms
486of the sky intensity and the receiver beam:
487\begin{center}
488\begin{tabular}{ccc}
489$(\alpha, \beta)$ & \hspace{2mm} $\longrightarrow $ \hspace{2mm} & $(u,v)$ \\
490$I(\alpha, \beta, \lambda)$ & \hspace{2mm} $\longrightarrow $ \hspace{2mm} & ${\cal I}(u,v, \lambda)$ \\
491$L(\alpha, \beta, \lambda)$ & \hspace{2mm} $\longrightarrow $ \hspace{2mm} & ${\cal L}(u,v, \lambda)$ \\
492\end{tabular}
493\end{center}
494
495The visibility can then be interpreted as the weighted sum of the sky intensity, in an angular
496wave number domain located around
497$(u, v)_{12}=2 \pi( \frac{\Delta x}{\lambda} , \frac{\Delta y}{\lambda} )$. The weight function is
498given by the receiver beam Fourier transform.
499\begin{equation}
500\vis(\lambda) \simeq \iint d u d v \, \, {\cal I}(u,v, \lambda) \, {\cal L}(u - 2 \pi \frac{\Delta x}{\lambda} , v - 2 \pi \frac{\Delta y}{\lambda} , \lambda)
501\end{equation}
502
503A single receiver instrument would measure the total power integrated in a spot centered around the
504origin in the $(u,v)$ or the angular wave mode plane. The shape of the spot depends on the receiver
505beam pattern, but its extent would be $\sim 2 \pi D / \lambda$, where $D$ is the receiver physical
506size.
507
508The correlation signal from a pair of receivers would measure the integrated signal on a similar
509spot, located around the central angular wave mode $(u, v)_{12}$ determined by the relative
510position of the two receivers (see figure \ref{figuvplane}).
511In an interferometer with multiple receivers, the area covered by different receiver pairs in the
512$(u,v)$ plane might overlap and some pairs might measure the same area (same base lines).
513Several beams can be formed using different combination of the correlations from a set of
514antenna pairs.
515
516An instrument can thus be characterized by its $(u,v)$ plane coverage or response
517${\cal R}(u,v,\lambda)$. For a single dish with a single receiver in the focal plane,
518the instrument response is simply the Fourier transform of the beam.
519For a single dish with multiple receivers, either as a Focal Plane Array (FPA) or
520a multi-horn system, each beam (b) will have its own response
521${\cal R}_b(u,v,\lambda)$.
522For an interferometer, we can compute a raw instrument response
523${\cal R}_{raw}(u,v,\lambda)$ which corresponds to $(u,v)$ plane coverage by all
524receiver pairs with uniform weighting.
525Obviously, different weighting schemes can be used, changing
526the effective beam shape and thus the response ${\cal R}_{w}(u,v,\lambda)$
527and the noise behaviour. If the same Fourier angular frequency mode is measured
528by several receiver pairs, the raw instrument response might then be larger
529that unity. This non normalized instrument response is used to compute the projected
530noise power spectrum in the following section (\ref{instrumnoise}).
531We can also define a normalized instrument response, ${\cal R}_{norm}(u,v,\lambda) \lesssim 1$ as:
532\begin{equation}
533{\cal R}_{norm}(u,v,\lambda) = {\cal R}(u,v,\lambda) / \mathrm{Max_{(u,v)}} \left[ {\cal R}(u,v,\lambda) \right]
534\end{equation}
535This normalized instrument response can be used to compute the effective instrument beam,
536in particular in section \ref{recsec}.
537
538\begin{figure}
539% \vspace*{-2mm}
540\centering
541\mbox{
542\includegraphics[width=0.5\textwidth]{Figs/uvplane.pdf}
543}
544\vspace*{-15mm}
545\caption{Schematic view of the $(u,v)$ plane coverage by interferometric measurement.}
546\label{figuvplane}
547\end{figure}
548
549\subsection{Noise power spectrum}
550\label{instrumnoise}
551Let's consider a total power measurement using a receiver at wavelength $\lambda$, over a frequency
552bandwidth $\delta \nu$ centered on $\nu_0$, with an integration time $t_{int}$, characterized by a system temperature
553$\Tsys$. The uncertainty or fluctuations of this measurement due to the receiver noise can be written as
554$\sigma_{noise}^2 = \frac{2 \Tsys^2}{t_{int} \, \delta \nu}$. This term
555corresponds also to the noise for the visibility $\vis$ measured from two identical receivers, with uncorrelated
556noise. If the receiver has an effective area $A \simeq \pi D^2/4$ or $A \simeq D_x D_y$, the measurement
557corresponds to the integration of power over a spot in the angular frequency plane with an area $\sim A/\lambda^2$. The noise spectral density, in the angular frequencies plane (per unit area of angular frequencies $\frac{\delta u}{ 2 \pi} \times \frac{\delta v}{2 \pi}$), corresponding to a visibility
558measurement from a pair of receivers can be written as:
559\begin{eqnarray}
560P_{noise}^{\mathrm{pair}} & = & \frac{\sigma_{noise}^2}{ A / \lambda^2 } \\
561P_{noise}^{\mathrm{pair}} & \simeq & \frac{2 \, \Tsys^2 }{t_{int} \, \delta \nu} \, \frac{ \lambda^2 }{ D^2 }
562\hspace{5mm} \mathrm{units:} \, \mathrm{K^2 \times rad^2}
563\label{eq:pnoisepairD}
564\end{eqnarray}
565
566The sky temperature measurement can thus be characterized by the noise spectral power density in
567the angular frequencies plane $P_{noise}^{(u,v)} \simeq \frac{\sigma_{noise}^2}{A / \lambda^2}$, in $\mathrm{Kelvin^2}$
568per unit area of angular frequencies $\frac{\delta u}{ 2 \pi} \times \frac{\delta v}{2 \pi}$:
569We can characterize the sky temperature measurement with a radio instrument by the noise
570spectral power density in the angular frequencies plane $P_{noise}(u,v)$ in units of $\mathrm{Kelvin^2}$
571per unit area of angular frequencies $\frac{\delta u}{ 2 \pi} \times \frac{\delta v}{2 \pi}$.
572For an interferometer made of identical receiver elements, several ($n$) receiver pairs
573might have the same baseline. The noise power density in the corresponding $(u,v)$ plane area
574is then reduced by a factor $1/n$. More generally, we can write the instrument noise
575spectral power density using the instrument response defined in section \ref{instrumresp} :
576\begin{equation}
577P_{noise}(u,v) = \frac{ P_{noise}^{\mathrm{pair}} } { {\cal R}_{raw}(u,v,\lambda) }
578\end{equation}
579
580When the intensity maps are projected in a three dimensional box in the universe and the 3D power spectrum
581$P(k)$ is computed, angles are translated into comoving transverse distances,
582and frequencies or wavelengths into comoving radial distance, using the following relations:
583\begin{eqnarray}
584\delta \alpha , \beta & \rightarrow & \delta \ell_\perp = (1+z) \, \dang(z) \, \delta \alpha,\beta \\
585\delta \nu & \rightarrow & \delta \ell_\parallel = (1+z) \frac{c}{H(z)} \frac{\delta \nu}{\nu}
586 = (1+z) \frac{\lambda}{H(z)} \delta \nu \\
587\delta u , \delta v & \rightarrow & \delta k_\perp = \frac{ \delta u \, , \, \delta v }{ (1+z) \, \dang(z) } \\
588\frac{1}{\delta \nu} & \rightarrow & \delta k_\parallel = \frac{H(z)}{c} \frac{1}{(1+z)} \, \frac{\nu}{\delta \nu}
589 = \frac{H(z)}{c} \frac{1}{(1+z)^2} \, \frac{\nu_{21}}{\delta \nu}
590\end{eqnarray}
591
592If we consider a uniform noise spectral density in the $(u,v)$ plane corresponding to the
593equation \ref{eq:pnoisepairD} above, the three dimensional projected noise spectral density
594can then be written as:
595\begin{equation}
596P_{noise}(k) = 2 \, \frac{\Tsys^2}{t_{int} \, \nu_{21} } \, \frac{\lambda^2}{D^2} \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4
597\label{ctepnoisek}
598\end{equation}
599
600$P_{noise}(k)$ would be in units of $\mathrm{mK^2 \, Mpc^3}$ with $\Tsys$ expressed in $\mathrm{mK}$,
601$t_{int}$ is the integration time expressed in second,
602$\nu_{21}$ in $\mathrm{Hz}$, $c$ in $\mathrm{km/s}$, $\dang$ in $\mathrm{Mpc}$ and
603 $H(z)$ in $\mathrm{km/s/Mpc}$.
604
605The matter or \HI distribution power spectrum determination statistical errors vary as the number of
606observed Fourier modes, which is inversely proportional to volume of the universe
607which is observed (sample variance). As the observed volume is proportional to the
608surveyed solid angle, we consider the survey of a fixed
609fraction of the sky, defined by total solid angle $\Omega_{tot}$, performed during a determined
610total observation time $t_{obs}$.
611A single dish instrument with diameter $D$ would have an instantaneous field of view
612$\Omega_{FOV} \sim \left( \frac{\lambda}{D} \right)^2$, and would require
613a number of pointings $N_{point} = \frac{\Omega_{tot}}{\Omega_{FOV}}$ to cover the survey area.
614Each sky direction or pixel of size $\Omega_{FOV}$ will be observed during an integration
615time $t_{int} = t_{obs}/N_{point} $. Using equation \ref{ctepnoisek} and the previous expression
616for the integration time, we can compute a simple expression
617for the noise spectral power density by a single dish instrument of diameter $D$:
618\begin{equation}
619P_{noise}^{survey}(k) = 2 \, \frac{\Tsys^2 \, \Omega_{tot} }{t_{obs} \, \nu_{21} } \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4
620\end{equation}
621
622It is important to note that any real instrument do not have a flat
623response in the $(u,v)$ plane, and the observations provide no information above
624a certain maximum angular frequency $u_{max},v_{max}$.
625One has to take into account either a damping of the observed sky power
626spectrum or an increase of the noise spectral power if
627the observed power spectrum is corrected for damping. The white noise
628expressions given below should thus be considered as a lower limit or floor of the
629instrument noise spectral density.
