| 1 |  | 
|---|
| 2 | /*  ------------------------ Projet BAORadio -------------------- | 
|---|
| 3 | Classes to compute 3D power spectrum and noise power spectrum | 
|---|
| 4 | R. Ansari - Nov 2008 ... Dec 2010 | 
|---|
| 5 | ---------------------------------------------------------------  */ | 
|---|
| 6 |  | 
|---|
| 7 | #include "specpk.h" | 
|---|
| 8 | #include "radutil.h" | 
|---|
| 9 | #include "randr48.h" | 
|---|
| 10 | #include "ctimer.h" | 
|---|
| 11 |  | 
|---|
| 12 | //------------------------------------ | 
|---|
| 13 | // Class SpectralShape | 
|---|
| 14 | // ----------------------------------- | 
|---|
| 15 |  | 
|---|
| 16 | double Pnu1(double nu) | 
|---|
| 17 | { | 
|---|
| 18 | return ( sqrt(sqrt(nu)) / ((nu+1.0)/0.2) * | 
|---|
| 19 | (1+0.2*cos(2*M_PI*(nu-2.)*0.15)*exp(-nu/50.)) ); | 
|---|
| 20 | } | 
|---|
| 21 |  | 
|---|
| 22 | double Pnu2(double nu) | 
|---|
| 23 | { | 
|---|
| 24 | if (nu < 1.e-9) return 0.; | 
|---|
| 25 | return ((1.-exp(-nu/0.5))/nu*(1+0.25*cos(2*M_PI*nu*0.1)*exp(-nu/20.)) ); | 
|---|
| 26 | } | 
|---|
| 27 |  | 
|---|
| 28 |  | 
|---|
| 29 | double Pnu3(double nu) | 
|---|
| 30 | { | 
|---|
| 31 | return ( log(nu/100.+1)*(1+sin(2*M_PI*nu/300))*exp(-nu/4000) ); | 
|---|
| 32 | } | 
|---|
| 33 |  | 
|---|
| 34 |  | 
|---|
| 35 | double Pnu4(double nu) | 
|---|
| 36 | { | 
|---|
| 37 | double x = (nu-0.5)/0.05; | 
|---|
| 38 | double rc = 2*exp(-x*x); | 
|---|
| 39 | x = (nu-3.1)/0.27; | 
|---|
| 40 | rc += exp(-x*x); | 
|---|
| 41 | x = (nu-7.6)/1.4; | 
|---|
| 42 | rc += 0.5*exp(-x*x); | 
|---|
| 43 | return ( rc+2.*exp(-x*x) ); | 
|---|
| 44 | } | 
|---|
| 45 |  | 
|---|
| 46 | //-------------------------------------------------- | 
|---|
| 47 | // -- SpectralShape class : test P(k) class | 
|---|
| 48 | //-------------------------------------------------- | 
|---|
| 49 | // Constructor | 
|---|
| 50 | SpectralShape::SpectralShape(int typ) | 
|---|
| 51 | { | 
|---|
| 52 | typ_=typ; | 
|---|
| 53 | SetRenormFac(); | 
|---|
| 54 | } | 
|---|
| 55 |  | 
|---|
| 56 | // Return the spectral power for a given wave number wk | 
|---|
| 57 | double SpectralShape::operator() (double wk) | 
|---|
| 58 | { | 
|---|
| 59 | wk/=DeuxPI; | 
|---|
| 60 | double retv=1.; | 
|---|
| 61 | switch (typ_) | 
|---|
| 62 | { | 
|---|
| 63 | case 1: | 
|---|
| 64 | retv=Pnu1(wk); | 
|---|
| 65 | break; | 
|---|
| 66 | case 2: | 
|---|
| 67 | retv=Pnu2(wk); | 
|---|
| 68 | break; | 
|---|
| 69 | case 3: | 
|---|
| 70 | retv=Pnu3(wk); | 
|---|
| 71 | break; | 
|---|
| 72 | case 4: | 
|---|
| 73 | retv=Pnu4(wk); | 
|---|
| 74 | break; | 
|---|
| 75 | default : | 
|---|
| 76 | { | 
|---|
| 77 | // global shape | 
|---|
| 78 | double csp = pow( (2*sin(sqrt(sqrt(wk/7.)))),2.); | 
|---|
| 79 | if (csp < 0.) return 0.; | 
|---|
| 80 |  | 
|---|
| 81 | // Adding some pics | 
|---|
| 82 | double picpos[5] = {75.,150.,225.,300.,375.,}; | 
|---|
| 83 |  | 
|---|
| 84 | for(int k=0; k<5; k++) { | 
|---|
| 85 | double x0 = picpos[k]; | 
|---|
| 86 | if ( (wk > x0-25.) && (wk < x0+25.) ) { | 
|---|
| 87 | double x = (wk-x0); | 
|---|
| 88 | csp *= (1.+0.5*exp(-(x*x)/(2.*5*5))); | 
|---|
| 89 | break; | 
|---|
| 90 | } | 
|---|
| 91 | } | 
|---|
| 92 | retv=csp; | 
|---|
| 93 | } | 
|---|
| 94 | break; | 
|---|
| 95 | } | 
|---|
| 96 | return retv*renorm_fac; | 
|---|
| 97 | } | 
|---|
| 98 | // Return a vector representing the power spectrum (for checking) | 
|---|
| 99 | Histo SpectralShape::GetPk(int n) | 
|---|
| 100 | { | 
|---|
| 101 | if (n<16) n = 256; | 
|---|
| 102 | Histo h(0.,1024.*DeuxPI,n); | 
|---|
