| 1 | 
 | 
|---|
| 2 | /*  ------------------------ Projet BAORadio -------------------- 
 | 
|---|
| 3 |     Classes to compute 3D power spectrum and noise power spectrum
 | 
|---|
| 4 |     R. Ansari - Nov 2008 ... Dec 2010 
 | 
|---|
| 5 | ---------------------------------------------------------------  */
 | 
|---|
| 6 | 
 | 
|---|
| 7 | #include "specpk.h"
 | 
|---|
| 8 | #include "randr48.h"      
 | 
|---|
| 9 | #include "ctimer.h"      
 | 
|---|
| 10 | 
 | 
|---|
| 11 | //------------------------------------
 | 
|---|
| 12 | // Class SpectralShape 
 | 
|---|
| 13 | // -----------------------------------
 | 
|---|
| 14 | 
 | 
|---|
| 15 | double Pnu1(double nu) 
 | 
|---|
| 16 | {
 | 
|---|
| 17 |   return ( sqrt(sqrt(nu)) / ((nu+1.0)/0.2) * 
 | 
|---|
| 18 |            (1+0.2*cos(2*M_PI*(nu-2.)*0.15)*exp(-nu/50.)) );
 | 
|---|
| 19 | }
 | 
|---|
| 20 | 
 | 
|---|
| 21 | double Pnu2(double nu) 
 | 
|---|
| 22 | {
 | 
|---|
| 23 |   if (nu < 1.e-9) return 0.;
 | 
|---|
| 24 |   return ((1.-exp(-nu/0.5))/nu*(1+0.25*cos(2*M_PI*nu*0.1)*exp(-nu/20.)) );
 | 
|---|
| 25 | }
 | 
|---|
| 26 | 
 | 
|---|
| 27 | 
 | 
|---|
| 28 | double Pnu3(double nu) 
 | 
|---|
| 29 | {
 | 
|---|
| 30 |   return ( log(nu/100.+1)*(1+sin(2*M_PI*nu/300))*exp(-nu/4000) );
 | 
|---|
| 31 | }
 | 
|---|
| 32 | 
 | 
|---|
| 33 | 
 | 
|---|
| 34 | double Pnu4(double nu) 
 | 
|---|
| 35 | {
 | 
|---|
| 36 |   double x = (nu-0.5)/0.05;
 | 
|---|
| 37 |   double rc = 2*exp(-x*x);
 | 
|---|
| 38 |   x = (nu-3.1)/0.27;
 | 
|---|
| 39 |   rc += exp(-x*x);
 | 
|---|
| 40 |   x = (nu-7.6)/1.4;
 | 
|---|
| 41 |   rc += 0.5*exp(-x*x);
 | 
|---|
| 42 |   return ( rc+2.*exp(-x*x) );
 | 
|---|
| 43 | }
 | 
|---|
| 44 | 
 | 
|---|
| 45 | //--------------------------------------------------
 | 
|---|
| 46 | // -- SpectralShape class : test P(k) class
 | 
|---|
| 47 | //--------------------------------------------------
 | 
|---|
| 48 | // Constructor
 | 
|---|
| 49 | SpectralShape::SpectralShape(int typ)
 | 
|---|
| 50 | {
 | 
|---|
| 51 |   typ_=typ;
 | 
|---|
| 52 |   SetRenormFac();
 | 
|---|
| 53 | }
 | 
|---|
| 54 | 
 | 
|---|
| 55 | // Return the spectral power for a given wave number wk 
 | 
|---|
| 56 | double SpectralShape::operator() (double wk)
 | 
|---|
| 57 | {
 | 
|---|
| 58 |   wk/=DeuxPI;
 | 
|---|
| 59 |   double retv=1.;
 | 
|---|
| 60 |   switch (typ_) 
 | 
|---|
| 61 |     {
 | 
|---|
| 62 |     case 1:
 | 
|---|
| 63 |       retv=Pnu1(wk);
 | 
|---|
| 64 |       break;
 | 
|---|
| 65 |     case 2:
 | 
|---|
| 66 |       retv=Pnu2(wk);
 | 
|---|
| 67 |       break;
 | 
|---|
| 68 |     case 3:
 | 
|---|
| 69 |       retv=Pnu3(wk);
 | 
|---|
| 70 |       break;
 | 
|---|
| 71 |     case 4:
 | 
|---|
| 72 |       retv=Pnu4(wk);
 | 
|---|
| 73 |       break;
 | 
|---|
| 74 |     default :
 | 
|---|
| 75 |       {
 | 
|---|
| 76 |   // global shape
 | 
|---|
| 77 |       double csp = pow( (2*sin(sqrt(sqrt(wk/7.)))),2.);