630
631For a single dish instrument of diameter $D$ equipped with a multi-feed or
632phase array receiver system, with $N$ independent beams on sky,
633the noise spectral density decreases by a factor $N$,
634thanks to the increase of per pointing integration time:
635
636\begin{equation}
637P_{noise}^{survey}(k) = \frac{2}{N} \, \frac{\Tsys^2 \, \Omega_{tot} }{t_{obs} \, \nu_{21} } \, \dang^2(z) \frac{c}{H(z)} \, (1+z)^4
638\label{eq:pnoiseNbeam}
639\end{equation}
640
641This expression (eq. \ref{eq:pnoiseNbeam}) can also be used for a filled interferometric array of $N$
642identical receivers with a total collection area $\sim D^2$. Such an array could be made for example
643of $N=q \times q$ {\it small dishes}, each with diameter $D/q$, arranged as $q \times q$ square.
644
645For a single dish of diameter $D$, or an interferometric instrument with maximal extent $D$,
646observations provide information up to $u_{max},v_{max} \lesssim 2 \pi D / \lambda $. This value of
647$u_{max},v_{max}$ would be mapped to a maximum transverse cosmological wave number
648$k^{\perp}_{max}$:
649\begin{equation}
650k^{\perp} = \frac{(u,v)}{(1+z) \dang} \hspace{8mm}
651k^{\perp}_{max} \lesssim \frac{2 \pi}{\dang \, (1+z)^2} \frac{D}{\lambda_{21}}
652\label{kperpmax}
653\end{equation}
654
655Figure \ref{pnkmaxfz} shows the evolution of the noise spectral density $P_{noise}^{survey}(k)$
656as a function of redshift, for a radio survey of the sky, using an instrument with $N=100$
657beams and a system noise temperature $\Tsys = 50 \mathrm{K}$.
658The survey is supposed to cover a quarter of sky $\Omega_{tot} = \pi \, \mathrm{srad}$, in one
659year. The maximum comoving wave number $k_{max}$ is also shown as a function
660of redshift, for an instrument with $D=100 \, \mathrm{m}$ maximum extent. In order
661to take into account the radial component of $\vec{k}$ and the increase of
662the instrument noise level with $k^{\perp}$, we have taken the effective $k_{ max} $
663as half of the maximum transverse $k^{\perp} _{max}$ of \mbox{eq. \ref{kperpmax}}:
664\begin{equation}
665k_{max} (z) = \frac{\pi}{\dang \, (1+z)^2} \frac{D=100 \mathrm{m}}{\lambda_{21}}
666\end{equation}
667
668\begin{figure}
669\vspace*{-25mm}
670\centering
671\mbox{
672\hspace*{-10mm}
673\includegraphics[width=0.65\textwidth]{Figs/pnkmaxfz.pdf}
674}
675\vspace*{-40mm}
676\caption{Minimal noise level for a 100 beams instrument with \mbox{$\Tsys=50 \mathrm{K}$}
677as a function of redshift (top). Maximum $k$ value for a 100 meter diameter primary antenna (bottom) }
678\label{pnkmaxfz}
679\end{figure}
680
681
682\subsection{Instrument configurations and noise power spectrum}
683\label{instrumnoise}
684We have numerically computed the instrument response ${\cal R}(u,v,\lambda)$
685with uniform weights in the $(u,v)$ plane for several instrument configurations:
686\begin{itemize}
687\item[{\bf a} :] A packed array of $n=121 \, D_{dish}=5 \, \mathrm{m}$ dishes, arranged in
688a square $11 \times 11$ configuration ($q=11$). This array covers an area of
689$55 \times 55 \, \mathrm{m^2}$
690\item [{\bf b} :] An array of $n=128 \, D_{dish}=5 \, \mathrm{m}$ dishes, arranged
691in 8 rows, each with 16 dishes. These 128 dishes are spread over an area
692$80 \times 80 \, \mathrm{m^2}$. The array layout for this configuration is
693shown in figure \ref{figconfbc}.
694\item [{\bf c} :] An array of $n=129 \, D_{dish}=5 \, \mathrm{m}$ dishes, arranged
695 over an area $80 \times 80 \, \mathrm{m^2}$. This configuration has in
696particular 4 sub-arrays of packed 16 dishes ($4\times4$), located in the
697four array corners. This array layout is also shown figure \ref{figconfbc}.
698\item [{\bf d} :] A single dish instrument, with diameter $D=75 \, \mathrm{m}$,
699equipped with a 100 beam focal plane receiver array.
700\item[{\bf e} :] A packed array of $n=400 \, D_{dish}=5 \, \mathrm{m}$ dishes, arranged in
701a square $20 \times 20$ configuration ($q=20$). This array covers an area of
702$100 \times 100 \, \mathrm{m^2}$
703\item[{\bf f} :] A packed array of 4 cylindrical reflectors, each 85 meter long and 12 meter
704wide. The focal line of each cylinder is equipped with 100 receivers, each
705$2 \lambda$ long, corresponding to $\sim 0.85 \, \mathrm{m}$ at $z=1$.
706This array covers an area of $48 \times 85 \, \mathrm{m^2}$, and have
707a total of $400$ receivers per polarisation, as in the (e) configuration.
708We have computed the noise power spectrum for {\em perfect}
709cylinders, where all receiver pair correlations are used (fp), or for
710a non perfect instrument, where only correlations between receivers
711from different cylinders are used.
712\item[{\bf g} :] A packed array of 8 cylindrical reflectors, each 102 meter long and 12 meter
713wide. The focal line of each cylinder is equipped with 120 receivers, each
714$2 \lambda$ long, corresponding to $\sim 0.85 \, \mathrm{m}$ at $z=1$.
715This array covers an area of $96 \times 102 \, \mathrm{m^2}$ and has
716a total of 960 receivers per polarisation. As for the (f) configuration,
717we have computed the noise power spectrum for {\em perfect}
718cylinders, where all receiver pair correlations are used (gp), or for
719a non perfect instrument, where only correlations between receivers
720from different cylinders are used.
721\end{itemize}
722
723\begin{figure}
724\centering
725\vspace*{-15mm}
726\mbox{
727\hspace*{-10mm}
728\includegraphics[width=0.5\textwidth]{Figs/configab.pdf}
729}
730\vspace*{-15mm}
731\caption{ Array layout for configurations (b) and (c) with 128 and 129 D=5 meter
732diameter dishes. }
733\label{figconfbc}
734\end{figure}
735
736We have used simple triangular shaped dish response in the $(u,v)$ plane.
737However, we have introduced a filling factor or illumination efficiency
738$\eta$, relating the effective dish diameter $D_{ill}$ to the
739mechanical dish size $D^{ill} = \eta \, D_{dish}$. The effective area $A_e \propto \eta^2$ scales
740as $\eta^2$ or $\eta_x \eta_y$.
741\begin{eqnarray}
742{\cal L}_\circ (u,v,\lambda) & = & \bigwedge_{[\pm 2 \pi D^{ill}/ \lambda]}(\sqrt{u^2+v^2}) \\
743 L_\circ (\alpha,\beta,\lambda) & = & \left[ \frac{ \sin (\pi (D^{ill}/\lambda) \sin \theta ) }{\pi (D^{ill}/\lambda) \sin \theta} \right]^2
744\hspace{4mm} \theta=\sqrt{\alpha^2+\beta^2}
745\end{eqnarray}
746For the multi-dish configuration studied here, we have taken the illumination efficiency factor
747{\bf $\eta = 0.9$}.
748
749For the receivers along the focal line of cylinders, we have assumed that the
750individual receiver response in the $(u,v)$ plane corresponds to one from a
751rectangular shaped antenna. The illumination efficiency factor has been taken
752equal to $\eta_x = 0.9$ in the direction of the cylinder width, and $\eta_y = 0.8$
753along the cylinder length. It should be noted that the small angle approximation
754used here for the expression of visibilities is not valid for the receivers along
755the cylinder axis. However, some preliminary numerical checks indicate that
756the results obtained here for the noise spectral power density would not change significantly.
757The instrument responses shown here correspond to fixed pointing toward the zenith, which
758is the case for a transit type telescope.
759
760\begin{equation}
761 {\cal L}_\Box(u,v,\lambda) =
762\bigwedge_{[\pm 2 \pi D^{ill}_x / \lambda]} (u ) \times
763\bigwedge_{[\pm 2 \pi D^{ill}_y / \lambda ]} (v )
764\end{equation}
765Figure \ref{figuvcovabcd} shows the instrument response ${\cal R}(u,v,\lambda)$
766for the four configurations (a,b,c,d) with $\sim 100$ receivers per
767polarisation. The resulting projected noise spectral power density is shown in figure
768\ref{figpnoisea2g}. The increase of $P_{noise}(k)$ at low $k^{comov} \lesssim 0.02$
769is due to the fact that we have ignored all auto-correlation measurements.
770It can be seen that an instrument with $100-200$ beams and $\Tsys = 50 \mathrm{K}$
771should have enough sensitivity to map LSS in 21 cm at redshift z=1.
772
773\begin{figure*}
774\centering
775\mbox{
776\hspace*{-10mm}
777\includegraphics[width=0.90\textwidth]{Figs/uvcovabcd.pdf}
778}
779\caption{(u,v) plane coverage (raw instrument response ${\cal R}(u,v,\lambda)$
780for four configurations.
781(a) 121 $D_{dish}=5$ meter diameter dishes arranged in a compact, square array
782of $11 \times 11$, (b) 128 dishes arranged in 8 row of 16 dishes each (fig. \ref{figconfbc}),
783(c) 129 dishes arranged as shown in figure \ref{figconfbc} , (d) single D=75 meter diameter, with 100 beams.
