| [3756] | 1 | //  Classes to compute 3D power spectrum | 
|---|
|  | 2 | // R. Ansari - Nov 2008, May 2010 | 
|---|
|  | 3 |  | 
|---|
|  | 4 | #include "specpk.h" | 
|---|
|  | 5 | #include "randr48.h" | 
|---|
|  | 6 |  | 
|---|
|  | 7 | //------------------------------------ | 
|---|
|  | 8 | // Class SpectralShape | 
|---|
|  | 9 | // ----------------------------------- | 
|---|
|  | 10 |  | 
|---|
|  | 11 | double Pnu1(double nu) | 
|---|
|  | 12 | { | 
|---|
|  | 13 | return ( sqrt(sqrt(nu)) / ((nu+1.0)/0.2) * | 
|---|
|  | 14 | (1+0.2*cos(2*M_PI*(nu-2.)*0.15)*exp(-nu/50.)) ); | 
|---|
|  | 15 | } | 
|---|
|  | 16 |  | 
|---|
|  | 17 | double Pnu2(double nu) | 
|---|
|  | 18 | { | 
|---|
|  | 19 | if (nu < 1.e-9) return 0.; | 
|---|
|  | 20 | return ((1.-exp(-nu/0.5))/nu*(1+0.25*cos(2*M_PI*nu*0.1)*exp(-nu/20.)) ); | 
|---|
|  | 21 | } | 
|---|
|  | 22 |  | 
|---|
|  | 23 |  | 
|---|
|  | 24 | double Pnu3(double nu) | 
|---|
|  | 25 | { | 
|---|
|  | 26 | return ( log(nu/100.+1)*(1+sin(2*M_PI*nu/300))*exp(-nu/4000) ); | 
|---|
|  | 27 | } | 
|---|
|  | 28 |  | 
|---|
|  | 29 |  | 
|---|
|  | 30 | double Pnu4(double nu) | 
|---|
|  | 31 | { | 
|---|
|  | 32 | double x = (nu-0.5)/0.05; | 
|---|
|  | 33 | double rc = 2*exp(-x*x); | 
|---|
|  | 34 | x = (nu-3.1)/0.27; | 
|---|
|  | 35 | rc += exp(-x*x); | 
|---|
|  | 36 | x = (nu-7.6)/1.4; | 
|---|
|  | 37 | rc += 0.5*exp(-x*x); | 
|---|
|  | 38 | return ( rc+2.*exp(-x*x) ); | 
|---|
|  | 39 | } | 
|---|
|  | 40 |  | 
|---|
|  | 41 | //-------------------------------------------------- | 
|---|
|  | 42 | // -- SpectralShape class : test P(k) class | 
|---|
|  | 43 | //-------------------------------------------------- | 
|---|
|  | 44 | // Constructor | 
|---|
|  | 45 | SpectralShape::SpectralShape(int typ) | 
|---|
|  | 46 | { | 
|---|
|  | 47 | typ_=typ; | 
|---|
|  | 48 | } | 
|---|
|  | 49 |  | 
|---|
|  | 50 | // Return the spectral power for a given wave number wk | 
|---|
|  | 51 | double SpectralShape::operator() (double wk) | 
|---|
|  | 52 | { | 
|---|
|  | 53 | wk/=DeuxPI; | 
|---|
|  | 54 | switch (typ_) | 
|---|
|  | 55 | { | 
|---|
|  | 56 | case 1: | 
|---|
|  | 57 | return Pnu1(wk); | 
|---|
|  | 58 | break; | 
|---|
|  | 59 | case 2: | 
|---|
|  | 60 | return Pnu2(wk); | 
|---|
|  | 61 | break; | 
|---|
|  | 62 | case 3: | 
|---|
|  | 63 | return Pnu3(wk); | 
|---|
|  | 64 | break; | 
|---|
|  | 65 | case 4: | 
|---|
|  | 66 | return Pnu4(wk); | 
|---|
|  | 67 | break; | 
|---|
|  | 68 | default : | 
|---|
|  | 69 | { | 
|---|
|  | 70 | // global shape | 
|---|
|  | 71 | double csp = pow( (2*sin(sqrt(sqrt(wk/7.)))),2.); | 
|---|
|  | 72 | if (csp < 0.) return 0.; | 
|---|
|  | 73 |  | 
|---|
|  | 74 | // Adding some pics | 
|---|
|  | 75 | double picpos[5] = {75.,150.,225.,300.,375.,}; | 
|---|
|  | 76 |  | 
|---|
|  | 77 | for(int k=0; k<5; k++) { | 
|---|
|  | 78 | double x0 = picpos[k]; | 
|---|
|  | 79 | if ( (wk > x0-25.) && (wk < x0+25.) ) { | 