| 103 | for(int k=0; k<h.NBins(); k++)   h(k) = Value((k+0.5)*h.BinWidth()); | 
|---|
| 104 | return h; | 
|---|
| 105 | } | 
|---|
| 106 |  | 
|---|
| 107 | double SpectralShape::Sommek2Pk(double kmax, int n) | 
|---|
| 108 | { | 
|---|
| 109 | double dk=kmax/(double)n; | 
|---|
| 110 | double s=0.; | 
|---|
| 111 | for(int i=1; i<=n; i++) { | 
|---|
| 112 | double ck=(double)i*dk; | 
|---|
| 113 | s += Value(ck)*ck*ck; | 
|---|
| 114 | } | 
|---|
| 115 | return s*dk*4.*M_PI; | 
|---|
| 116 | } | 
|---|
| 117 | //-------------------------------------------------- | 
|---|
| 118 | // -- Four2DResponse class : test P(k) class | 
|---|
| 119 |  | 
|---|
| 120 | //--------------------------------------------------------------- | 
|---|
| 121 | // -- Four3DPk class :  3D fourier amplitudes and power spectrum | 
|---|
| 122 | //--------------------------------------------------------------- | 
|---|
| 123 | // Constructeur avec Tableau des coeff. de Fourier en argument | 
|---|
| 124 | Four3DPk::Four3DPk(TArray< complex<TF> > & fourcoedd, RandomGeneratorInterface& rg) | 
|---|
| 125 | : rg_(rg), fourAmp(fourcoedd) | 
|---|
| 126 | { | 
|---|
| 127 | SetPrtLevel(); | 
|---|
| 128 | SetCellSize(); | 
|---|
| 129 | hp_pk_p_=NULL;  hmcnt_p_=NULL;  hmcntok_p_=NULL;   s2cut_=0.; | 
|---|
| 130 | } | 
|---|
| 131 | // Constructor | 
|---|
| 132 | Four3DPk::Four3DPk(RandomGeneratorInterface& rg, sa_size_t szx, sa_size_t szy, sa_size_t szz) | 
|---|
| 133 | : rg_(rg), fourAmp(szx, szy, szz) | 
|---|
| 134 | { | 
|---|
| 135 | SetPrtLevel(); | 
|---|
| 136 | SetCellSize(); | 
|---|
| 137 | hp_pk_p_=NULL;  hmcnt_p_=NULL;  hmcntok_p_=NULL;   s2cut_=0.; | 
|---|
| 138 | } | 
|---|
| 139 |  | 
|---|
| 140 | // Destructor | 
|---|
| 141 | Four3DPk::~Four3DPk() | 
|---|
| 142 | { | 
|---|
| 143 | if (hp_pk_p_) delete hp_pk_p_; | 
|---|
| 144 | if (hmcnt_p_) delete hmcnt_p_; | 
|---|
| 145 | if (hmcntok_p_) delete hmcntok_p_; | 
|---|
| 146 | } | 
|---|
| 147 |  | 
|---|
| 148 | // Generate mass field Fourier Coefficient | 
|---|
| 149 | void Four3DPk::ComputeFourierAmp(SpectralShape& pk) | 
|---|
| 150 | { | 
|---|
| 151 | // We generate a random gaussian real field | 
|---|
| 152 | // fourAmp represent 3-D fourier transform of a real input array. | 
|---|
| 153 | // The second half of the array along Y and Z contain negative frequencies | 
|---|
| 154 | //  double fnorm = 1./sqrt(2.*fourAmp.Size()); | 
|---|
| 155 | double fnorm = 1.; | 
|---|
| 156 | double kxx, kyy, kzz; | 
|---|
| 157 | // sa_size_t is large integer type | 
|---|
| 158 | for(sa_size_t kz=0; kz<fourAmp.SizeZ(); kz++) { | 
|---|
| 159 | kzz =  (kz>fourAmp.SizeZ()/2) ? (double)(fourAmp.SizeZ()-kz)*dkz_ : (double)kz*dkz_; | 
|---|
| 160 | for(sa_size_t ky=0; ky<fourAmp.SizeY(); ky++) { | 
|---|
| 161 | kyy =  (ky>fourAmp.SizeY()/2) ? (double)(fourAmp.SizeY()-ky)*dky_ : (double)ky*dky_; | 
|---|
| 162 | for(sa_size_t kx=0; kx<fourAmp.SizeX(); kx++) { | 
|---|
| 163 | double kxx=(double)kx*dkx_; | 
|---|
| 164 | double wk = sqrt(kxx*kxx+kyy*kyy+kzz*kzz); | 
|---|
| 165 | double amp = sqrt(pk(wk)*fnorm/2.); | 
|---|
| 166 | fourAmp(kx, ky, kz) = complex<TF>(rg_.Gaussian(amp), rg_.Gaussian(amp));   // renormalize fourier coeff usin | 
|---|
| 167 | } | 
|---|
| 168 | } | 
|---|
| 169 | } | 
|---|
| 170 | if (prtlev_>2) | 
|---|
| 171 | cout << " Four3DPk::ComputeFourierAmp() done ..." << endl; | 
|---|
| 172 | } | 
|---|
| 173 |  | 
|---|
| 174 |  | 
|---|
| 175 | // Generate mass field Fourier Coefficient | 
|---|
| 176 | void Four3DPk::ComputeNoiseFourierAmp(Four2DResponse& resp, double angscale, bool crmask) | 
|---|