784(color scale : black $<1$, blue, green, yellow, red $\gtrsim 80$) }
785\label{figuvcovabcd}
786\end{figure*}
787
788\begin{figure*}
789\vspace*{-25mm}
790\centering
791\mbox{
792\hspace*{-20mm}
793\includegraphics[width=1.15\textwidth]{Figs/pkna2h.pdf}
794}
795\vspace*{-40mm}
796\caption{P(k) LSS power and noise power spectrum for several interferometer
797configurations ((a),(b),(c),(d),(e),(f),(g)) with 121, 128, 129, 400 and 960 receivers.}
798\label{figpnoisea2g}
799\end{figure*}
800
801
802\section{ Foregrounds and Component separation }
803\label{foregroundcompsep}
804Reaching the required sensitivities is not the only difficulty of observing the large
805scale structures in 21 cm. Indeed, the synchrotron emission of the
806Milky Way and the extra galactic radio sources are a thousand times brighter than the
807emission of the neutral hydrogen distributed in the universe. Extracting the LSS signal
808using Intensity Mapping, without identifying the \HI point sources is the main challenge
809for this novel observation method. Although this task might seem impossible at first,
810it has been suggested that the smooth frequency dependence of the synchrotron
811emissions can be used to separate the faint LSS signal from the Galactic and radio source
812emissions.
813However, any real radio instrument has a beam shape which changes with
814frequency: this instrumental effect significantly increases the difficulty and complexity of this component separation
815technique. The effect of frequency dependent beam shape is some time referred to as {\em
816mode mixing}. See for example \citep{morales.06}, \citep{bowman.07}.
817
818In this section, we present a short description of the foreground emissions and
819the simple models we have used for computing the sky radio emissions in the GHz frequency
820range. We present also a simple component separation method to extract the LSS signal and
821its performance. We show in particular the effect of the instrument response on the recovered
822power spectrum. The results presented in this section concern the
823total sky emission and the LSS 21 cm signal extraction in the $z \sim 0.6$ redshift range,
824corresponding to the central frequency $\nu \sim 884$ MHz.
825
826\subsection{ Synchrotron and radio sources }
827We have modeled the radio sky in the form of three dimensional maps (data cubes) of sky temperature
828brightness $T(\alpha, \delta, \nu)$ as a function of two equatorial angular coordinates $(\alpha, \delta)$
829and the frequency $\nu$. Unless otherwise specified, the results presented here are based on simulations of
830$90 \times 30 \simeq 2500 \, \mathrm{deg^2}$ of the sky, centered on $\alpha= 10\mathrm{h}00\mathrm{m} , \delta=+10 \, \mathrm{deg.}$, and covering 128 MHz in frequency. We have selected this particular area of the sky in order to minimize
831the Galactic synchrotron foreground. The sky cube characteristics (coordinate range, size, resolution)
832used in the simulations are given in the table \ref{skycubechars}.
833\begin{table}
834\begin{center}
835\begin{tabular}{|c|c|c|}
836\hline
837 & range & center \\
838\hline
839Right ascension & 105 $ < \alpha < $ 195 deg. & 150 deg.\\
840Declination & -5 $ < \delta < $ 25 deg. & +10 deg. \\
841Frequency & 820 $ < \nu < $ 948 MHz & 884 MHz \\
842Wavelength & 36.6 $ < \lambda < $ 31.6 cm & 33.9 cm \\
843Redshift & 0.73 $ < z < $ 0.5 & 0.61 \\
844\hline
845\hline
846& resolution & N-cells \\
847\hline
848Right ascension & 3 arcmin & 1800 \\
849Declination & 3 arcmin & 600 \\
850Frequency & 500 kHz ($d z \sim 10^{-3}$) & 256 \\
851\hline
852\end{tabular} \\[1mm]
853\end{center}
854\caption{
855Sky cube characteristics for the simulation performed in this paper.
856Cube size : $ 90 \, \mathrm{deg.} \times 30 \, \mathrm{deg.} \times 128 \, \mathrm{MHz}$
857$ 1800 \times 600 \times 256 \simeq 123 \, 10^6$ cells
858}
859\label{skycubechars}
860\end{table}
861%%%%
862\par
863Two different methods have been used to compute the sky temperature data cubes.
864We have used the Global Sky Model (GSM) \citep{gsm.08} tools to generate full sky
865maps of the emission temperature at different frequencies, from which we have
866extracted the brightness temperature cube for the region defined above
867(Model-I/GSM $T_{gsm}(\alpha, \delta, \nu)$).
868As the GSM maps have an intrinsic resolution of $\sim$ 0.5 degree, it is
869difficult to have reliable results for the effect of point sources on the reconstructed
870LSS power spectrum.
871
872We have thus made also a simple sky model using the Haslam Galactic synchrotron map
873at 408 MHz \citep{haslam.82} and the NRAO VLA Sky Survey (NVSS) 1.4 GHz radio source
874catalog \citep{nvss.98}. The sky temperature cube in this model (Model-II/Haslam+NVSS)
875has been computed through the following steps:
876
877\begin{enumerate}
878\item The Galactic synchrotron emission is modeled as a power law with spatially
879varying spectral index. We assign a power law index $\beta = -2.8 \pm 0.15$ to each sky direction.
880$\beta$ has a gaussian distribution centered at -2.8 and with standard
881deviation $\sigma_\beta = 0.15$.
882The synchrotron contribution to the sky temperature for each cell is then
883obtained through the formula:
884$$ T_{sync}(\alpha, \delta, \nu) = T_{haslam} \times \left(\frac{\nu}{408 \, \mathrm{MHz}}\right)^\beta $$
885%%
886\item A two dimensional $T_{nvss}(\alpha,\delta)$ sky brightness temperature at 1.4 GHz is computed
887by projecting the radio sources in the NVSS catalog to a grid with the same angular resolution as
888the sky cubes. The source brightness in Jansky is converted to temperature taking the
889pixel angular size into account ($ \sim 21 \mathrm{mK / mJansky}$ at 1.4 GHz and $3' \times 3'$ pixels).
890A spectral index $\beta_{src} \in [-1.5,-2]$ is also assigned to each sky direction for the radio source
891map; we have taken $\beta_{src}$ as a flat random number in the range $[-1.5,-2]$, and the
892contribution of the radiosources to the sky temperature is computed as follows:
893$$ T_{radsrc}(\alpha, \delta, \nu) = T_{nvss} \times \left(\frac{\nu}{1420 \, \mathrm{MHz}}\right)^{\beta_{src}} $$
894%%
895\item The sky brightness temperature data cube is obtained through the sum of
896the two contributions, Galactic synchrotron and resolved radio sources:
897$$ T_{fgnd}(\alpha, \delta, \nu) = T_{sync}(\alpha, \delta, \nu) + T_{radsrc}(\alpha, \delta, \nu) $$
898\end{enumerate}
899
900 The 21 cm temperature fluctuations due to neutral hydrogen in large scale structures
901$T_{lss}(\alpha, \delta, \nu)$ have been computed using the
902SimLSS \footnote{SimLSS : {\tt http://www.sophya.org/SimLSS} } software package:
903%
904complex normal Gaussian fields were first generated in Fourier space.
905The amplitude of each mode was then multiplied by the square root
906of the power spectrum $P(k)$ at $z=0$ computed according to the parametrization of
907\citep{eisenhu.98}. We have used the standard cosmological parameters,
908 $H_0=71 \, \mathrm{km/s/Mpc}$, $\Omega_m=0.27$, $\Omega_b=0.044$,
909$\Omega_\lambda=0.73$ and $w=-1$.
910An inverse FFT was then performed to compute the matter density fluctuations $\delta \rho / \rho$
911in the linear regime,
912in a box of $3420 \times 1140 \times 716 \, \mathrm{Mpc^3}$ and evolved
913to redshift $z=0.6$.
914The size of the box is about 2500 $\mathrm{deg^2}$ in the transverse direction and
915$\Delta z \simeq 0.23$ in the longitudinal direction.
916The size of the cells is $1.9 \times 1.9 \times 2.8 \, \mathrm{Mpc^3}$, which correspond approximately to the
917sky cube angular and frequency resolution defined above.
918
919The mass fluctuations has been
920converted into temperature through a factor $0.13 \, \mathrm{mK}$, corresponding to a hydrogen
921fraction $0.008 \times (1+0.6)$, using equation \ref{eq:tbar21z}.
922The total sky brightness temperature is then computed as the sum
923of foregrounds and the LSS 21 cm emission:
924$$ T_{sky} = T_{sync}+T_{radsrc}+T_{lss} \hspace{5mm} OR \hspace{5mm}
925T_{sky} = T_{gsm}+T_{lss} $$
926
927Table \ref{sigtsky} summarizes the mean and standard deviation of the sky brightness
928temperature $T(\alpha, \delta, \nu)$ for the different components computed in this study.
929It should be noted that the standard deviation depends on the map resolution and the values given
930in table \ref{sigtsky} correspond to sky cubes computed here, with $\sim 3$ arc minute
931angular and 500 kHz frequency resolutions (see table \ref{skycubechars}).
932Figure \ref{compgsmmap} shows the comparison of the GSM temperature map at 884 MHz
933with Haslam+NVSS map, smoothed with a 35 arcmin gaussian beam.
934Figure \ref{compgsmhtemp} shows the comparison of the sky cube temperature distribution
935for Model-I/GSM and Model-II. There is good agreement between the two models, although
936the mean temperature for Model-II is slightly higher ($\sim 10\%$) than Model-I.
937
938\begin{table}
939\centering
940\begin{tabular}{|c|c|c|}
941\hline
942 & mean (K) & std.dev (K) \\
943\hline
944Haslam & 2.17 & 0.6 \\
945NVSS & 0.13 & 7.73 \\
946Haslam+NVSS & 2.3 & 7.75 \\
947(Haslam+NVSS)*Lobe(35') & 2.3 & 0.72 \\
948GSM & 2.1 & 0.8 \\
949\hline
950\end{tabular}
951\caption{ Mean temperature and standard deviation for the different sky brightness
952data cubes computed for this study (see table \ref{skycubechars} for sky cube resolution and size).}
953\label{sigtsky}
954\end{table}
955
956we have computed the power spectrum for the 21cm-LSS sky temperature cube, as well
957as for the radio foreground temperature cubes obtained from the two
958models. We have also computed the power spectrum on sky brightness temperature
959cubes, as measured by a perfect instrument having a 25 arcmin (FWHM) gaussian beam.