|---|
|  | 80 | double x = (wk-x0); | 
|---|
|  | 81 | csp *= (1.+0.5*exp(-(x*x)/(2.*5*5))); | 
|---|
|  | 82 | break; | 
|---|
|  | 83 | } | 
|---|
|  | 84 | } | 
|---|
|  | 85 | return csp; | 
|---|
|  | 86 | } | 
|---|
|  | 87 | break; | 
|---|
|  | 88 | } | 
|---|
|  | 89 | } | 
|---|
|  | 90 | // Return a vector representing the power spectrum (for checking) | 
|---|
|  | 91 | Histo SpectralShape::GetPk(int n) | 
|---|
|  | 92 | { | 
|---|
|  | 93 | if (n<16) n = 256; | 
|---|
|  | 94 | Histo h(0.,1024.*DeuxPI,n); | 
|---|
|  | 95 | for(int k=0; k<h.NBins(); k++)   h(k) = Value((k+0.5)*h.BinWidth()); | 
|---|
|  | 96 | return h; | 
|---|
|  | 97 | } | 
|---|
|  | 98 |  | 
|---|
|  | 99 | //-------------------------------------------------- | 
|---|
|  | 100 | // -- Four2DResponse class : test P(k) class | 
|---|
|  | 101 |  | 
|---|
|  | 102 | //--------------------------------------------------------------- | 
|---|
|  | 103 | // -- Four3DPk class :  3D fourier amplitudes and power spectrum | 
|---|
|  | 104 | //--------------------------------------------------------------- | 
|---|
|  | 105 | // Constructeur avec Tableau des coeff. de Fourier en argument | 
|---|
|  | 106 | Four3DPk::Four3DPk(TArray< complex<TF> > & fourcoedd, RandomGeneratorInterface& rg) | 
|---|
|  | 107 | : rg_(rg), fourAmp(fourcoedd) | 
|---|
|  | 108 | { | 
|---|
|  | 109 | SetPrtLevel(); | 
|---|
|  | 110 | SetCellSize(); | 
|---|
|  | 111 | } | 
|---|
|  | 112 | // Constructor | 
|---|
|  | 113 | Four3DPk::Four3DPk(RandomGeneratorInterface& rg, sa_size_t szx, sa_size_t szy, sa_size_t szz) | 
|---|
|  | 114 | : rg_(rg), fourAmp(szx, szy, szz) | 
|---|
|  | 115 | { | 
|---|
|  | 116 | SetPrtLevel(); | 
|---|
|  | 117 | SetCellSize(); | 
|---|
|  | 118 | } | 
|---|
|  | 119 |  | 
|---|
|  | 120 |  | 
|---|
|  | 121 | // Generate mass field Fourier Coefficient | 
|---|
|  | 122 | void Four3DPk::ComputeFourierAmp(SpectralShape& pk) | 
|---|
|  | 123 | { | 
|---|
|  | 124 | // We generate a random gaussian real field | 
|---|
|  | 125 | // fourAmp represent 3-D fourier transform of a real input array. | 
|---|
|  | 126 | // The second half of the array along Y and Z contain negative frequencies | 
|---|
|  | 127 | //  double fnorm = 1./sqrt(2.*fourAmp.Size()); | 
|---|
|  | 128 | double fnorm = 1.; | 
|---|
|  | 129 | double kxx, kyy, kzz; | 
|---|
|  | 130 | // sa_size_t is large integer type | 
|---|
|  | 131 | for(sa_size_t kz=0; kz<fourAmp.SizeZ(); kz++) { | 
|---|
|  | 132 | kzz =  (kz>fourAmp.SizeZ()/2) ? (double)(fourAmp.SizeZ()-kz)*dkz_ : (double)kz*dkz_; | 
|---|
|  | 133 | for(sa_size_t ky=0; ky<fourAmp.SizeY(); ky++) { | 
|---|
|  | 134 | kyy =  (ky>fourAmp.SizeY()/2) ? (double)(fourAmp.SizeY()-ky)*dky_ : (double)ky*dky_; | 
|---|
|  | 135 | for(sa_size_t kx=0; kx<fourAmp.SizeX(); kx++) { | 
|---|
|  | 136 | double kxx=(double)kx*dkx_; | 
|---|
|  | 137 | double wk = sqrt(kxx*kxx+kyy*kyy+kzz*kzz); | 