 | 
|---|
| 78 |       if (csp < 0.) return 0.;
 | 
|---|
| 79 |       
 | 
|---|
| 80 |       // Adding some pics
 | 
|---|
| 81 |       double picpos[5] = {75.,150.,225.,300.,375.,};
 | 
|---|
| 82 |       
 | 
|---|
| 83 |       for(int k=0; k<5; k++) {
 | 
|---|
| 84 |         double x0 = picpos[k];
 | 
|---|
| 85 |         if ( (wk > x0-25.) && (wk < x0+25.) ) {
 | 
|---|
| 86 |           double x = (wk-x0);
 | 
|---|
| 87 |           csp *= (1.+0.5*exp(-(x*x)/(2.*5*5)));
 | 
|---|
| 88 |           break;
 | 
|---|
| 89 |         }
 | 
|---|
| 90 |       }
 | 
|---|
| 91 |       retv=csp;
 | 
|---|
| 92 |       }
 | 
|---|
| 93 |       break;
 | 
|---|
| 94 |     }
 | 
|---|
| 95 |   return retv*renorm_fac;
 | 
|---|
| 96 | }
 | 
|---|
| 97 | // Return a vector representing the power spectrum (for checking) 
 | 
|---|
| 98 | Histo SpectralShape::GetPk(int n)
 | 
|---|
| 99 | {
 | 
|---|
| 100 |   if (n<16) n = 256;
 | 
|---|
| 101 |   Histo h(0.,1024.*DeuxPI,n);
 | 
|---|
| 102 |   for(int k=0; k<h.NBins(); k++)   h(k) = Value((k+0.5)*h.BinWidth());
 | 
|---|
| 103 |   return h;     
 | 
|---|
| 104 | }
 | 
|---|
| 105 | 
 | 
|---|
| 106 | double SpectralShape::Sommek2Pk(double kmax, int n)
 | 
|---|
| 107 | {
 | 
|---|
| 108 |   double dk=kmax/(double)n;
 | 
|---|
| 109 |   double s=0.;
 | 
|---|
| 110 |   for(int i=1; i<=n; i++) {
 | 
|---|
| 111 |     double ck=(double)i*dk;
 | 
|---|
| 112 |     s += Value(ck)*ck*ck;
 | 
|---|
| 113 |   }
 | 
|---|
| 114 |   return s*dk*4.*M_PI;
 | 
|---|
| 115 | }
 | 
|---|
| 116 | //--------------------------------------------------
 | 
|---|
| 117 | // -- Four2DResponse class : test P(k) class
 | 
|---|
| 118 | 
 | 
|---|
| 119 | //---------------------------------------------------------------
 | 
|---|
| 120 | // -- Four3DPk class :  3D fourier amplitudes and power spectrum 
 | 
|---|
| 121 | //---------------------------------------------------------------
 | 
|---|
| 122 | // Constructeur avec Tableau des coeff. de Fourier en argument
 | 
|---|
| 123 | Four3DPk::Four3DPk(TArray< complex<TF> > & fourcoedd, RandomGeneratorInterface& rg)
 | 
|---|
| 124 |   : rg_(rg), fourAmp(fourcoedd)
 | 
|---|
| 125 | {
 | 
|---|
| 126 |   SetPrtLevel();
 | 
|---|
| 127 |   SetCellSize();
 | 
|---|
| 128 | }
 | 
|---|
| 129 | // Constructor
 | 
|---|
| 130 | Four3DPk::Four3DPk(RandomGeneratorInterface& rg, sa_size_t szx, sa_size_t szy, sa_size_t szz)
 | 
|---|
| 131 |   : rg_(rg), fourAmp(szx, szy, szz) 
 | 
|---|
| 132 | {
 | 
|---|
| 133 |   SetPrtLevel();
 | 
|---|
| 134 |   SetCellSize();
 | 
|---|
| 135 | }
 | 
|---|
| 136 | 
 | 
|---|
| 137 | 
 | 
|---|
| 138 | // Generate mass field Fourier Coefficient
 | 
|---|
| 139 | void Four3DPk::ComputeFourierAmp(SpectralShape& pk)
 | 
|---|
| 140 | {
 | 
|---|
| 141 |   // We generate a random gaussian real field  
 | 
|---|
| 142 |   // fourAmp represent 3-D fourier transform of a real input array. 