960The resulting computed power spectra are shown on figure \ref{pkgsmlss}.
961The GSM model has more large scale power compared to our simple Haslam+NVSS model,
962while it lacks power at higher spatial frequencies. The mode mixing due to
963frequency dependent response will thus be stronger in Model-II (Haslam+NVSS)
964case. It can also be seen that the radio foreground power spectrum is more than
965$\sim 10^6$ times higher than the 21 cm signal from large scale structures. This corresponds
966to the factor $\sim 10^3$ of the sky brightness temperature fluctuations ($\sim$ K),
967compared to the mK LSS signal.
968
969It should also be noted that in section 3, we presented the different instrument
970configuration noise levels after {\em correcting or deconvolving} the instrument response. The LSS
971power spectrum is recovered unaffected in this case, while the noise power spectrum
972increases at high k values (small scales). In practice, clean deconvolution is difficult to
973implement for real data and the power spectra presented in this section are NOT corrected
974for the instrumental response. The observed structures have thus a scale dependent damping
975according to the instrument response, while the instrument noise is flat (white noise or scale independent).
976
977\begin{figure}
978\centering
979\vspace*{-10mm}
980\mbox{
981\hspace*{-20mm}
982\includegraphics[width=0.6\textwidth]{Figs/comptempgsm.pdf}
983}
984\vspace*{-10mm}
985\caption{Comparison of GSM (black) Model-II (red) sky cube temperature distribution.
986The Model-II (Haslam+NVSS),
987has been smoothed with a 35 arcmin gaussian beam. }
988\label{compgsmhtemp}
989\end{figure}
990
991\begin{figure*}
992\centering
993\mbox{
994% \hspace*{-10mm}
995\includegraphics[width=0.9\textwidth]{Figs/compmapgsm.pdf}
996}
997\caption{Comparison of GSM map (top) and Model-II sky map at 884 MHz (bottom).
998The Model-II (Haslam+NVSS) has been smoothed with a 35 arcmin (FWHM) gaussian beam.}
999\label{compgsmmap}
1000\end{figure*}
1001
1002\begin{figure}
1003\centering
1004\vspace*{-25mm}
1005\mbox{
1006\hspace*{-15mm}
1007\includegraphics[width=0.65\textwidth]{Figs/pk_gsm_lss.pdf}
1008}
1009\vspace*{-40mm}
1010\caption{Comparison of the 21cm LSS power spectrum (red, orange) with the radio foreground power spectrum.
1011The radio sky power spectrum is shown for the GSM (Model-I) sky model (dark blue), as well as for our simple
1012model based on Haslam+NVSS (Model-II, black). The curves with circle markers show the power spectrum
1013as observed by a perfect instrument with a 25 arcmin (FWHM) gaussian beam.}
1014\label{pkgsmlss}
1015\end{figure}
1016
1017
1018
1019\subsection{ Instrument response and LSS signal extraction }
1020\label{recsec}
1021The {\it observed} data cube is obtained from the sky brightness temperature 3D map
1022$T_{sky}(\alpha, \delta, \nu)$ by applying the frequency or wavelength dependent instrument response
1023${\cal R}(u,v,\lambda)$.
1024We have considered the simple case where the instrument response is constant throughout the survey area, or independent
1025of the sky direction.
1026For each frequency $\nu_k$ or wavelength $\lambda_k=c/\nu_k$ :
1027\begin{enumerate}
1028\item Apply a 2D Fourier transform to compute sky angular Fourier amplitudes
1029$$ T_{sky}(\alpha, \delta, \lambda_k) \rightarrow \mathrm{2D-FFT} \rightarrow {\cal T}_{sky}(u, v, \lambda_k)$$
1030\item Apply instrument response in the angular wave mode plane. We use here the normalized instrument response
1031$ {\cal R}(u,v,\lambda_k) \lesssim 1$.
1032$$ {\cal T}_{sky}(u, v, \lambda_k) \longrightarrow {\cal T}_{sky}(u, v, \lambda_k) \times {\cal R}(u,v,\lambda_k) $$
1033\item Apply inverse 2D Fourier transform to compute the measured sky brightness temperature map,
1034without instrumental (electronic/$\Tsys$) white noise:
1035$$ {\cal T}_{sky}(u, v, \lambda_k) \times {\cal R}(u,v,\lambda)
1036\rightarrow \mathrm{Inv-2D-FFT} \rightarrow T_{mes1}(\alpha, \delta, \lambda_k) $$
1037\item Add white noise (gaussian fluctuations) to the pixel map temperatures to obtain
1038the measured sky brightness temperature $T_{mes}(\alpha, \delta, \nu_k)$.
1039We have also considered that the system temperature and thus the
1040additive white noise level was independent of the frequency or wavelength.
1041\end{enumerate}
1042The LSS signal extraction depends indeed on the white noise level.
1043The results shown here correspond to the (a) instrument configuration, a packed array of
1044$11 \times 11 = 121$ dishes (5 meter diameter), with a white noise level corresponding
1045to $\sigma_{noise} = 0.25 \mathrm{mK}$ per $3 \times 3 \mathrm{arcmin^2} \times 500$ kHz
1046cell.
1047
1048A brief description of the simple component separation procedure that we have applied is given here:
1049\begin{enumerate}
1050\item The measured sky brightness temperature is first {\em corrected} for the frequency dependent
1051beam effects through a convolution by a fiducial frequency independent beam. This {\em correction}
1052corresponds to a smearing or degradation of the angular resolution. We assume
1053that we have a perfect knowledge of the intrinsic instrument response, up to a threshold numerical level
1054of about $ \gtrsim 1 \%$ for ${\cal R}(u,v,\lambda)$. We recall that this is the normalized instrument response,
1055${\cal R}(u,v,\lambda) \lesssim 1$.
1056$$ T_{mes}(\alpha, \delta, \nu) \longrightarrow T_{mes}^{bcor}(\alpha,\delta,\nu) $$
1057The virtual target instrument has a beam width larger than the worst real instrument beam,
1058i.e at the lowest observed frequency.
1059 \item For each sky direction $(\alpha, \delta)$, a power law $T = T_0 \left( \frac{\nu}{\nu_0} \right)^b$
1060 is fitted to the beam-corrected brightness temperature. The fit is done through a linear $\chi^2$ fit in
1061the $\lgd ( T ) , \lgd (\nu)$ plane and we show here the results for a pure power law (P1)
1062or modified power law (P2):
1063\begin{eqnarray*}
1064P1 & : & \lgd ( T_{mes}^{bcor}(\nu) ) = a + b \, \lgd ( \nu / \nu_0 ) \\
1065P2 & : & \lgd ( T_{mes}^{bcor}(\nu) ) = a + b \, \lgd ( \nu / \nu_0 ) + c \, \lgd ( \nu/\nu_0 ) ^2
1066\end{eqnarray*}
1067where $b$ is the power law index and $T_0 = 10^a$ is the brightness temperature at the
1068reference frequency $\nu_0$:
1069\item The difference between the beam-corrected sky temperature and the fitted power law
1070$(T_0(\alpha, \delta), b(\alpha, \delta))$ is our extracted 21 cm LSS signal.
1071\end{enumerate}
1072
1073Figure \ref{extlsspk} shows the performance of this procedure at a redshift $\sim 0.6$,
1074for the two radio sky models used here: GSM/Model-I and Haslam+NVSS/Model-II. The
107521 cm LSS power spectrum, as seen by a perfect instrument with a 25 arcmin (FWHM)
1076gaussian frequency independent beam is shown in orange (solid line),
1077and the extracted power spectrum, after beam {\em correction}
1078and foreground separation with second order polynomial fit (P2) is shown in red (circle markers).
1079We have also represented the obtained power spectrum without applying the beam correction (step 1 above),
1080or with the first order polynomial fit (P1).
1081
1082Figure \ref{extlssmap} shows a comparison of the original 21 cm brightness temperature map at 884 MHz
1083with the recovered 21 cm map, after subtraction of the radio continuum component. It can be seen that structures
1084present in the original map have been correctly recovered, although the amplitude of the temperature
1085fluctuations on the recovered map is significantly smaller (factor $\sim 5$) than in the original map. This is mostly
1086due to the damping of the large scale ($k \lesssim 0.04 h \mathrm{Mpc^{-1}} $) due the poor interferometer
1087response at large angle ($\theta \gtrsim 4^\circ $).
1088
1089We have shown that it should be possible to measure the red shifted 21 cm emission fluctuations in the
1090presence of the strong radio continuum signal, provided that this latter has a smooth frequency dependence.
1091However, a rather precise knowledge of the instrument beam and the beam {\em correction}
1092or smearing procedure described here are key ingredient for recovering the 21 cm LSS power spectrum.
1093It is also important to note that while it is enough to correct the beam to the lowest resolution instrument beam
1094($\sim 30'$ or $D \sim 50$ meter @ 820 MHz) for the GSM sky model, a stronger beam correction
1095has to be applied (($\sim 36'$ or $D \sim 40$ meter @ 820 MHz) for the Model-II to reduce
1096significantly the ripples from bright radio sources.
1097We have also applied the same procedure to simulate observations and LSS signal extraction for an instrument
1098with a frequency dependent gaussian beam shape. The mode mixing effect is greatly reduced for
1099such a smooth beam, compared to the more complex instrument response
1100${\cal R}(u,v,\lambda)$ used for the results shown in figure \ref{extlsspk}.
1101
1102\begin{figure*}
1103\centering
1104\vspace*{-25mm}
1105\mbox{
1106\hspace*{-20mm}
1107\includegraphics[width=1.15\textwidth]{Figs/extlsspk.pdf}
1108}
1109\vspace*{-35mm}
1110\caption{Recovered power spectrum of the 21cm LSS temperature fluctuations, separated from the
1111continuum radio emissions at $z \sim 0.6$, for the instrument configuration (a), $11\times11$
1112packed array interferometer.