|---|
|  | 138 | double amp = sqrt(pk(wk)*fnorm/2.); | 
|---|
|  | 139 | fourAmp(kx, ky, kz) = complex<TF>(rg_.Gaussian(amp), rg_.Gaussian(amp));   // renormalize fourier coeff usin | 
|---|
|  | 140 | } | 
|---|
|  | 141 | } | 
|---|
|  | 142 | } | 
|---|
|  | 143 | if (prtlev_>0) | 
|---|
|  | 144 | cout << " Four3DPk::ComputeFourierAmp() done ..." << endl; | 
|---|
|  | 145 | } | 
|---|
|  | 146 |  | 
|---|
|  | 147 | // Generate mass field Fourier Coefficient | 
|---|
|  | 148 | void Four3DPk::ComputeNoiseFourierAmp(Four2DResponse& resp, bool crmask) | 
|---|
|  | 149 | { | 
|---|
|  | 150 | TMatrix<r_4> mask(fourAmp.SizeY(), fourAmp.SizeX()); | 
|---|
|  | 151 | // fourAmp represent 3-D fourier transform of a real input array. | 
|---|
|  | 152 | // The second half of the array along Y and Z contain negative frequencies | 
|---|
| [3787] | 153 | double kxx, kyy, kzz, rep, amp; | 
|---|
| [3756] | 154 | // sa_size_t is large integer type | 
|---|
|  | 155 | for(sa_size_t kz=0; kz<fourAmp.SizeZ(); kz++) { | 
|---|
| [3769] | 156 | kzz =  (kz>fourAmp.SizeZ()/2) ? -(double)(fourAmp.SizeZ()-kz)*dkz_ : (double)kz*dkz_; | 
|---|
| [3756] | 157 | for(sa_size_t ky=0; ky<fourAmp.SizeY(); ky++) { | 
|---|
| [3769] | 158 | kyy =  (ky>fourAmp.SizeY()/2) ? -(double)(fourAmp.SizeY()-ky)*dky_ : (double)ky*dky_; | 
|---|
| [3756] | 159 | for(sa_size_t kx=0; kx<fourAmp.SizeX(); kx++) { | 
|---|
| [3787] | 160 | kxx=(double)kx*dkx_; | 
|---|
|  | 161 | rep = resp(kxx, kyy); | 
|---|
| [3756] | 162 | if (crmask&&(kz==0))  mask(ky,kx)=((rep<1.e-8)?9.e9:(1./rep)); | 
|---|
|  | 163 | if (rep<1.e-8)  fourAmp(kx, ky, kz) = complex<TF>(9.e9,0.); | 
|---|
|  | 164 | else { | 
|---|
| [3787] | 165 | amp = 1./sqrt(rep)/sqrt(2.); | 
|---|
| [3756] | 166 | fourAmp(kx, ky, kz) = complex<TF>(rg_.Gaussian(amp), rg_.Gaussian(amp)); | 
|---|
|  | 167 | } | 
|---|
|  | 168 | } | 
|---|
|  | 169 | } | 
|---|
|  | 170 | } | 
|---|
|  | 171 | if (prtlev_>1)  fourAmp.Show(); | 
|---|
|  | 172 | if (crmask) { | 
|---|
|  | 173 | POutPersist po("mask.ppf"); | 
|---|
|  | 174 | po << mask; | 
|---|
|  | 175 | } | 
|---|
|  | 176 | if (prtlev_>0) | 
|---|
|  | 177 | cout << " Four3DPk::ComputeNoiseFourierAmp() done ..." << endl; | 
|---|
|  | 178 | } | 
|---|
|  | 179 |  | 
|---|
|  | 180 | // Compute mass field from its Fourier Coefficient | 
|---|
|  | 181 | TArray<TF>  Four3DPk::ComputeMassDens() | 
|---|
|  | 182 | { | 
|---|
|  | 183 | TArray<TF> massdens; | 
|---|
|  | 184 | // Backward fourier transform of the fourierAmp array | 
|---|
|  | 185 | FFTWServer ffts(true); | 
|---|
|  | 186 | ffts.setNormalize(true); | 
|---|
|  | 187 | ffts.FFTBackward(fourAmp, massdens, true); | 
|---|
|  | 188 | //  cout << " Four3DPk::ComputeMassDens() done NbNeg=" << npbz << " / NPix=" <<  massDens.Size() << endl; | 
|---|
|  | 189 | cout << " Four3DPk::ComputeMassDens() done NPix=" <<  massdens.Size() << endl; | 
|---|
|  | 190 | return massdens; | 