| 177 | // angscale is a multiplicative factor converting transverse k (wave number) values to angular wave numbers | 
|---|
| 178 | // typically = ComovRadialDistance | 
|---|
| 179 | { | 
|---|
| 180 | TMatrix<r_4> mask(fourAmp.SizeY(), fourAmp.SizeX()); | 
|---|
| 181 | // fourAmp represent 3-D fourier transform of a real input array. | 
|---|
| 182 | // The second half of the array along Y and Z contain negative frequencies | 
|---|
| 183 | double kxx, kyy, kzz, rep, amp; | 
|---|
| 184 | // sa_size_t is large integer type | 
|---|
| 185 | for(sa_size_t kz=0; kz<fourAmp.SizeZ(); kz++) { | 
|---|
| 186 | kzz =  (kz>fourAmp.SizeZ()/2) ? -(double)(fourAmp.SizeZ()-kz)*dkz_ : (double)kz*dkz_; | 
|---|
| 187 | for(sa_size_t ky=0; ky<fourAmp.SizeY(); ky++) { | 
|---|
| 188 | kyy =  (ky>fourAmp.SizeY()/2) ? -(double)(fourAmp.SizeY()-ky)*dky_ : (double)ky*dky_; | 
|---|
| 189 | for(sa_size_t kx=0; kx<fourAmp.SizeX(); kx++) { | 
|---|
| 190 | kxx=(double)kx*dkx_; | 
|---|
| 191 | rep = resp(kxx*angscale, kyy*angscale); | 
|---|
| 192 | if (crmask&&(kz==0))  mask(ky,kx)=((rep<1.e-8)?9.e9:(1./rep)); | 
|---|
| 193 | if (rep<1.e-8)  fourAmp(kx, ky, kz) = complex<TF>(9.e9,0.); | 
|---|
| 194 | else { | 
|---|
| 195 | amp = 1./sqrt(rep)/sqrt(2.); | 
|---|
| 196 | fourAmp(kx, ky, kz) = complex<TF>(rg_.Gaussian(amp), rg_.Gaussian(amp)); | 
|---|
| 197 | } | 
|---|
| 198 | } | 
|---|
| 199 | } | 
|---|
| 200 | } | 
|---|
| 201 | if (prtlev_>2)  fourAmp.Show(); | 
|---|
| 202 | if (crmask) { | 
|---|
| 203 | POutPersist po("mask.ppf"); | 
|---|
| 204 | po << mask; | 
|---|
| 205 | } | 
|---|
| 206 | if (prtlev_>0) | 
|---|
| 207 | cout << " Four3DPk::ComputeNoiseFourierAmp() done ..." << endl; | 
|---|
| 208 | } | 
|---|
| 209 |  | 
|---|
| 210 | // Generate mass field Fourier Coefficient | 
|---|
| 211 | void Four3DPk::ComputeNoiseFourierAmp(Four2DResponse& resp, double f0, double df, Vector& angscales, Vector& noisevec) | 
|---|
| 212 | // angscale is a multiplicative factor converting transverse k (wave number) values to angular wave numbers | 
|---|
| 213 | // typically = ComovRadialDistance | 
|---|
| 214 | { | 
|---|
| 215 | uint_8 nmodeok=0; | 
|---|
| 216 | if ((angscales.Size() != fourAmp.SizeZ())||(noisevec.Size() != fourAmp.SizeZ())) | 
|---|
| 217 | throw SzMismatchError("ComputeNoiseFourierAmp(): angscales/noisevec.Size()!=fourAmp.SizeZ()"); | 
|---|
| 218 | H21Conversions conv; | 
|---|
| 219 | // fourAmp represent 3-D fourier transform of a real input array. | 
|---|
| 220 | // The second half of the array along Y and Z contain negative frequencies | 
|---|
| 221 | double kxx, kyy, kzz, rep, amp; | 
|---|
| 222 | // sa_size_t is large integer type | 
|---|
| 223 | for(sa_size_t kz=0; kz<fourAmp.SizeZ(); kz++) { | 
|---|
| 224 | conv.setFrequency(f0+kz*df); | 
|---|
| 225 | resp.setLambda(conv.getLambda()); | 
|---|
| 226 | double angsc=angscales(kz); | 
|---|
| 227 | double noisepow=noisevec(kz); | 
|---|
| 228 | if (prtlev_>2) | 
|---|
| 229 | cout << " Four3DPk::ComputeNoiseFourierAmp(...) - freq=" << f0+kz*df << " -> AngSc=" << angsc | 
|---|
| 230 | << " NoisePow=" << noisepow << endl; | 
|---|
| 231 | for(sa_size_t ky=0; ky<fourAmp.SizeY(); ky++) { | 
|---|
| 232 | kyy =  (ky>fourAmp.SizeY()/2) ? -(double)(fourAmp.SizeY()-ky)*dky_ : (double)ky*dky_; | 
|---|
| 233 | for(sa_size_t kx=0; kx<fourAmp.SizeX(); kx++) { | 
|---|
| 234 | kxx=(double)kx*dkx_; | 
|---|
| 235 | rep = resp(kxx*angsc, kyy*angsc); | 
|---|
| 236 | if (rep<1.e-19)  rep=1.e-19; | 
|---|
| 237 | else  nmodeok++; | 
|---|
| 238 | amp = sqrt(noisepow/rep/2.); | 
|---|