1113Left: GSM/Model-I , right: Haslam+NVSS/Model-II. black curve shows the residual after foreground subtraction,
1114corresponding to the 21 cm signal, WITHOUT applying the beam correction. Red curve shows the recovered 21 cm
1115signal power spectrum, for P2 type fit of the frequency dependence of the radio continuum, and violet curve is the P1 fit (see text). The orange/yellow curve shows the original 21 cm signal power spectrum, smoothed with a perfect, frequency independent gaussian beam. }
1116\label{extlsspk}
1117\end{figure*}
1118
1119
1120\begin{figure*}
1121\centering
1122\vspace*{-20mm}
1123\mbox{
1124\hspace*{-25mm}
1125\includegraphics[width=1.20\textwidth]{Figs/extlssmap.pdf}
1126}
1127\vspace*{-25mm}
1128\caption{Comparison of the original 21 cm LSS temperature map @ 884 MHz ($z \sim 0.6$), smoothed
1129with 25 arc.min (FWHM) beam (top), and the recovered LSS map, after foreground subtraction for Model-I (GSM) (bottom), for the instrument configuration (a), $11\times11$ packed array interferometer.
1130Notice the difference between the temperature color scales (mK) for the top and bottom maps. }
1131\label{extlssmap}
1132\end{figure*}
1133
1134\subsection{$P_{21}(k)$ measurement transfer function}
1135\label{tfpkdef}
1136The recovered red shifted 21 cm emission power spectrum $P_{21}^{rec}(k)$ suffers a number of distortions, mostly damping,
1137 compared to the original $P_{21}(k)$ due to the instrument response and the component separation procedure.
1138We expect damping at small scales, or larges $k$, due to the finite instrument size, but also at large scales, small $k$,
1139if total power measurements (auto-correlations) are not used in the case of interferometers.
1140The sky reconstruction and the component separation introduce additional filtering and distortions.
1141Ideally, one has to define a power spectrum measurement response or {\it transfer function} in the
1142radial direction, ($\lambda$ or redshift, $\TrF(k_\parallel)$) and in the transverse plane ( $\TrF(k_\perp)$ ).
1143The real transverse plane transfer function might even be anisotropic.
1144
1145However, in the scope of the present study, we define an overall transfer function $\TrF(k)$ as the ratio of the
1146recovered 3D power spectrum $P_{21}^{rec}(k)$ to the original $P_{21}(k)$:
1147\begin{equation}
1148\TrF(k) = P_{21}^{rec}(k) / P_{21}(k)
1149\end{equation}
1150
1151Figure \ref{extlssratio} shows this overall transfer function for the simulations and component
1152separation performed here, around $z \sim 0.6$, for the instrumental setup (a), a filled array of 121 $D_{dish}=5$ m dishes.
1153The orange/yellow curve shows the ratio $P_{21}^{smoothed}(k)/P_{21}(k)$ of the computed to the original
1154power spectrum, if the original LSS temperature cube is smoothed by the frequency independent target beam
1155FWHM=30' for the GSM simulations (left), 36' for Model-II (right). This orange/yellow
1156curve shows the damping effect due to the finite instrument size at small scales ($k \gtrsim 0.1 \, h \, \mathrm{Mpc^{-1}}, \theta \lesssim 1^\circ$).
1157The recovered power spectrum suffers also significant damping at large scales $k \lesssim 0.05 \, h \, \mathrm{Mpc^{-1}}, $ due to poor interferometer
1158response at large angles ($ \theta \gtrsim 4^\circ-5^\circ$), as well as to the filtering of radial or longitudinal Fourier modes along
1159the frequency or redshift direction ($k_\parallel$) by the component separation algorithm.
1160The red curve shows the ratio of $P(k)$ computed on the recovered or extracted 21 cm LSS signal, to the original
1161LSS temperature cube $P_{21}^{rec}(k)/P_{21}(k)$ and corresponds to the transfer function $\TrF(k)$ defined above,
1162for $z=0.6$ and instrument setup (a).
1163The black (thin line) curve shows the ratio of recovered to the smoothed
1164power spectrum $P_{21}^{rec}(k)/P_{21}^{smoothed}(k)$. This latter ratio (black curve) exceeds one for $k \gtrsim 0.2$, which is
1165due to the noise or system temperature. It should be stressed that the simulations presented in this section were
1166focused on the study of the radio foreground effects and have been carried intently with a very low instrumental noise level of
1167$0.25$ mK per pixel, corresponding to several years of continuous observations ($\sim 10$ hours per $3' \times 3'$ pixel).
1168
1169This transfer function is well represented by the analytical form:
1170\begin{equation}
1171\TrF(k) = \sqrt{ \frac{ k-k_A}{ k_B} } \times \exp \left( - \frac{k}{k_C} \right)
1172\label{eq:tfanalytique}
1173\end{equation}
1174
1175We have performed simulation of observations and radio foreground subtraction using
1176the procedure described here for different redshifts and instrument configurations, in particular
1177for the (e) configuration with 400 five-meter dishes. As the synchrotron and radio source strength
1178increases quickly with decreasing frequency, we have seen that recovering the 21 cm LSS signal
1179becomes difficult for larger redshifts, in particular for $z \gtrsim 2$.
1180
1181We have determined the transfer function parameters of eq. \ref{eq:tfanalytique} $k_A, k_B, k_C$
1182for setup (e) for three redshifts, $z=0.5, 1 , 1.5$, and then extrapolated the value of the parameters
1183for redshift $z=2, 2.5$. The value of the parameters are grouped in table \ref{tab:paramtfk}
1184and the smoothed transfer functions are shown on figure \ref{tfpkz0525}.
1185
1186\begin{table}[hbt]
1187\begin{center}
1188\begin{tabular}{|c|ccccc|}
1189\hline
1190\hspace{2mm} z \hspace{2mm} & \hspace{2mm} 0.5 \hspace{2mm} & \hspace{2mm} 1.0 \hspace{2mm} &
1191\hspace{2mm} 1.5 \hspace{2mm} & \hspace{2mm} 2.0 \hspace{2mm} & \hspace{2mm} 2.5 \hspace{2mm} \\
1192\hline
1193$k_A$ & 0.006 & 0.005 & 0.004 & 0.0035 & 0.003 \\
1194$k_B$ & 0.038 & 0.019 & 0.012 & 0.0093 & 0.008 \\
1195$k_C$ & 0.16 & 0.08 & 0.05 & 0.038 & 0.032 \\
1196\hline
1197\end{tabular}
1198\end{center}
1199\caption{Value of the parameters for the transfer function (eq. \ref{eq:tfanalytique}) at different redshift
1200for instrumental setup (e), $20\times20$ packed array interferometer. }
1201\label{tab:paramtfk}
1202\end{table}
1203
1204\begin{figure*}
1205\centering
1206\vspace*{-30mm}
1207\mbox{
1208\hspace*{-20mm}
1209\includegraphics[width=1.15\textwidth]{Figs/extlssratio.pdf}
1210}
1211\vspace*{-35mm}
1212\caption{Ratio of the reconstructed or extracted 21cm power spectrum, after foreground removal, to the initial 21 cm power spectrum, $\TrF(k) = P_{21}^{rec}(k) / P_{21}(k) $, at $z \sim 0.6$, for the instrument configuration (a), $11\times11$ packed array interferometer.
1213Left: GSM/Model-I , right: Haslam+NVSS/Model-II. }
1214\label{extlssratio}
1215\end{figure*}
1216
1217
1218\begin{figure}
1219\centering
1220\vspace*{-25mm}
1221\mbox{
1222\hspace*{-10mm}
1223\includegraphics[width=0.55\textwidth]{Figs/tfpkz0525.pdf}
1224}
1225\vspace*{-30mm}
1226\caption{Fitted/smoothed transfer function $\TrF(k)$ obtained for the recovered 21 cm power spectrum at different redshifts,
1227$z=0.5 , 1.0 , 1.5 , 2.0 , 2.5$ for the instrument configuration (e), $20\times20$ packed array interferometer. }
1228\label{tfpkz0525}
1229\end{figure}
1230
1231
1232
1233%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1234%% \section{ BAO scale determination and constrain on dark energy parameters}
1235% {\color{red} \large \it CY ( + JR ) } \\[1mm]
1236%% We compute reconstructed LSS-P(k) (after component separation) at different z's
1237%% and determine BAO scale as a function of redshifts.
1238%% Method:
1239%% \begin{itemize}
1240%% \item Compute/guess the overall transfer function for several redshifts (0.5 , 1.0 1.5 2.0 2.5 ) \\
1241%% \item Compute / guess the instrument noise level for the same redshit values
1242%% \item Compute the observed P(k) and extract $k_{BAO}$ , and the corresponding error
1243%% \item Compute the DETF ellipse with different priors
1244%% \end{itemize}
1245
1246%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1247%%%%%% Figures et texte fournis par C. Yeche - 10 Juin 2011 %%%%%%%
1248%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1249
1250\section{Sensitivity to cosmological parameters}
1251\label{cosmosec}
1252
1253The impact of the various telescope configurations on the sensitivity for 21 cm
1254power spectrum measurement has been discussed in section \ref{pkmessens}.
1255Fig. \ref{figpnoisea2g} shows the noise power spectra, and allows us to rank visually the configurations
1256in terms of instrument noise contribution to P(k) measurement.
1257The differences in $P_{noise}$ will translate into differing precisions
1258in the reconstruction of the BAO peak positions and in
1259the estimation of cosmological parameters. In addition, we have seen (sec. \ref{recsec})
1260that subtraction of continuum radio emissions, Galactic synchrotron and radio sources,
1261has also an effect on the measured 21 cm power spectrum.
1262In this paragraph, we present our method and the results for the precisions on the estimation
1263of Dark Energy parameters, through a radio survey of the redshifted 21 cm emission of LSS,
1264with an instrumental setup similar to the (e) configuration (sec. \ref{instrumnoise}), 400 five-meter diameter
1265dishes, arranged into a filled $20 \times 20$ array.
1266
1267
1268\subsection{BAO peak precision}
1269
1270In order to estimate the precision with which BAO peak positions can be
1271measured, we used a method similar to the one established in
1272\citep{blake.03} and \citep{glazebrook.05}.