|---|
|  | 191 | } | 
|---|
|  | 192 |  | 
|---|
|  | 193 | // Compute power spectrum as a function of wave number k | 
|---|
|  | 194 | // cells with amp^2=re^2+im^2>s2cut are ignored | 
|---|
|  | 195 | // Output : power spectrum (profile histogram) | 
|---|
| [3769] | 196 | HProf Four3DPk::ComputePk(double s2cut, int nbin, double kmin, double kmax) | 
|---|
| [3756] | 197 | { | 
|---|
|  | 198 | // The second half of the array along Y (matrix rows) contain | 
|---|
|  | 199 | // negative frequencies | 
|---|
|  | 200 | //  int nbh = sqrt(fourAmp.SizeX()*fourAmp.SizeX()+fourAmp.SizeY()*fourAmp.SizeY()/4.+fourAmp.SizeZ()*fourAmp.SizeY()/4.); | 
|---|
|  | 201 | // The profile histogram will contain the mean value of FFT amplitude | 
|---|
|  | 202 | // as a function of wave-number k = sqrt((double)(kx*kx+ky*ky)) | 
|---|
|  | 203 | //  if (nbin < 1) nbin = nbh/2; | 
|---|
| [3769] | 204 | if ((kmax<0.)||(kmax<kmin)) { | 
|---|
|  | 205 | kmin=0.; | 
|---|
|  | 206 | double maxx=fourAmp.SizeX()*dkx_; | 
|---|
|  | 207 | double maxy=fourAmp.SizeY()*dky_/2; | 
|---|
|  | 208 | double maxz=fourAmp.SizeZ()*dkz_/2; | 
|---|
|  | 209 | kmax=sqrt(maxx*maxx+maxy*maxy+maxz*maxz); | 
|---|
|  | 210 | } | 
|---|
|  | 211 | if (nbin<2) nbin=128; | 
|---|
| [3756] | 212 | HProf hp(kmin, kmax, nbin); | 
|---|
|  | 213 | hp.SetErrOpt(false); | 
|---|
|  | 214 | ComputePkCumul(hp, s2cut); | 
|---|
|  | 215 | return hp; | 
|---|
|  | 216 | } | 
|---|
|  | 217 |  | 
|---|
|  | 218 | // Compute power spectrum as a function of wave number k | 
|---|
|  | 219 | // Cumul dans hp - cells with amp^2=re^2+im^2>s2cut are ignored | 
|---|
|  | 220 | void Four3DPk::ComputePkCumul(HProf& hp, double s2cut) | 
|---|
|  | 221 | { | 
|---|
|  | 222 |  | 
|---|
|  | 223 | // fourAmp represent 3-D fourier transform of a real input array. | 
|---|
|  | 224 | // The second half of the array along Y and Z contain negative frequencies | 
|---|
|  | 225 | double kxx, kyy, kzz; | 
|---|
|  | 226 | // sa_size_t is large integer type | 
|---|
| [3783] | 227 | // We ignore 0th term in all frequency directions ... | 
|---|
|  | 228 | for(sa_size_t kz=1; kz<fourAmp.SizeZ(); kz++) { | 
|---|
| [3756] | 229 | kzz =  (kz > fourAmp.SizeZ()/2) ? (double)(fourAmp.SizeZ()-kz)*dkz_ : (double)kz*dkz_; | 
|---|
| [3783] | 230 | for(sa_size_t ky=1; ky<fourAmp.SizeY(); ky++) { | 
|---|
| [3756] | 231 | kyy =  (ky > fourAmp.SizeY()/2) ? (double)(fourAmp.SizeY()-ky)*dky_ : (double)ky*dky_; | 
|---|
| [3783] | 232 | for(sa_size_t kx=1; kx<fourAmp.SizeX(); kx++) {  // ignore the 0th coefficient (constant term) | 
|---|
| [3756] | 233 | double kxx=(double)kx*dkx_; | 
|---|
|  | 234 | complex<TF> za = fourAmp(kx, ky, kz); | 
|---|
|  | 235 | if (za.real()>8.e9) continue; | 
|---|
|  | 236 | double wk = sqrt(kxx*kxx+kyy*kyy+kzz*kzz); | 
|---|
|  | 237 | double amp2 = za.real()*za.real()+za.imag()*za.imag(); | 
|---|
|  | 238 | if ((s2cut>1.e-9)&&(amp2>s2cut))  continue; | 