| 239 | fourAmp(kx, ky, kz) = complex<TF>(rg_.Gaussian(amp), rg_.Gaussian(amp)); | 
|---|
| 240 | } | 
|---|
| 241 | } | 
|---|
| 242 | } | 
|---|
| 243 |  | 
|---|
| 244 | if (prtlev_>1)  { | 
|---|
| 245 | cout << " Four3DPk::ComputeNoiseFourierAmp(...) Computing FFT along frequency ... \n" | 
|---|
| 246 | << " NModeOK=" << nmodeok << " / NMode=" << fourAmp.Size() | 
|---|
| 247 | << " -> " << 100.*(double)nmodeok/(double)fourAmp.Size() << "%" << endl; | 
|---|
| 248 | } | 
|---|
| 249 | TVector< complex<TF> >  veczin(fourAmp.SizeZ()), veczout(fourAmp.SizeZ()); | 
|---|
| 250 | FFTWServer ffts(true); | 
|---|
| 251 | ffts.setNormalize(true); | 
|---|
| 252 |  | 
|---|
| 253 | for(sa_size_t ky=0; ky<fourAmp.SizeY(); ky++) { | 
|---|
| 254 | for(sa_size_t kx=0; kx<fourAmp.SizeX(); kx++) { | 
|---|
| 255 | //      veczin=fourAmp(Range(kx), Range(ky), Range::all()); | 
|---|
| 256 | for(sa_size_t kz=0; kz<fourAmp.SizeZ(); kz++)  veczin(kz)=fourAmp(kx,ky,kz); | 
|---|
| 257 | ffts.FFTBackward(veczin,veczout); | 
|---|
| 258 | veczout /= (TF)sqrt((double)fourAmp.SizeZ()); | 
|---|
| 259 | //      fourAmp(Range(kx), Range(ky), Range::all())=veczout; | 
|---|
| 260 | for(sa_size_t kz=0; kz<fourAmp.SizeZ(); kz++)  fourAmp(kx,ky,kz)=veczout(kz); | 
|---|
| 261 | } | 
|---|
| 262 | } | 
|---|
| 263 |  | 
|---|
| 264 | //  if (prtlev_>2)  fourAmp.Show(); | 
|---|
| 265 | if (prtlev_>0) | 
|---|
| 266 | cout << " Four3DPk::ComputeNoiseFourierAmp(Four2DResponse& resp, double f0, double df) done ..." << endl; | 
|---|
| 267 | } | 
|---|
| 268 |  | 
|---|
| 269 | // Compute mass field from its Fourier Coefficient | 
|---|
| 270 | TArray<TF>  Four3DPk::ComputeMassDens() | 
|---|
| 271 | { | 
|---|
| 272 | TArray<TF> massdens; | 
|---|
| 273 | // Backward fourier transform of the fourierAmp array | 
|---|
| 274 | FFTWServer ffts(true); | 
|---|
| 275 | ffts.setNormalize(true); | 
|---|
| 276 | ffts.FFTBackward(fourAmp, massdens, true); | 
|---|
| 277 | //  cout << " Four3DPk::ComputeMassDens() done NbNeg=" << npbz << " / NPix=" <<  massDens.Size() << endl; | 
|---|
| 278 | cout << " Four3DPk::ComputeMassDens() done NPix=" <<  massdens.Size() << endl; | 
|---|
| 279 | return massdens; | 
|---|
| 280 | } | 
|---|
| 281 |  | 
|---|
| 282 | // Compute power spectrum as a function of wave number k | 
|---|
| 283 | // cells with amp^2=re^2+im^2>s2cut are ignored | 
|---|
| 284 | // Output : power spectrum (profile histogram) | 
|---|
| 285 | HProf Four3DPk::ComputePk(double s2cut, int nbin, double kmin, double kmax, bool fgmodcnt) | 
|---|
| 286 | { | 
|---|
| 287 | // The second half of the array along Y (matrix rows) contain | 
|---|
| 288 | // negative frequencies | 
|---|
| 289 | //  int nbh = sqrt(fourAmp.SizeX()*fourAmp.SizeX()+fourAmp.SizeY()*fourAmp.SizeY()/4.+fourAmp.SizeZ()*fourAmp.SizeY()/4.); | 
|---|
| 290 | // The profile histogram will contain the mean value of FFT amplitude | 
|---|
| 291 | // as a function of wave-number k = sqrt((double)(kx*kx+ky*ky)) | 
|---|
| 292 | //  if (nbin < 1) nbin = nbh/2; | 
|---|
| 293 | if ((kmax<0.)||(kmax<kmin)) { | 
|---|
| 294 | kmin=0.; | 
|---|
| 295 | double maxx=fourAmp.SizeX()*dkx_; | 
|---|
| 296 | double maxy=fourAmp.SizeY()*dky_/2; | 
|---|
| 297 | double maxz=fourAmp.SizeZ()*dkz_/2; | 
|---|
| 298 | kmax=sqrt(maxx*maxx+maxy*maxy+maxz*maxz); | 
|---|
| 299 | } | 
|---|
| 300 | if (nbin<2) nbin=256; | 
|---|
| 301 | hp_pk_p_ = new HProf(kmin, kmax, nbin); | 
|---|
| 302 | hp_pk_p_->SetErrOpt(false); | 
|---|
| 303 | if (fgmodcnt) { | 
|---|
| 304 | hmcnt_p_ = new Histo(kmin, kmax, nbin); | 
|---|
| 305 | hmcntok_p_ = new Histo(kmin, kmax, nbin); | 
|---|