 | 
|---|
| 143 |   // The second half of the array along Y and Z contain negative frequencies
 | 
|---|
| 144 |   //  double fnorm = 1./sqrt(2.*fourAmp.Size()); 
 | 
|---|
| 145 |   double fnorm = 1.; 
 | 
|---|
| 146 |   double kxx, kyy, kzz;
 | 
|---|
| 147 |   // sa_size_t is large integer type  
 | 
|---|
| 148 |   for(sa_size_t kz=0; kz<fourAmp.SizeZ(); kz++) {
 | 
|---|
| 149 |     kzz =  (kz>fourAmp.SizeZ()/2) ? (double)(fourAmp.SizeZ()-kz)*dkz_ : (double)kz*dkz_; 
 | 
|---|
| 150 |     for(sa_size_t ky=0; ky<fourAmp.SizeY(); ky++) {
 | 
|---|
| 151 |       kyy =  (ky>fourAmp.SizeY()/2) ? (double)(fourAmp.SizeY()-ky)*dky_ : (double)ky*dky_; 
 | 
|---|
| 152 |       for(sa_size_t kx=0; kx<fourAmp.SizeX(); kx++) {
 | 
|---|
| 153 |         double kxx=(double)kx*dkx_;
 | 
|---|
| 154 |         double wk = sqrt(kxx*kxx+kyy*kyy+kzz*kzz);
 | 
|---|
| 155 |         double amp = sqrt(pk(wk)*fnorm/2.);      
 | 
|---|
| 156 |         fourAmp(kx, ky, kz) = complex<TF>(rg_.Gaussian(amp), rg_.Gaussian(amp));   // renormalize fourier coeff usin 
 | 
|---|
| 157 |       }
 | 
|---|
| 158 |     }
 | 
|---|
| 159 |   }
 | 
|---|
| 160 |   if (prtlev_>2)
 | 
|---|
| 161 |     cout << " Four3DPk::ComputeFourierAmp() done ..." << endl;
 | 
|---|
| 162 | }
 | 
|---|
| 163 | 
 | 
|---|
| 164 | // Generate mass field Fourier Coefficient
 | 
|---|
| 165 | void Four3DPk::ComputeNoiseFourierAmp(Four2DResponse& resp, bool crmask)
 | 
|---|
| 166 | {
 | 
|---|
| 167 |   TMatrix<r_4> mask(fourAmp.SizeY(), fourAmp.SizeX());
 | 
|---|
| 168 |   // fourAmp represent 3-D fourier transform of a real input array. 
 | 
|---|
| 169 |   // The second half of the array along Y and Z contain negative frequencies
 | 
|---|
| 170 |   double kxx, kyy, kzz, rep, amp;
 | 
|---|
| 171 |   // sa_size_t is large integer type  
 | 
|---|
| 172 |   for(sa_size_t kz=0; kz<fourAmp.SizeZ(); kz++) {
 | 
|---|
| 173 |     kzz =  (kz>fourAmp.SizeZ()/2) ? -(double)(fourAmp.SizeZ()-kz)*dkz_ : (double)kz*dkz_; 
 | 
|---|
| 174 |     for(sa_size_t ky=0; ky<fourAmp.SizeY(); ky++) {
 | 
|---|
| 175 |       kyy =  (ky>fourAmp.SizeY()/2) ? -(double)(fourAmp.SizeY()-ky)*dky_ : (double)ky*dky_; 
 | 
|---|
| 176 |       for(sa_size_t kx=0; kx<fourAmp.SizeX(); kx++) {
 | 
|---|
| 177 |         kxx=(double)kx*dkx_;
 | 
|---|
| 178 |         rep = resp(kxx, kyy);
 | 
|---|
| 179 |         if (crmask&&(kz==0))  mask(ky,kx)=((rep<1.e-8)?9.e9:(1./rep));
 | 
|---|
| 180 |         if (rep<1.e-8)  fourAmp(kx, ky, kz) = complex<TF>(9.e9,0.);
 | 
|---|
| 181 |         else {
 | 
|---|
| 182 |           amp = 1./sqrt(rep)/sqrt(2.);
 | 
|---|
| 183 |           fourAmp(kx, ky, kz) = complex<TF>(rg_.Gaussian(amp), rg_.Gaussian(amp));   
 | 
|---|
| 184 |         }
 | 
|---|
| 185 |       }
 | 
|---|
| 186 |     }
 | 
|---|
| 187 |   }
 | 
|---|