1273
1274
1275
1276To this end, we generated reconstructed power spectra $P^{rec}(k)$ for
1277 slices of Universe with a quarter-sky coverage and a redshift depth,
1278 $\Delta z=0.5$ for $0.25<z<2.75$.
1279The peaks in the generated spectra were then determined by a
1280fitting procedure and the reconstructed peak positions compared with the
1281generated peak positions.
1282The reconstructed power spectrum used in the simulation is
1283the sum of the expected \HI signal term, corresponding to equations \ref{eq:pk21z} and \ref{eq:tbar21z},
1284damped by the transfer function $\TrF(k)$ (Eq. \ref{eq:tfanalytique} , table \ref{tab:paramtfk})
1285and a white noise component $P_{noise}$ calculated according to the equation \ref{eq:pnoiseNbeam},
1286established in section \ref{instrumnoise} with $N=400$:
1287\begin{equation}
1288 P^{rec}(k) = P_{21}(k) \times \TrF(k) + P_{noise}
1289\end{equation}
1290where the different terms ($P_{21}(k) , \TrF(k), P_{noise}$) depend on the slice redshift.
1291The expected 21 cm power spectrum $P_{21}(k)$ has been generated according to the formula:
1292%\begin{equation}
1293\begin{eqnarray}
1294\label{eq:signal}
1295\frac{P_{21}(\kperp,\kpar)}{P_{ref}(\kperp,\kpar)} =
12961\; +
1297\hspace*{40mm}
1298\nonumber
1299\\ \hspace*{20mm}
1300A\, k \exp \bigl( -(k/\tau)^\alpha\bigr)
1301\sin\left( 2\pi\sqrt{\frac{\kperp^2}{\koperp^2} +
1302\frac{\kpar^2}{\kopar^2}}\;\right)
1303\end{eqnarray}
1304%\end{equation}
1305where $k=\sqrt{\kperp^2 + \kpar^2}$, the parameters $A$, $\alpha$ and $\tau$
1306are adjusted to the formula presented in
1307\citep{eisenhu.98}. $P_{ref}(\kperp,\kpar)$ is the
1308envelop curve of the HI power spectrum without baryonic oscillations.
1309The parameters $\koperp$ and $\kopar$
1310are the inverses of the oscillation periods in k-space.
1311The following values have been used for these
1312parameters for the results presented here: $A=1.0$, $\tau=0.1 \, \hMpcm$,
1313$\alpha=1.4$ and $\koperp=\kopar=0.060 \, \hMpcm$.
1314
1315Each simulation is performed for a given set of parameters
1316which are: the system temperature,$\Tsys$, an observation time,
1317$t_{obs}$, an average redshift and a redshift depth, $\Delta z=0.5$.
1318Then, each simulated power spectrum is fitted with a two dimensional
1319normalized function $P_{tot}(\kperp,\kpar)/P_{ref}(\kperp,\kpar)$ which is
1320the sum of the signal power spectrum damped by the transfer function and the
1321noise power spectrum multiplied by a
1322linear term, $a_0+a_1k$. The upper limit $k_{max}$ in $k$ of the fit
1323corresponds to the approximate position of the linear/non-linear transition.
1324This limit is established on the basis of the criterion discussed in
1325\citep{blake.03}.
1326In practice, we used for the redshifts
1327$z=0.5,\,\, 1.0$ and $1.5$ respectively $k_{max}= 0.145 \hMpcm,\,\, 0.18\hMpcm$
1328and $0.23 \hMpcm$.
1329
1330Figure \ref{fig:fitOscill} shows the result of the fit for
1331one of these simulations.
1332Figure \ref{fig:McV2} histograms the recovered values of $\koperp$ and $\kopar$
1333for 100 simulations.
1334The widths of the two distributions give an estimate
1335of the statistical errors.
1336
1337In addition, in the fitting procedure, both the parameters modeling the
1338signal $A$, $\tau$, $\alpha$ and the parameter correcting the noise power
1339spectrum $(a_0,a_1)$ are floated to take into account the possible
1340ignorance of the signal shape and the uncertainties in the
1341computation of the noise power spectrum.
1342In this way, we can correct possible imperfections and the
1343systematic uncertainties are directly propagated to statistical errors
1344on the relevant parameters $\koperp$ and $\kopar$. By subtracting the
1345fitted noise contribution to each simulation, the baryonic oscillations
1346are clearly observed, for instance, on Fig.~\ref{fig:AverPk}.
1347
1348
1349\begin{figure}[htbp]
1350\begin{center}
1351\includegraphics[width=8.5cm]{Figs/FitPk.pdf}
1352\caption{1D projection of the power spectrum for one simulation.
1353The \HI power spectrum is divided by an envelop curve $P(k)_{ref}$
1354corresponding to the power spectrum without baryonic oscillations.
1355The dots represents one simulation for a "packed" array of cylinders
1356with a system temperature,$T_{sys}=50$K, an observation time,
1357$T_{obs}=$ 1 year,
1358a solid angle of $1\pi sr$,
1359an average redshift, $z=1.5$ and a redshift depth, $\Delta z=0.5$.
1360The solid line is the result of the fit to the data.}
1361\label{fig:fitOscill}
1362\end{center}
1363\end{figure}
1364
1365\begin{figure}[htbp]
1366\begin{center}
1367%\includegraphics[width=\textwidth]{McV2.eps}
1368\includegraphics[width=9.0cm]{Figs/McV2.pdf}
1369\caption{ Distributions of the reconstructed
1370wavelength $\koperp$ and $\kopar$
1371respectively, perpendicular and parallel to the line of sight
1372for simulations as in Fig. \ref{fig:fitOscill}.
1373The fit by a Gaussian of the distribution (solid line) gives the
1374width of the distribution which represents the statistical error
1375expected on these parameters.}
1376\label{fig:McV2}
1377\end{center}
1378\end{figure}
1379
1380
1381\begin{figure}[htbp]
1382\begin{center}
1383\includegraphics[width=8.5cm]{Figs/AveragedPk.pdf}
1384\caption{1D projection of the power spectrum averaged over 100 simulations
1385of the packed cylinder array $b$.
1386The simulations are performed for the following conditions: a system
1387temperature, $T_{sys}=50$K, an observation time, $T_{obs}=1$ year,
1388a solid angle of $1 \pi sr$,
1389an average redshift, $z=1.5$ and a redshift depth, $\Delta z=0.5$.
1390The \HI power spectrum is divided by an envelop curve $P(k)_{ref}$
1391corresponding to the power spectrum without baryonic oscillations
1392and the background estimated by a fit is subtracted. The errors are
1393the RMS of the 100 distributions for each $k$ bin and the dots are
1394the mean of the distribution for each $k$ bin. }
1395\label{fig:AverPk}
1396\end{center}
1397\end{figure}
1398
1399
1400
1401
1402%\subsection{Results}
1403
1404In our comparison of the various configurations, we have considered
1405the following cases for $\Delta z=0.5$ slices with $0.25<z<2.75$.
1406\begin{itemize}
1407\item {\it Simulation without electronics noise}: the statistical errors on the power
1408spectrum are directly related to the number of modes in the surveyed volume $V$ corresponding to
1409 $\Delta z=0.5$ slice with the solid angle $\Omega_{tot}$ = 1 $\pi$ sr.
1410The number of mode $N_{\delta k}$ in the wave number interval $\delta k$ can be written as:
1411\begin{equation}
1412V = \frac{c}{H(z)} \Delta z \times (1+z)^2 \dang^2 \Omega_{tot} \hspace{10mm}
1413N_{\delta k} = \frac{ V }{4 \pi^2} k^2 \delta k
1414\end{equation}
1415\item {\it Noise}: we add the instrument noise as a constant term $P_{noise}$ as described in Eq.
1416\ref {eq:pnoiseNbeam}. Table \ref{tab:pnoiselevel} gives the white noise level for
1417$\Tsys = 50 \mathrm{K}$ and one year total observation time to survey $\Omega_{tot}$ = 1 $\pi$ sr.
1418\item {\it Noise with transfer function}: we take into account of the interferometer and radio foreground
1419subtraction represented as the measured P(k) transfer function $T(k)$ (section \ref{tfpkdef}), as
1420well as instrument noise $P_{noise}$.
1421\end{itemize}
1422
1423\begin{table}
1424\begin{tabular}{|l|ccccc|}
1425\hline
1426z & \hspace{1mm} 0.5 \hspace{1mm} & \hspace{1mm} 1.0 \hspace{1mm} &
1427\hspace{1mm} 1.5 \hspace{1mm} & \hspace{1mm} 2.0 \hspace{1mm} & \hspace{1mm} 2.5 \hspace{1mm} \\
1428\hline
1429$P_{noise} \, \mathrm{mK^2 \, (Mpc/h)^3}$ & 8.5 & 35 & 75 & 120 & 170 \\
1430\hline
1431\end{tabular}
1432\caption{Instrument or electronic noise spectral power $P_{noise}$ for a $N=400$ dish interferometer with $\Tsys=50$ K and $t_{obs} =$ 1 year to survey $\Omega_{tot} = \pi$ sr }
1433\label{tab:pnoiselevel}
1434\end{table}
1435
1436Table \ref{tab:ErrorOnK} summarizes the result. The errors both on $\koperp$ and $\kopar$
1437decrease as a function of redshift for simulations without electronic noise because the volume of the universe probed is larger. Once we apply the electronics noise, each slice in redshift give comparable results. Finally, after applying the full reconstruction of the interferometer, the best accuracy is obtained for the first slices in redshift around 0.5 and 1.0 for an identical time of observation. We can optimize the survey by using a different observation time for each slice in redshift. Finally, for a 3 year survey we can split in five observation periods with durations which are 3 months, 3 months, 6 months, 1 year and 1 year respectively for redshift 0.5, 1.0, 1.5, 2.0 and 2.5.