| 306 | } | 
|---|
| 307 | s2cut_=s2cut; | 
|---|
| 308 | ComputePkCumul(); | 
|---|
| 309 | return *hp_pk_p_; | 
|---|
| 310 | } | 
|---|
| 311 |  | 
|---|
| 312 | // Compute power spectrum as a function of wave number k | 
|---|
| 313 | // Cumul dans hp - cells with amp^2=re^2+im^2>s2cut are ignored | 
|---|
| 314 | void Four3DPk::ComputePkCumul() | 
|---|
| 315 | { | 
|---|
| 316 | uint_8 nmodeok=0; | 
|---|
| 317 | // fourAmp represent 3-D fourier transform of a real input array. | 
|---|
| 318 | // The second half of the array along Y and Z contain negative frequencies | 
|---|
| 319 | double kxx, kyy, kzz; | 
|---|
| 320 | // sa_size_t is large integer type | 
|---|
| 321 | // We ignore 0th term in all frequency directions ... | 
|---|
| 322 | for(sa_size_t kz=0; kz<fourAmp.SizeZ(); kz++) { | 
|---|
| 323 | kzz =  (kz > fourAmp.SizeZ()/2) ? (double)(fourAmp.SizeZ()-kz)*dkz_ : (double)kz*dkz_; | 
|---|
| 324 | for(sa_size_t ky=0; ky<fourAmp.SizeY(); ky++) { | 
|---|
| 325 | kyy =  (ky > fourAmp.SizeY()/2) ? (double)(fourAmp.SizeY()-ky)*dky_ : (double)ky*dky_; | 
|---|
| 326 | for(sa_size_t kx=0; kx<fourAmp.SizeX(); kx++) {  // ignore the 0th coefficient (constant term) | 
|---|
| 327 | kxx=(double)kx*dkx_; | 
|---|
| 328 | complex<TF> za = fourAmp(kx, ky, kz); | 
|---|
| 329 | //      if (za.real()>8.e19) continue; | 
|---|
| 330 | double wk = sqrt(kxx*kxx+kyy*kyy+kzz*kzz); | 
|---|
| 331 | double amp2 = za.real()*za.real()+za.imag()*za.imag(); | 
|---|
| 332 | if (hmcnt_p_) hmcnt_p_->Add(wk); | 
|---|
| 333 | if ((s2cut_>1.e-9)&&(amp2>s2cut_))  continue; | 
|---|
| 334 | if (hmcntok_p_) hmcntok_p_->Add(wk); | 
|---|
| 335 | hp_pk_p_->Add(wk, amp2); | 
|---|
| 336 | nmodeok++; | 
|---|
| 337 | } | 
|---|
| 338 | } | 
|---|
| 339 | } | 
|---|
| 340 | if ((prtlev_>1)||((prtlev_>0)&&(s2cut_>1.e-9))) { | 
|---|
| 341 | cout << " Four3DPk::ComputePkCumul/Info : NModeOK=" << nmodeok << " / NMode=" << fourAmp.Size() | 
|---|
| 342 | << " -> " << 100.*(double)nmodeok/(double)fourAmp.Size() << "%" << endl; | 
|---|
| 343 | } | 
|---|
| 344 | return; | 
|---|
| 345 | } | 
|---|
| 346 |  | 
|---|
| 347 | // Compute noise power spectrum as a function of wave number k | 
|---|
| 348 | // No random generation, computes profile of noise sigma^2 | 
|---|
| 349 | // cells with amp^2=re^2+im^2>s2cut are ignored | 
|---|
| 350 | // Output : noise power spectrum (profile histogram) | 
|---|
| 351 | // angscale is a multiplicative factor converting transverse k (wave number) values to angular wave numbers | 
|---|
| 352 | // typically = ComovRadialDistance | 
|---|
| 353 | HProf Four3DPk::ComputeNoisePk(Four2DResponse& resp, double angscale, double s2cut, int nbin, double kmin, double kmax) | 
|---|
| 354 | { | 
|---|
| 355 | // The second half of the array along Y (matrix rows) contain | 
|---|
| 356 | // negative frequencies | 
|---|
| 357 | //  int nbh = sqrt(fourAmp.SizeX()*fourAmp.SizeX()+fourAmp.SizeY()*fourAmp.SizeY()/4.+fourAmp.SizeZ()*fourAmp.SizeY()/4.); | 
|---|
| 358 | // The profile histogram will contain the mean value of noise sigma^2 | 
|---|
| 359 | // as a function of wave-number k = sqrt((double)(kx*kx+ky*ky)) | 
|---|
| 360 | //  if (nbin < 1) nbin = nbh/2; | 
|---|
| 361 | double kmax2d=0.; | 
|---|
| 362 | if ((kmax<0.)||(kmax<kmin)) { | 
|---|
| 363 | kmin=0.; | 
|---|
| 364 | double maxx=fourAmp.SizeX()*dkx_; | 
|---|
| 365 | double maxy=fourAmp.SizeY()*dky_/2; | 
|---|
| 366 | double maxz=fourAmp.SizeZ()*dkz_/2; | 
|---|
| 367 | kmax=sqrt(maxx*maxx+maxy*maxy+maxz*maxz); | 
|---|
| 368 | kmax2d=sqrt(maxx*maxx+maxy*maxy); | 
|---|
| 369 | } | 
|---|