| 188 |   if (prtlev_>2)  fourAmp.Show();
 | 
|---|
| 189 |   if (crmask) {
 | 
|---|
| 190 |     POutPersist po("mask.ppf");
 | 
|---|
| 191 |     po << mask;
 | 
|---|
| 192 |   }
 | 
|---|
| 193 |   if (prtlev_>0)
 | 
|---|
| 194 |     cout << " Four3DPk::ComputeNoiseFourierAmp() done ..." << endl;
 | 
|---|
| 195 | }
 | 
|---|
| 196 | 
 | 
|---|
| 197 | // Compute mass field from its Fourier Coefficient
 | 
|---|
| 198 | TArray<TF>  Four3DPk::ComputeMassDens()
 | 
|---|
| 199 | {
 | 
|---|
| 200 |   TArray<TF> massdens;
 | 
|---|
| 201 | // Backward fourier transform of the fourierAmp array   
 | 
|---|
| 202 |   FFTWServer ffts(true);                     
 | 
|---|
| 203 |   ffts.setNormalize(true); 
 | 
|---|
| 204 |   ffts.FFTBackward(fourAmp, massdens, true);
 | 
|---|
| 205 |   //  cout << " Four3DPk::ComputeMassDens() done NbNeg=" << npbz << " / NPix=" <<  massDens.Size() << endl;
 | 
|---|
| 206 |   cout << " Four3DPk::ComputeMassDens() done NPix=" <<  massdens.Size() << endl;
 | 
|---|
| 207 |   return massdens;
 | 
|---|
| 208 | }
 | 
|---|
| 209 | 
 | 
|---|
| 210 | // Compute power spectrum as a function of wave number k 
 | 
|---|
| 211 | // cells with amp^2=re^2+im^2>s2cut are ignored
 | 
|---|
| 212 | // Output : power spectrum (profile histogram)
 | 
|---|
| 213 | HProf Four3DPk::ComputePk(double s2cut, int nbin, double kmin, double kmax)
 | 
|---|
| 214 | {
 | 
|---|
| 215 |   // The second half of the array along Y (matrix rows) contain
 | 
|---|
| 216 |   // negative frequencies
 | 
|---|
| 217 |   //  int nbh = sqrt(fourAmp.SizeX()*fourAmp.SizeX()+fourAmp.SizeY()*fourAmp.SizeY()/4.+fourAmp.SizeZ()*fourAmp.SizeY()/4.);
 | 
|---|
| 218 |   // The profile histogram will contain the mean value of FFT amplitude
 | 
|---|
| 219 |   // as a function of wave-number k = sqrt((double)(kx*kx+ky*ky))
 | 
|---|
| 220 |   //  if (nbin < 1) nbin = nbh/2;
 | 
|---|
| 221 |   if ((kmax<0.)||(kmax<kmin)) {
 | 
|---|
| 222 |     kmin=0.;
 | 
|---|
| 223 |     double maxx=fourAmp.SizeX()*dkx_;
 | 
|---|
| 224 |     double maxy=fourAmp.SizeY()*dky_/2;
 | 
|---|
| 225 |     double maxz=fourAmp.SizeZ()*dkz_/2;
 | 
|---|
| 226 |     kmax=sqrt(maxx*maxx+maxy*maxy+maxz*maxz);
 | 
|---|
| 227 |   }
 | 
|---|
| 228 |   if (nbin<2) nbin=128; 
 | 
|---|
| 229 |   HProf hp(kmin, kmax, nbin);
 | 
|---|
| 230 |   hp.SetErrOpt(false);
 | 
|---|
| 231 |   ComputePkCumul(hp, s2cut);
 | 
|---|
| 232 |   return hp;
 | 
|---|
| 233 | }
 | 
|---|
| 234 | 
 | 
|---|
| 235 | // Compute power spectrum as a function of wave number k 
 | 
|---|
| 236 | // Cumul dans hp - cells with amp^2=re^2+im^2>s2cut are ignored
 | 
|---|
| 237 | void Four3DPk::ComputePkCumul(HProf& hp, double s2cut)
 | 
|---|
| 238 | {
 | 
|---|
| 239 |   uint_8 nmodeok=0;
 | 
|---|
| 240 |   // fourAmp represent 3-D fourier transform of a real input array. 