1438
1439\begin{table*}[ht]
1440\begin{center}
1441\begin{tabular}{lc|c c c c c }
1442\multicolumn{2}{c|}{$\mathbf z$ }& \bf 0.5 & \bf 1.0 & \bf 1.5 & \bf 2.0 & \bf 2.5 \\
1443\hline\hline
1444\bf No Noise & $\sigma(\koperp)/\koperp$ (\%) & 1.8 & 0.8 & 0.6 & 0.5 &0.5\\
1445 & $\sigma(\kopar)/\kopar$ (\%) & 3.0 & 1.3 & 0.9 & 0.8 & 0.8\\
1446 \hline
1447 \bf Noise without Transfer Function & $\sigma(\koperp)/\koperp$ (\%) & 2.3 & 1.8 & 2.2 & 2.4 & 2.8\\
1448 (3-months/redshift)& $\sigma(\kopar)/\kopar$ (\%) & 4.1 & 3.1 & 3.6 & 4.3 & 4.4\\
1449 \hline
1450 \bf Noise with Transfer Function & $\sigma(\koperp)/\koperp$ (\%) & 3.0 & 2.5 & 3.5 & 5.2 & 6.5 \\
1451 (3-months/redshift)& $\sigma(\kopar)/\kopar$ (\%) & 4.8 & 4.0 & 6.2 & 9.3 & 10.3\\
1452 \hline
1453 \bf Optimized survey & $\sigma(\koperp)/\koperp$ (\%) & 3.0 & 2.5 & 2.3 & 2.0 & 2.7\\
1454 (Observation time : 3 years)& $\sigma(\kopar)/\kopar$ (\%) & 4.8 & 4.0 & 4.1 & 3.6 & 4.3 \\
1455 \hline
1456\end{tabular}
1457\end{center}
1458\caption{Sensitivity on the measurement of $\koperp$ and $\kopar$ as a
1459function of the redshift $z$ for various simulation configuration.
1460$1^{\rm st}$ row: simulations without noise with pure cosmic variance;
1461$2^{\rm nd}$
1462row: simulations with electronics noise for a telescope with dishes;
1463$3^{\rm th}$ row: simulations
1464with same electronics noise and with correction with the transfer function ;
1465$4^{\rm th}$ row: optimized survey with a total observation time of 3 years (3 months, 3 months, 6 months, 1 year and 1 year respectively for redshift 0.5, 1.0, 1.5, 2.0 and 2.5 ).}
1466\label{tab:ErrorOnK}
1467\end{table*}%
1468
1469
1470
1471\subsection{Expected sensitivity on $w_0$ and $w_a$}
1472
1473\begin{figure}
1474\begin{center}
1475\includegraphics[width=8.5cm]{Figs/dist.pdf}
1476\caption{
1477The two ``Hubble diagrams'' for BAO experiments.
1478The four falling curves give the angular size of the acoustic horizon
1479(left scale) and the four
1480rising curves give the redshift interval of the acoustic horizon (right scale).
1481The solid lines are for
1482$(\Omega_M,\Omega_\Lambda,w)=(0.27,0.73,-1)$,
1483the dashed for
1484$(1,0,-1)$
1485the dotted for
1486$(0.27,0,-1)$, and
1487the dash-dotted for
1488$(0.27,0.73,-0.9)$,
1489The error bars on the solid curve correspond to the four-month run
1490(packed array)
1491of Table \ref{tab:ErrorOnK}.
1492 }
1493\label{fig:hubble}
1494\end{center}
1495\end{figure}
1496
1497
1498The observations give the \HI power spectrum in
1499angle-angle-redshift space rather than in real space.
1500The inverse of the peak positions in the observed power spectrum therefore
1501gives the angular and redshift intervals corresponding to the
1502sonic horizon.
1503The peaks in the angular spectrum are proportional to
1504$d_T(z)/a_s$ and those in the redshift spectrum to $d_H(z)/a_s$.
1505$a_s \sim 105 h^{-1} \mathrm{Mpc}$ is the acoustic horizon comoving size at recombination,
1506$d_T(z) = (1+z) \dang$ is the comoving angular distance and $d_H=c/H(z)$ is the Hubble distance
1507(see Eq. \ref{eq:expHz}):
1508\begin{equation}
1509d_H = \frac{c}{H(z)} = \frac{c/H_0}{\sqrt{\Omega_\Lambda+\Omega_m (1+z)^3} } \hspace{5mm}
1510d_T = \int_0^z d_H(z) dz
1511\label{eq:dTdH}
1512\end{equation}
1513The quantities $d_T$, $d_H$ and $a_s$ all depend on
1514the cosmological parameters.
1515Figure \ref{fig:hubble} gives the angular and redshift intervals
1516as a function of redshift for four cosmological models.
1517The error bars on the lines for
1518$(\Omega_M,\Omega_\Lambda)=(0.27,0.73)$
1519correspond to the expected errors
1520on the peak positions
1521taken from Table \ref{tab:ErrorOnK}
1522for the four-month runs with the packed array.
1523We see that with these uncertainties, the data would be able to
1524measure $w$ at better than the 10\% level.
1525
1526
1527To estimate the sensitivity
1528to parameters describing dark energy equation of
1529state, we follow the procedure explained in
1530\citep{blake.03}. We can introduce the equation of
1531state of dark energy, $w(z)=w_0 + w_a\cdot z/(1+z)$ by
1532replacing $\Omega_\Lambda$ in the definition of $d_T (z)$ and $d_H (z)$,
1533(Eq. \ref{eq:dTdH}) by:
1534\begin{equation}
1535\Omega_\Lambda \rightarrow \Omega_{\Lambda} \exp \left[ 3 \int_0^z
1536\frac{1+w(z^\prime)}{1+z^\prime } dz^\prime \right]
1537\end{equation}
1538where $\Omega_{\Lambda}^0$ is the present-day dark energy fraction with
1539respect to the critical density.
1540Using the relative errors on $\koperp$ and $\kopar$ given in
1541Tab.~\ref{tab:ErrorOnK}, we can compute the Fisher matrix for
1542five cosmological parameter: $(\Omega_m, \Omega_b, h, w_0, w_a)$.
1543Then, the combination of this BAO Fisher
1544matrix with the Fisher matrix obtained for Planck mission, allows us to
1545compute the errors on dark energy parameters.
1546The Planck Fisher matrix is
1547obtained for the 8 parameters (assuming a flat universe):
1548$\Omega_m$, $\Omega_b$, $h$, $w_0$, $w_a$,
1549$\sigma_8$, $n_s$ (spectral index of the primordial power spectrum) and
1550$\tau$ (optical depth to the last-scatter surface).
1551
1552
1553For an optimized project over a redshift range, $0.25<z<2.75$, with a total
1554observation time of 3 years, the packed 400-dish interferometer array has a
1555precision of 12\% on $w_0$ and 48\% on $w_a$.
1556The Figure of Merit, the inverse of the area in the 95\% confidence level
1557contours is 38.
1558 Finally, Fig.~\ref{fig:Compw0wa}
1559shows a comparison of different BAO projects, with a set of priors on
1560$(\Omega_m, \Omega_b, h)$ corresponding to the expected precision on
1561these parameters in early 2010's. This BAO project based on \HI intensity
1562mapping is clearly competitive with the current generation of optical
1563surveys such as SDSS-III \citep{sdss3}.
1564
1565
1566\begin{figure}[htbp]
1567\begin{center}
1568\includegraphics[width=0.55\textwidth]{Figs/Ellipse21cm.pdf}
1569\caption{$1\sigma$ and $2\sigma$ confidence level contours in the
1570parameter plane $(w_0,w_a)$ for two BAO projects: SDSS-III (LRG) project
1571(blue dotted line), 21 cm project with HI intensity mapping (black solid line).}
1572\label{fig:Compw0wa}
1573\end{center}
1574\end{figure}
1575
1576\section{Conclusions}
1577The 3D mapping of redshifted 21 cm emission though {\it Intensity Mapping} is a novel and complementary
1578approach to optical surveys to study the statistical properties of the large scale structures in the universe
1579up to redshifts $z \lesssim 3$. A radio instrument with large instantaneous field of view
1580(10-100 deg$^2$) and large bandwidth ($\gtrsim 100$ MHz) with $\sim 10$ arcmin resolution is needed
1581to perform a cosmological neutral hydrogen survey over a significant fraction of the sky. We have shown that
1582a nearly packed interferometer array with few hundred receiver elements spread over an hectare or a hundred beam
1583focal plane array with a $\sim \hspace{-1.5mm} 100 \, \mathrm{meter}$ primary reflector will have the required sensitivity to measure
1584the 21 cm power spectrum. A method to compute the instrument response for interferometers
1585has been developed and we have computed the noise power spectrum for various telescope configurations.
1586The Galactic synchrotron and radio sources are a thousand time brighter than the redshifted 21 cm signal,
1587making the measurement of this latter signal a major scientific and technical challenge. We have also studied the performance of a simple foreground subtraction method through realistic models of the sky
1588emissions in the GHz domain and simulation of interferometric observations.
1589We have been able to show that the cosmological 21 cm signal from the LSS should be observable, but
1590requires a very good knowledge of the instrument response. Our method has allowed us to define and
1591compute the overall {\it transfer function} or {\it response function} for the measurement of the 21 cm
1592power spectrum.
1593Finally, we have used the computed noise power spectrum and $P(k)$
1594measurement response function to estimate
1595the precision on the determination of Dark Energy parameters, for a 21 cm BAO survey. Such a radio survey
1596could be carried using the current technology and would be competitive with the ongoing or planned
1597optical surveys for dark energy, with a fraction of their cost.