| 370 | if (nbin<2) nbin=256; | 
|---|
| 371 | hp_pk_p_ = new HProf(kmin, kmax, nbin); | 
|---|
| 372 | hp_pk_p_->SetErrOpt(false); | 
|---|
| 373 | hmcnt_p_ = new Histo(kmin, kmax, nbin); | 
|---|
| 374 | hmcntok_p_ = new Histo(kmin, kmax, nbin); | 
|---|
| 375 | s2cut_=s2cut; | 
|---|
| 376 |  | 
|---|
| 377 | uint_8 nmodeok=0; | 
|---|
| 378 | // fourAmp represent 3-D fourier transform of a real input array. | 
|---|
| 379 | // The second half of the array along Y and Z contain negative frequencies | 
|---|
| 380 | double kxx, kyy, kzz; | 
|---|
| 381 | // sa_size_t is large integer type | 
|---|
| 382 | // We ignore 0th term in all frequency directions ... | 
|---|
| 383 | for(sa_size_t kz=0; kz<fourAmp.SizeZ(); kz++) { | 
|---|
| 384 | kzz =  (kz > fourAmp.SizeZ()/2) ? (double)(fourAmp.SizeZ()-kz)*dkz_ : (double)kz*dkz_; | 
|---|
| 385 | uint_8 nmodeok_kz=0; | 
|---|
| 386 | for(sa_size_t ky=0; ky<fourAmp.SizeY(); ky++) { | 
|---|
| 387 | kyy =  (ky > fourAmp.SizeY()/2) ? (double)(fourAmp.SizeY()-ky)*dky_ : (double)ky*dky_; | 
|---|
| 388 | for(sa_size_t kx=0; kx<fourAmp.SizeX(); kx++) {  // ignore the 0th coefficient (constant term) | 
|---|
| 389 | kxx=(double)kx*dkx_; | 
|---|
| 390 | double wk = sqrt(kxx*kxx+kyy*kyy+kzz*kzz); | 
|---|
| 391 | double rep=resp(kxx*angscale, kyy*angscale); | 
|---|
| 392 | double amp2 = (rep>1.e-19)?1./rep:1.e19; | 
|---|
| 393 | hmcnt_p_->Add(wk); | 
|---|
| 394 | if ((s2cut_>1.e-9)&&(amp2>s2cut_))  continue; | 
|---|
| 395 | hmcntok_p_->Add(wk); | 
|---|
| 396 | hp_pk_p_->Add(wk, amp2); | 
|---|
| 397 | nmodeok++;      nmodeok_kz++; | 
|---|
| 398 | } | 
|---|
| 399 | } | 
|---|
| 400 | if (prtlev_>2) | 
|---|
| 401 | cout << " Four3DPk::ComputeNoisePk(kz="<<kz<<") ModeOK_Kz=" << nmodeok_kz | 
|---|
| 402 | << " FracOK=" << 100.*(double)nmodeok_kz/(double)fourAmp.SizeX()/(double)fourAmp.SizeY() << endl; | 
|---|
| 403 | } | 
|---|
| 404 | if ((prtlev_>1)||((prtlev_>0)&&(s2cut>1.e-9))) { | 
|---|
| 405 | cout << " Four3DPk::ComputeNoisePk/Info : angscale=" << angscale | 
|---|
| 406 | << " kmin,kmax=" << kmin << "," << kmax << " kmax2d_ang=" << kmax2d*angscale | 
|---|
| 407 | << " \n ... NModeOK=" << nmodeok << " / NMode=" << fourAmp.Size() | 
|---|
| 408 | << " -> " << 100.*(double)nmodeok/(double)fourAmp.Size() << "%" << endl; | 
|---|
| 409 | } | 
|---|
| 410 |  | 
|---|
| 411 | return *hp_pk_p_; | 
|---|
| 412 | } | 
|---|
| 413 |  | 
|---|
| 414 | // Fills a data table from the computed P(k) profile histogram and mode count | 
|---|
| 415 | Histo Four3DPk::FillPkDataTable(DataTable& dt) | 
|---|
| 416 | { | 
|---|
| 417 | if (hp_pk_p_==NULL) throw ParmError("Four3DPk::FillPkDataTable P(k) NOT computed"); | 
|---|
| 418 | if ((hmcnt_p_==NULL)||(hmcntok_p_==NULL)) throw ParmError("Four3DPk::FillPkDataTable Mode count histos NOT filled"); | 
|---|
| 419 | HProf& hp=(*hp_pk_p_); | 
|---|
| 420 | Histo& hmcnt=(*hmcnt_p_); | 
|---|
| 421 | Histo& hmcntok=(*hmcntok_p_); | 
|---|
| 422 | Histo fracmodok=hmcntok/hmcnt; | 
|---|
| 423 | char* nomcol[5] = {"k","pnoise","nmode","nmodok","fracmodok"}; | 
|---|
| 424 | dt.Clear(); | 
|---|
| 425 | dt.AddDoubleColumn(nomcol[0]); | 
|---|
| 426 | dt.AddDoubleColumn(nomcol[1]); | 
|---|
| 427 | dt.AddIntegerColumn(nomcol[2]); | 
|---|
| 428 | dt.AddIntegerColumn(nomcol[3]); | 
|---|
| 429 | dt.AddFloatColumn(nomcol[4]); | 
|---|
| 430 | DataTableRow  dtr = dt.EmptyRow(); | 
|---|
| 431 | for(int_4 ib=0; ib<hp.NBins(); ib++) { | 
|---|
| 432 | dtr[0]=hp.BinCenter(ib); | 
|---|
| 433 | dtr[1]=hp(ib); | 
|---|
| 434 | dtr[2]=hmcnt(ib); | 
|---|
| 435 | dtr[3]=hmcntok(ib); | 
|---|