|---|
|  | 239 | hp.Add(wk, amp2); | 
|---|
|  | 240 | } | 
|---|
|  | 241 | } | 
|---|
|  | 242 | } | 
|---|
|  | 243 | return; | 
|---|
|  | 244 | } | 
|---|
|  | 245 |  | 
|---|
|  | 246 |  | 
|---|
|  | 247 |  | 
|---|
|  | 248 | //----------------------------------------------------- | 
|---|
|  | 249 | // -- MassDist2D class :  2D mass distribution | 
|---|
|  | 250 | //----------------------------------------------------- | 
|---|
|  | 251 | // Constructor | 
|---|
|  | 252 | MassDist2D::MassDist2D(GenericFunc& pk, int size, double meandens) | 
|---|
|  | 253 | : pkSpec(pk) , sizeA((size>16)?size:16) ,  massDens(sizeA, sizeA), | 
|---|
|  | 254 | meanRho(meandens) , fg_fourAmp(false) , fg_massDens(false) | 
|---|
|  | 255 | { | 
|---|
|  | 256 | } | 
|---|
|  | 257 |  | 
|---|
|  | 258 | // To the computation job | 
|---|
|  | 259 | void MassDist2D::Compute() | 
|---|
|  | 260 | { | 
|---|
|  | 261 | ComputeFourierAmp(); | 
|---|
|  | 262 | ComputeMassDens(); | 
|---|
|  | 263 | } | 
|---|
|  | 264 |  | 
|---|
|  | 265 | // Generate mass field Fourier Coefficient | 
|---|
|  | 266 | void MassDist2D::ComputeFourierAmp() | 
|---|
|  | 267 | { | 
|---|
|  | 268 | if (fg_fourAmp) return; // job already done | 
|---|
|  | 269 | // We generate a random gaussian real field | 
|---|
|  | 270 | double sigma = 1.; | 
|---|
|  | 271 | // The following line fills the array by gaussian random numbers | 
|---|
|  | 272 | //--Replaced--  massDens = RandomSequence(RandomSequence::Gaussian, 0., sigma); | 
|---|
|  | 273 | // Can be replaced by | 
|---|
|  | 274 | DR48RandGen rg; | 
|---|
|  | 275 | for(sa_size_t ir=0; ir<massDens.NRows(); ir++) { | 
|---|
|  | 276 | for(sa_size_t jc=0; jc<massDens.NCols(); jc++) { | 
|---|
|  | 277 | massDens(ir, jc) = rg.Gaussian(sigma); | 
|---|
|  | 278 | } | 
|---|
|  | 279 | } | 
|---|
|  | 280 | // --- End of random filling | 
|---|
|  | 281 |  | 
|---|
|  | 282 | // Compute fourier transform of the random gaussian field -> white noise | 
|---|
|  | 283 | FFTWServer ffts(true); | 
|---|
|  | 284 | ffts.setNormalize(true); | 
|---|
|  | 285 | ffts.FFTForward(massDens, fourAmp); | 
|---|
|  | 286 |  | 
|---|
|  | 287 | // fourAmp represent 2-D fourier transform of a real input array. | 
|---|
|  | 288 | // The second half of the array along Y (matrix rows) contain | 
|---|
|  | 289 | // negative frequencies | 
|---|
|  | 290 | //  double fnorm = 1./sqrt(2.*fourAmp.Size()); | 
|---|
|  | 291 | // PUT smaller value for fnorm and check number of zeros | 
|---|
|  | 292 | double fnorm = 1.; | 
|---|
|  | 293 | // sa_size_t is large integer type | 
|---|
|  | 294 | for(sa_size_t ky=0; ky<fourAmp.NRows(); ky++) { | 
|---|
|  | 295 | double kyy = ky; | 
|---|
|  | 296 | if (ky > fourAmp.NRows()/2) kyy = fourAmp.NRows()-ky;  // negative frequencies | 
|---|
|  | 297 | for(sa_size_t kx=0; kx<fourAmp.NCols(); kx++) { | 
|---|
|  | 298 | double wk = sqrt((double)(kx*kx+kyy*kyy)); | 