1598
1599% \begin{acknowledgements}
1600% \end{acknowledgements}
1601
1602\bibliographystyle{aa}
1603
1604\begin{thebibliography}{}
1605
1606%%%
1607%% reference SKA - BAO / DE en radio avec les sources
1608\bibitem[Abdalla \& Rawlings (2005)]{abdalla.05} Abdalla, F.B. \& Rawlings, S. 2005, \mnras, 360, 27
1609
1610\bibitem[Albrecht et al. (2006)]{DETF} Albrecht, A., Bernstein, G., Cahn, R. {\it et al.} (Dark Energy Task Force) 2006, arXiv:astro-ph/0609591
1611
1612\bibitem[Ansari et al. (2008)]{ansari.08} Ansari R., J.-M. Le Goff, C. Magneville, M. Moniez, N. Palanque-Delabrouille, J. Rich,
1613 V. Ruhlmann-Kleider, \& C. Y\`eche , 2008 , arXiv:0807.3614
1614
1615%% Temperature HI 21 cm (Valeur pour la reionisation)
1616\bibitem[Barkana \& Loeb (2007)]{barkana.07} Barkana, R., and Loeb, A. 2007, Rep. Prog. Phys, 70, 627
1617
1618%% Methode de generation/fit k_bao (Section 5 - C. Yeche)
1619\bibitem[Blake and Glazebrook (2003)]{blake.03} Blake, C. \& Glazebrook, K. 2003, \apj, 594, 665
1620\bibitem[Glazebrook and Blake (2005)]{glazebrook.05} Glazebrook, K. \& Blake, C. 2005 \apj, 631, 1
1621
1622% WiggleZ BAO observation
1623\bibitem[Blake et al. (2011)]{blake.11} Blake, Davis, T., Poole, G.B. {\it et al.} 2011, \mnras, (accepted, arXiv/1105.2862)
1624
1625% Galactic astronomy, emission HI d'une galaxie
1626\bibitem[Binney \& Merrifield (1998)]{binney.98} Binney J. \& Merrifield M. , 1998 {\it Galactic Astronomy} Princeton University Press
1627% MWA description
1628\bibitem[Bowman et al. (2007)]{bowman.07} Bowman, J. D., Barnes, D.G., Briggs, F.H. et al 2007, \aj, 133, 1505-1518
1629
1630%% Soustraction avant plans ds MWA
1631\bibitem[Bowman et al. (2009)]{bowman.07} Bowman, J. D., Morales, M., Hewitt, J.N., 2009, \apj, 695, 183-199
1632
1633% Intensity mapping/HSHS
1634\bibitem[Chang et al. (2008)]{chang.08} Chang, T., Pen, U.-L., Peterson, J.B. \& McDonald, P. 2008, \prl, 100, 091303
1635
1636% 2dFRS BAO observation
1637\bibitem[Cole et al. (2005)]{cole.05} Cole, S. Percival, W.J., Peacock, J.A. {\it et al.} (the 2dFGRS Team) 2005, \mnras, 362, 505
1638
1639% NVSS radio source catalog : NRAO VLA Sky Survey (NVSS) is a 1.4 GHz
1640\bibitem[Condon et al. (1998)]{nvss.98} Condon J. J., Cotton W. D., Greisen E. W., Yin Q. F., Perley R. A.,
1641Taylor, G. B., \& Broderick, J. J. 1998, AJ, 115, 1693
1642
1643% Parametrisation P(k)
1644\bibitem[Eisenstein \& Hu (1998)]{eisenhu.98} Eisenstein D. \& Hu W. 1998, ApJ 496:605-614 (astro-ph/9709112)
1645
1646% SDSS first BAO observation
1647\bibitem[Eisenstein et al. (2005)]{eisenstein.05} Eisenstein D. J., Zehavi, I., Hogg, D.W. {\it et al.}, (the SDSS Collaboration) 2005, \apj, 633, 560
1648
1649% SDSS-III description
1650\bibitem[Eisenstein et al. (2011)]{eisenstein.11} Eisenstein D. J., Weinberg, D.H., Agol, E. {\it et al.}, 2011, arXiv:1101.1529
1651
1652% 21 cm emission for mapping matter distribution
1653\bibitem[Furlanetto et al. (2006)]{furlanetto.06} Furlanetto, S., Peng Oh, S. \& Briggs, F. 2006, \physrep, 433, 181-301
1654
1655% Haslam 400 MHz synchrotron map
1656\bibitem[Haslam et al. (1982)]{haslam.82} Haslam C. G. T., Salter C. J., Stoffel H., Wilson W. E., 1982,
1657Astron. \& Astrophys. Supp. Vol 47, \\ {\tt (http://lambda.gsfc.nasa.gov/product/foreground/)}
1658
1659
1660% Distribution des radio sources
1661\bibitem[Jackson (2004)]{jackson.04} Jackson, C.A. 2004, \na, 48, 1187
1662
1663% HI mass in galaxies
1664\bibitem[Lah et al. (2009)]{lah.09} Philip Lah, Michael B. Pracy, Jayaram N. Chengalur et al. 2009, \mnras, 399, 1447
1665% ( astro-ph/0907.1416)
1666
1667% Livre Astrophysical Formulae de Lang
1668\bibitem[Lang (1999)]{astroformul} Lang, K.R. {\it Astrophysical Formulae}, Springer, 3rd Edition 1999
1669
1670% WMAP CMB 7 years power spectrum 2011
1671% \bibitem[Hinshaw et al. (2008)]{hinshaw.08} Hinshaw, G., Weiland, J.L., Hill, R.S. {\it et al.} 2008, arXiv:0803.0732)
1672\bibitem[Larson et al. (2011)]{larson.11} Larson, D., {\it et al.} (WMAP) 2011, \apjs, 192, 16
1673
1674% LSST Science book
1675\bibitem[LSST.Science]{lsst.science}
1676{\it LSST Science book}, LSST Science Collaborations, 2009, arXiv:0912.0201
1677
1678% Temperature du 21 cm
1679\bibitem[Madau et al. (1997)]{madau.97} Madau, P., Meiksin, A. and Rees, M.J., 1997, \apj 475, 429
1680
1681% Foret Ly alpha - 1
1682\bibitem[McDonald et al. (2006)]{baolya} McDonald P., Seljak, U. and Burles, S. {\it et al.} 2006, \apjs, 163, 80
1683
1684% Foret Ly alpha - 2 , BAO from Ly-a
1685\bibitem[McDonald \& Eisenstein (2007)]{baolya2} McDonald P., Eisenstein, D.J. 2007, Phys Rev D 76, 6, 063009
1686
1687% Boomerang 2000, Acoustic pics
1688\bibitem[Mauskopf et al. (2000)]{mauskopf.00} Mauskopf, P. D., Ade, P. A. R., de Bernardis, P. {\it et al.} 2000, \apjl, 536,59
1689
1690% Papier sur le traitement des observations radio / mode mixing
1691\bibitem[Morales et al. (2006)]{morales.06} Morales, M., Bowman, J.D., Hewitt, J.N., 2006, \apj, 648, 767-773
1692
1693% Global Sky Model Paper
1694\bibitem[Oliveira-Costa et al. (2008)]{gsm.08} de Oliveira-Costa, A., Tegmark, M., Gaensler, B.~M. {\it et al.} 2008,
1695\mnras, 388, 247-260
1696
1697% Original CRT HSHS paper (Moriond Cosmo 2006 Proceedings)
1698\bibitem[Peterson et al. (2006)]{peterson.06} Peterson, J.B., Bandura, K., \& Pen, U.-L. 2006, arXiv:0606104
1699
1700% SDSS BAO 2007
1701\bibitem[Percival et al. (2007)]{percival.07} Percival, W.J., Nichol, R.C., Eisenstein, D.J. {\it et al.}, (the SDSS Collaboration) 2007, \apj, 657, 645
1702
1703% SDSS BAO 2010 - arXiv:0907.1660
1704\bibitem[Percival et al. (2010)]{percival.10} Percival, W.J., Reid, B.A., Eisenstein, D.J. {\it et al.}, 2010, \mnras, 401, 2148-2168
1705
1706%% LOFAR description
1707\bibitem[Rottering et al. (2006)]{rottgering.06} Rottgering H.J.A., Braun, r., Barthel, P.D. {\it et al.} 2006, arXiv:astro-ph/0610596
1708%%%%
1709
1710%% SDSS-3
1711\bibitem[SDSS-III(2008)]{sdss3} SDSS-III 2008, http://www.sdss3.org/collaboration/description.pdf
1712
1713% Frank H. Briggs, Matthew Colless, Roberto De Propris, Shaun Ferris, Brian P. Schmidt, Bradley E. Tucker
1714
1715\bibitem[SKA.Science]{ska.science}
1716{\it Science with the Square Kilometre Array}, eds: C. Carilli, S. Rawlings,
1717New Astronomy Reviews, Vol.48, Elsevier, December 2004 \\
1718{ \tt http://www.skatelescope.org/pages/page\_sciencegen.htm }
1719
1720% Papier 21cm-BAO Fermilab ( arXiv:0910.5007)
1721\bibitem[Seo et al (2010)]{seo.10} Seo, H.J. Dodelson, S., Marriner, J. et al, 2010, \apj, 721, 164-173
1722
1723% FFT telescope
1724\bibitem[Tegmark \& Zaldarriaga (2009)]{tegmark.09} Tegmark, M. \& Zaldarriaga, M., 2009, \prd, 79, 8, p. 083530 % arXiv:0802.1710
1725
1726% Thomson-Morane livre interferometry
1727\bibitem[Thompson, Moran \& Swenson (2001)]{radastron} Thompson, A.R., Moran, J.M., Swenson, G.W, {\it Interferometry and
1728Synthesis in Radio Astronomy}, John Wiley \& sons, 2nd Edition 2001
1729
1730% Lyman-alpha, HI fraction
1731\bibitem[Wolf et al.(2005)]{wolf.05} Wolfe, A. M., Gawiser, E. \& Prochaska, J.X. 2005 \araa, 43, 861
1732
1733% BAO à 21 cm et reionisation
1734\bibitem[Wyithe et al.(2008)]{wyithe.08} Wyithe, S., Loeb, A. \& Geil, P. 2008, \mnras, 383, 1195 % http://fr.arxiv.org/abs/0709.2955,
1735
1736%% Today HI cosmological density
1737\bibitem[Zwaan et al.(2005)]{zwann.05} Zwaan, M.A., Meyer, M.J., Staveley-Smith, L., Webster, R.L. 2005, \mnras, 359, L30
1738
1739\end{thebibliography}
1740
1741\end{document}
1742
1743%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1744% Examples for figures using graphicx
1745% A guide "Using Imported Graphics in LaTeX2e" (Keith Reckdahl)
1746% is available on a lot of LaTeX public servers or ctan mirrors.
1747% The file is : epslatex.pdf
1748%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1749
1750
1751\end{document}
Note: See TracBrowser for help on using the repository browser.