 | 
|---|
| 241 |   // The second half of the array along Y and Z contain negative frequencies
 | 
|---|
| 242 |   double kxx, kyy, kzz;
 | 
|---|
| 243 |   // sa_size_t is large integer type  
 | 
|---|
| 244 |   // We ignore 0th term in all frequency directions ...
 | 
|---|
| 245 |   for(sa_size_t kz=1; kz<fourAmp.SizeZ(); kz++) {
 | 
|---|
| 246 |     kzz =  (kz > fourAmp.SizeZ()/2) ? (double)(fourAmp.SizeZ()-kz)*dkz_ : (double)kz*dkz_; 
 | 
|---|
| 247 |     for(sa_size_t ky=1; ky<fourAmp.SizeY(); ky++) {
 | 
|---|
| 248 |       kyy =  (ky > fourAmp.SizeY()/2) ? (double)(fourAmp.SizeY()-ky)*dky_ : (double)ky*dky_; 
 | 
|---|
| 249 |       for(sa_size_t kx=1; kx<fourAmp.SizeX(); kx++) {  // ignore the 0th coefficient (constant term)
 | 
|---|
| 250 |         double kxx=(double)kx*dkx_;
 | 
|---|
| 251 |         complex<TF> za = fourAmp(kx, ky, kz);
 | 
|---|
| 252 |         if (za.real()>8.e9) continue;
 | 
|---|
| 253 |         double wk = sqrt(kxx*kxx+kyy*kyy+kzz*kzz);
 | 
|---|
| 254 |         double amp2 = za.real()*za.real()+za.imag()*za.imag();
 | 
|---|
| 255 |         if ((s2cut>1.e-9)&&(amp2>s2cut))  continue;
 | 
|---|
| 256 |         hp.Add(wk, amp2);
 | 
|---|
| 257 |         nmodeok++;
 | 
|---|
| 258 |       }
 | 
|---|
| 259 |     }
 | 
|---|
| 260 |   }
 | 
|---|
| 261 |   if ((prtlev_>1)||((prtlev_>0)&&(s2cut>1.e-9))) {
 | 
|---|
| 262 |     cout << " Four3DPk::ComputePkCumul/Info : NModeOK=" << nmodeok << " / NMode=" << fourAmp.Size() 
 | 
|---|
| 263 |          << " -> " << 100.*(double)nmodeok/(double)fourAmp.Size() << "%" << endl;
 | 
|---|
| 264 |   }
 | 
|---|
| 265 |   return;
 | 
|---|
| 266 | }
 | 
|---|
| 267 | 
 | 
|---|
| 268 | //-----------------------------------------------------
 | 
|---|
| 269 | // -- MassDist2D class :  2D mass distribution 
 | 
|---|
| 270 | // --- PkNoiseCalculator : Classe de calcul du spectre de bruit PNoise(k) 
 | 
|---|
| 271 | // determine par une reponse 2D de l'instrument
 | 
|---|
| 272 | //-----------------------------------------------------
 | 
|---|
| 273 | PkNoiseCalculator::PkNoiseCalculator(Four3DPk& pk3, Four2DResponse& rep, double s2cut, int ngen, 
 | 
|---|
| 274 |                                      const char* tit)
 | 
|---|
| 275 |   : pkn3d(pk3), frep(rep), S2CUT(s2cut), NGEN(ngen), title(tit) 
 | 
|---|
| 276 | {
 | 
|---|
| 277 |   SetPrtLevel();
 | 
|---|
| 278 | }
 | 
|---|
| 279 | 
 | 
|---|
| 280 | HProf PkNoiseCalculator::Compute()
 | 
|---|
| 281 | {
 | 
|---|
| 282 |   Timer tm(title.c_str());
 | 
|---|
| 283 |   tm.Nop();
 | 
|---|
| 284 |   HProf hnd;
 | 
|---|