|---|
|  | 299 | double amp = pkSpec(wk)*fnorm; | 
|---|
|  | 300 | fourAmp(ky, kx) *= amp;   // renormalize fourier coeff using | 
|---|
|  | 301 | } | 
|---|
|  | 302 | } | 
|---|
|  | 303 | fg_fourAmp = true; | 
|---|
|  | 304 | cout << " MassDist2D::ComputeFourierAmp() done ..." << endl; | 
|---|
|  | 305 | } | 
|---|
|  | 306 |  | 
|---|
|  | 307 | // Compute mass field from its Fourier Coefficient | 
|---|
|  | 308 | void MassDist2D::ComputeMassDens() | 
|---|
|  | 309 | { | 
|---|
|  | 310 | if (fg_massDens) return; // job already done | 
|---|
|  | 311 | if (!fg_fourAmp) ComputeFourierAmp();   // Check fourier amp generation | 
|---|
|  | 312 |  | 
|---|
|  | 313 | // Backward fourier transform of the fourierAmp array | 
|---|
|  | 314 | FFTWServer ffts(true); | 
|---|
|  | 315 | ffts.setNormalize(true); | 
|---|
|  | 316 | ffts.FFTBackward(fourAmp, massDens, true); | 
|---|
|  | 317 | // We consider that massDens represents delta rho/rho | 
|---|
|  | 318 | // rho = (delta rho/rho + 1) * MeanDensity | 
|---|
|  | 319 | massDens += 1.; | 
|---|
|  | 320 | // We remove negative values | 
|---|
|  | 321 | sa_size_t npbz = 0; | 
|---|
|  | 322 | for (sa_size_t i=0; i<massDens.NRows(); i++) | 
|---|
|  | 323 | for (sa_size_t j=0; j<massDens.NCols(); j++) | 
|---|
|  | 324 | if (massDens(i,j) < 0.) { npbz++; massDens(i,j) = 0.; } | 
|---|
|  | 325 | massDens *= meanRho; | 
|---|
|  | 326 | cout << " MassDist2D::ComputeMassDens() done NbNeg=" << npbz << " / NPix=" <<  massDens.Size() << endl; | 
|---|
|  | 327 | } | 
|---|
|  | 328 |  | 
|---|
|  | 329 | // Compute power spectrum as a function of wave number k | 
|---|
|  | 330 | // Output : power spectrum (profile histogram) | 
|---|
|  | 331 | HProf MassDist2D::ReconstructPk(int nbin) | 
|---|
|  | 332 | { | 
|---|
|  | 333 | // The second half of the array along Y (matrix rows) contain | 
|---|
|  | 334 | // negative frequencies | 
|---|
|  | 335 | int nbh = sqrt(2.0)*fourAmp.NCols(); | 
|---|
|  | 336 | // The profile histogram will contain the mean value of FFT amplitude | 
|---|
|  | 337 | // as a function of wave-number k = sqrt((double)(kx*kx+ky*ky)) | 
|---|
|  | 338 | if (nbin < 1) nbin = nbh/2; | 
|---|
|  | 339 | HProf hp(-0.5, nbh-0.5, nbin); | 
|---|
|  | 340 | hp.SetErrOpt(false); | 
|---|
|  | 341 |  | 
|---|
|  | 342 | for(int ky=0; ky<fourAmp.NRows(); ky++) { | 
|---|
|  | 343 | double kyy = ky; | 
|---|
|  | 344 | if (ky > fourAmp.NRows()/2)  kyy = fourAmp.NRows()-ky;  // negative frequencies | 
|---|
|  | 345 | for(int kx=0; kx<fourAmp.NCols(); kx++) { | 
|---|
|  | 346 | double wk = sqrt((double)(kx*kx+kyy*kyy)); | 
|---|
|  | 347 | complex<r_8> za = fourAmp(ky, kx); | 
|---|
|  | 348 | double amp = sqrt(za.real()*za.real()+za.imag()*za.imag()); | 
|---|
|  | 349 | hp.Add(wk, amp); | 
|---|
|  | 350 | } | 
|---|
|  | 351 | } | 
|---|
|  | 352 | return hp; | 
|---|
|  | 353 | } | 
|---|
|  | 354 |  | 
|---|