| 436 | dtr[4]=fracmodok(ib); | 
|---|
| 437 | dt.AddRow(dtr); | 
|---|
| 438 | } | 
|---|
| 439 | return fracmodok; | 
|---|
| 440 | } | 
|---|
| 441 |  | 
|---|
| 442 | //----------------------------------------------------- | 
|---|
| 443 | // -- MassDist2D class :  2D mass distribution | 
|---|
| 444 | // --- PkNoiseCalculator : Classe de calcul du spectre de bruit PNoise(k) | 
|---|
| 445 | // determine par une reponse 2D de l'instrument | 
|---|
| 446 | //----------------------------------------------------- | 
|---|
| 447 | PkNoiseCalculator::PkNoiseCalculator(Four3DPk& pk3, Four2DResponse& rep, double s2cut, int ngen, | 
|---|
| 448 | const char* tit) | 
|---|
| 449 | : pkn3d(pk3), frep(rep), S2CUT(s2cut), NGEN(ngen), title(tit), angscales_(pk3.SizeZ()), pnoisefac_(pk3.SizeZ()) | 
|---|
| 450 | { | 
|---|
| 451 | SetFreqRange(); | 
|---|
| 452 | SetAngScaleConversion(); | 
|---|
| 453 | SetPNoiseFactor(); | 
|---|
| 454 | SetPrtLevel(); | 
|---|
| 455 | } | 
|---|
| 456 |  | 
|---|
| 457 | HProf PkNoiseCalculator::Compute(int nbin, double kmin, double kmax) | 
|---|
| 458 | { | 
|---|
| 459 | Timer tm(title.c_str()); | 
|---|
| 460 | tm.Nop(); | 
|---|
| 461 | HProf hnd; | 
|---|
| 462 | cout << "PkNoiseCalculator::Compute() " << title << "  NGEN=" << NGEN << " S2CUT=" << S2CUT | 
|---|
| 463 | << " Freq0=" << freq0_ << " dFreq=" << dfreq_ << " angscales=" << angscales_(0) | 
|---|
| 464 | << " ... " << angscales_(angscales_.Size()-1) << endl; | 
|---|
| 465 | for(int igen=0; igen<NGEN; igen++) { | 
|---|
| 466 | pkn3d.ComputeNoiseFourierAmp(frep, freq0_, dfreq_, angscales_, pnoisefac_); | 
|---|
| 467 | if (igen==0) hnd = pkn3d.ComputePk(S2CUT,nbin,kmin,kmax,true); | 
|---|
| 468 | else pkn3d.ComputePkCumul(); | 
|---|
| 469 | if ((prtlev_>0)&&(igen>0)&&(((igen-1)%prtmodulo_)==0)) | 
|---|
| 470 | cout << " PkNoiseCalculator::Compute() - done igen=" << igen << " / MaxNGen=" << NGEN << endl; | 
|---|
| 471 | } | 
|---|
| 472 | return pkn3d.GetPk() ; | 
|---|
| 473 | } | 
|---|
| 474 |  | 
|---|
| 475 |  | 
|---|
| 476 | //----------------------------------------------------- | 
|---|
| 477 | // -- MassDist2D class :  2D mass distribution | 
|---|
| 478 | //----------------------------------------------------- | 
|---|
| 479 | // Constructor | 
|---|
| 480 | MassDist2D::MassDist2D(GenericFunc& pk, int size, double meandens) | 
|---|
| 481 | : pkSpec(pk) , sizeA((size>16)?size:16) ,  massDens(sizeA, sizeA), | 
|---|
| 482 | meanRho(meandens) , fg_fourAmp(false) , fg_massDens(false) | 
|---|
| 483 | { | 
|---|
| 484 | } | 
|---|
| 485 |  | 
|---|
| 486 | // To the computation job | 
|---|
| 487 | void MassDist2D::Compute() | 
|---|
| 488 | { | 
|---|
| 489 | ComputeFourierAmp(); | 
|---|
| 490 | ComputeMassDens(); | 
|---|
| 491 | } | 
|---|
| 492 |  | 
|---|
| 493 | // Generate mass field Fourier Coefficient | 
|---|
| 494 | void MassDist2D::ComputeFourierAmp() | 
|---|
| 495 | { | 
|---|
| 496 | if (fg_fourAmp) return; // job already done | 
|---|
| 497 | // We generate a random gaussian real field | 
|---|
| 498 | double sigma = 1.; | 
|---|
| 499 | // The following line fills the array by gaussian random numbers | 
|---|
| 500 | //--Replaced--  massDens = RandomSequence(RandomSequence::Gaussian, 0., sigma); | 
|---|
| 501 | // Can be replaced by | 
|---|
| 502 | DR48RandGen rg; | 
|---|
| 503 | for(sa_size_t ir=0; ir<massDens.NRows(); ir++) { | 
|---|
| 504 | for(sa_size_t jc=0; jc<massDens.NCols(); jc++) { | 
|---|
| 505 | massDens(ir, jc) = rg.Gaussian(sigma); | 
|---|
| 506 | } | 
|---|
| 507 | } | 
|---|
| 508 | // --- End of random filling | 