| 285 |   cout << "PkNoiseCalculator::Compute() " << title << "  NGEN=" << NGEN << " S2CUT=" << S2CUT << endl;
 | 
|---|
| 286 |   for(int igen=0; igen<NGEN; igen++) {
 | 
|---|
| 287 |     pkn3d.ComputeNoiseFourierAmp(frep);
 | 
|---|
| 288 |     if (igen==0) hnd = pkn3d.ComputePk(S2CUT);
 | 
|---|
| 289 |     else pkn3d.ComputePkCumul(hnd,S2CUT);
 | 
|---|
| 290 |     if ((prtlev_>0)&&(igen>0)&&(((igen-1)%prtmodulo_)==0)) 
 | 
|---|
| 291 |       cout << " PkNoiseCalculator::Compute() - done igen=" << igen << " / MaxNGen=" << NGEN << endl;
 | 
|---|
| 292 |   }
 | 
|---|
| 293 |   return hnd;
 | 
|---|
| 294 | }
 | 
|---|
| 295 | 
 | 
|---|
| 296 | 
 | 
|---|
| 297 | //-----------------------------------------------------
 | 
|---|
| 298 | // -- MassDist2D class :  2D mass distribution 
 | 
|---|
| 299 | //-----------------------------------------------------
 | 
|---|
| 300 | // Constructor
 | 
|---|
| 301 | MassDist2D::MassDist2D(GenericFunc& pk, int size, double meandens) 
 | 
|---|
| 302 | : pkSpec(pk) , sizeA((size>16)?size:16) ,  massDens(sizeA, sizeA), 
 | 
|---|
| 303 |   meanRho(meandens) , fg_fourAmp(false) , fg_massDens(false)
 | 
|---|
| 304 | {
 | 
|---|
| 305 | }
 | 
|---|
| 306 | 
 | 
|---|
| 307 | // To the computation job
 | 
|---|
| 308 | void MassDist2D::Compute()
 | 
|---|
| 309 | {
 | 
|---|
| 310 |   ComputeFourierAmp();
 | 
|---|
| 311 |   ComputeMassDens();    
 | 
|---|
| 312 | }
 | 
|---|
| 313 | 
 | 
|---|
| 314 | // Generate mass field Fourier Coefficient
 | 
|---|
| 315 | void MassDist2D::ComputeFourierAmp()
 | 
|---|
| 316 | {
 | 
|---|
| 317 |   if (fg_fourAmp) return; // job already done
 | 
|---|
| 318 |   // We generate a random gaussian real field  
 | 
|---|
| 319 |   double sigma = 1.;
 | 
|---|
| 320 | // The following line fills the array by gaussian random numbers  
 | 
|---|
| 321 | //--Replaced--  massDens = RandomSequence(RandomSequence::Gaussian, 0., sigma);
 | 
|---|
| 322 | // Can be replaced by 
 | 
|---|
| 323 |   DR48RandGen rg;
 | 
|---|
| 324 |   for(sa_size_t ir=0; ir<massDens.NRows(); ir++) {
 | 
|---|
| 325 |         for(sa_size_t jc=0; jc<massDens.NCols(); jc++) {
 | 
|---|
| 326 |       massDens(ir, jc) = rg.Gaussian(sigma); 
 | 
|---|
| 327 |         }
 | 
|---|
| 328 |   }
 | 
|---|
| 329 | // --- End of random filling
 | 
|---|
| 330 | 
 | 
|---|
| 331 |   // Compute fourier transform of the random gaussian field -> white noise 
 | 
|---|
| 332 |   FFTWServer ffts(true);                     
 | 
|---|
| 333 |   ffts.setNormalize(true); 
 | 
|---|
| 334 |   ffts.FFTForward(massDens, fourAmp);
 | 
|---|
| 335 |     
 | 
|---|
| 336 |   // fourAmp represent 2-D fourier transform of a real input array. 
 | 
|---|
| 337 |   // The second half of the array along Y (matrix rows) contain
 | 
|---|
| 338 |   // negative frequencies
 | 
|---|
| 339 | //  double fnorm = 1./sqrt(2.*fourAmp.Size()); 
 | 
|---|
| 340 | // PUT smaller value for fnorm and check number of zeros
 | 
|---|
| 341 |   double fnorm = 1.; 
 | 
|---|
| 342 |   // sa_size_t is large integer type  
 | 
|---|
| 343 |   for(sa_size_t ky=0; ky<fourAmp.NRows(); ky++) {
 | 
|---|
| 344 |     double kyy = ky;
 | 
|---|
| 345 |     if (ky > fourAmp.NRows()/2) kyy = fourAmp.NRows()-ky;  // negative frequencies 
 | 
|---|
| 346 |     for(sa_size_t kx=0; kx<fourAmp.NCols(); kx++) {
 | 
|---|
| 347 |       double wk = sqrt((double)(kx*kx+kyy*kyy));
 | 
|---|
| 348 |       double amp = pkSpec(wk)*fnorm;      
 | 
|---|
| 349 |       fourAmp(ky, kx) *= amp;   // renormalize fourier coeff using 
 | 
|---|
| 350 |     }
 | 
|---|
| 351 |   }
 | 
|---|
| 352 |   fg_fourAmp = true;
 | 
|---|
| 353 |   cout << " MassDist2D::ComputeFourierAmp() done ..." << endl;
 | 
|---|
| 354 | }
 | 
|---|
| 355 | 
 | 
|---|
| 356 | // Compute mass field from its Fourier Coefficient
 | 
|---|
| 357 | void MassDist2D::ComputeMassDens()
 | 
|---|
| 358 | {
 | 
|---|
| 359 |   if (fg_massDens) return; // job already done
 | 
|---|
| 360 |   if (!fg_fourAmp) ComputeFourierAmp();   // Check fourier amp generation
 | 
|---|
| 361 | 
 | 
|---|
| 362 | // Backward fourier transform of the fourierAmp array   
 | 
|---|
| 363 |   FFTWServer ffts(true);                     
 | 
|---|
| 364 |   ffts.setNormalize(true); 
 | 
|---|
| 365 |   ffts.FFTBackward(fourAmp, massDens, true);
 | 
|---|
| 366 | // We consider that massDens represents delta rho/rho 
 | 
|---|
| 367 | // rho = (delta rho/rho + 1) * MeanDensity 
 | 
|---|
| 368 |   massDens += 1.;
 | 
|---|
| 369 | // We remove negative values 
 | 
|---|
| 370 |   sa_size_t npbz = 0;
 | 
|---|
| 371 |   for (sa_size_t i=0; i<massDens.NRows(); i++) 
 | 
|---|
| 372 |     for (sa_size_t j=0; j<massDens.NCols(); j++) 
 | 
|---|
| 373 |       if (massDens(i,j) < 0.) { npbz++; massDens(i,j) = 0.; }
 | 
|---|
| 374 |   massDens *= meanRho;
 | 
|---|
| 375 |   cout << " MassDist2D::ComputeMassDens() done NbNeg=" << npbz << " / NPix=" <<  massDens.Size() << endl;
 | 
|---|
| 376 | }
 | 
|---|
| 377 | 
 | 
|---|
| 378 | // Compute power spectrum as a function of wave number k 
 | 
|---|
| 379 | // Output : power spectrum (profile histogram)
 | 
|---|
| 380 | HProf MassDist2D::ReconstructPk(int nbin)
 | 
|---|
| 381 | {
 | 
|---|
| 382 |   // The second half of the array along Y (matrix rows) contain
 | 
|---|
| 383 |   // negative frequencies
 | 
|---|
| 384 |   int nbh = sqrt(2.0)*fourAmp.NCols();
 | 
|---|
| 385 |   // The profile histogram will contain the mean value of FFT amplitude
 | 
|---|
| 386 |   // as a function of wave-number k = sqrt((double)(kx*kx+ky*ky))
 | 
|---|
| 387 |   if (nbin < 1) nbin = nbh/2;
 | 
|---|
| 388 |   HProf hp(-0.5, nbh-0.5, nbin);
 | 
|---|
| 389 |   hp.SetErrOpt(false);
 | 
|---|
| 390 | 
 | 
|---|
| 391 |   for(int ky=0; ky<fourAmp.NRows(); ky++) {
 | 
|---|
| 392 |     double kyy = ky;
 | 
|---|
| 393 |     if (ky > fourAmp.NRows()/2)  kyy = fourAmp.NRows()-ky;  // negative frequencies
 | 
|---|
| 394 |     for(int kx=0; kx<fourAmp.NCols(); kx++) {
 | 
|---|
| 395 |       double wk = sqrt((double)(kx*kx+kyy*kyy));
 | 
|---|
| 396 |       complex<r_8> za = fourAmp(ky, kx);
 | 
|---|
| 397 |       double amp = sqrt(za.real()*za.real()+za.imag()*za.imag());
 | 
|---|
| 398 |       hp.Add(wk, amp);
 | 
|---|
| 399 |     }
 | 
|---|
| 400 |   }
 | 
|---|
| 401 |   return hp;
 | 
|---|
| 402 | }
 | 
|---|
| 403 | 
 | 
|---|