|---|
| 509 |  | 
|---|
| 510 | // Compute fourier transform of the random gaussian field -> white noise | 
|---|
| 511 | FFTWServer ffts(true); | 
|---|
| 512 | ffts.setNormalize(true); | 
|---|
| 513 | ffts.FFTForward(massDens, fourAmp); | 
|---|
| 514 |  | 
|---|
| 515 | // fourAmp represent 2-D fourier transform of a real input array. | 
|---|
| 516 | // The second half of the array along Y (matrix rows) contain | 
|---|
| 517 | // negative frequencies | 
|---|
| 518 | //  double fnorm = 1./sqrt(2.*fourAmp.Size()); | 
|---|
| 519 | // PUT smaller value for fnorm and check number of zeros | 
|---|
| 520 | double fnorm = 1.; | 
|---|
| 521 | // sa_size_t is large integer type | 
|---|
| 522 | for(sa_size_t ky=0; ky<fourAmp.NRows(); ky++) { | 
|---|
| 523 | double kyy = ky; | 
|---|
| 524 | if (ky > fourAmp.NRows()/2) kyy = fourAmp.NRows()-ky;  // negative frequencies | 
|---|
| 525 | for(sa_size_t kx=0; kx<fourAmp.NCols(); kx++) { | 
|---|
| 526 | double wk = sqrt((double)(kx*kx+kyy*kyy)); | 
|---|
| 527 | double amp = pkSpec(wk)*fnorm; | 
|---|
| 528 | fourAmp(ky, kx) *= amp;   // renormalize fourier coeff using | 
|---|
| 529 | } | 
|---|
| 530 | } | 
|---|
| 531 | fg_fourAmp = true; | 
|---|
| 532 | cout << " MassDist2D::ComputeFourierAmp() done ..." << endl; | 
|---|
| 533 | } | 
|---|
| 534 |  | 
|---|
| 535 | // Compute mass field from its Fourier Coefficient | 
|---|
| 536 | void MassDist2D::ComputeMassDens() | 
|---|
| 537 | { | 
|---|
| 538 | if (fg_massDens) return; // job already done | 
|---|
| 539 | if (!fg_fourAmp) ComputeFourierAmp();   // Check fourier amp generation | 
|---|
| 540 |  | 
|---|
| 541 | // Backward fourier transform of the fourierAmp array | 
|---|
| 542 | FFTWServer ffts(true); | 
|---|
| 543 | ffts.setNormalize(true); | 
|---|
| 544 | ffts.FFTBackward(fourAmp, massDens, true); | 
|---|
| 545 | // We consider that massDens represents delta rho/rho | 
|---|
| 546 | // rho = (delta rho/rho + 1) * MeanDensity | 
|---|
| 547 | massDens += 1.; | 
|---|
| 548 | // We remove negative values | 
|---|
| 549 | sa_size_t npbz = 0; | 
|---|
| 550 | for (sa_size_t i=0; i<massDens.NRows(); i++) | 
|---|
| 551 | for (sa_size_t j=0; j<massDens.NCols(); j++) | 
|---|
| 552 | if (massDens(i,j) < 0.) { npbz++; massDens(i,j) = 0.; } | 
|---|
| 553 | massDens *= meanRho; | 
|---|
| 554 | cout << " MassDist2D::ComputeMassDens() done NbNeg=" << npbz << " / NPix=" <<  massDens.Size() << endl; | 
|---|
| 555 | } | 
|---|
| 556 |  | 
|---|
| 557 | // Compute power spectrum as a function of wave number k | 
|---|
| 558 | // Output : power spectrum (profile histogram) | 
|---|
| 559 | HProf MassDist2D::ReconstructPk(int nbin) | 
|---|
| 560 | { | 
|---|
| 561 | // The second half of the array along Y (matrix rows) contain | 
|---|
| 562 | // negative frequencies | 
|---|
| 563 | int nbh = sqrt(2.0)*fourAmp.NCols(); | 
|---|
| 564 | // The profile histogram will contain the mean value of FFT amplitude | 
|---|
| 565 | // as a function of wave-number k = sqrt((double)(kx*kx+ky*ky)) | 
|---|
| 566 | if (nbin < 1) nbin = nbh/2; | 
|---|
| 567 | HProf hp(-0.5, nbh-0.5, nbin); | 
|---|
| 568 | hp.SetErrOpt(false); | 
|---|
| 569 |  | 
|---|
| 570 | for(int ky=0; ky<fourAmp.NRows(); ky++) { | 
|---|
| 571 | double kyy = ky; | 
|---|
| 572 | if (ky > fourAmp.NRows()/2)  kyy = fourAmp.NRows()-ky;  // negative frequencies | 
|---|
| 573 | for(int kx=0; kx<fourAmp.NCols(); kx++) { | 
|---|
| 574 | double wk = sqrt((double)(kx*kx+kyy*kyy)); | 
|---|
| 575 | complex<r_8> za = fourAmp(ky, kx); | 
|---|
| 576 | double amp = sqrt(za.real()*za.real()+za.imag()*za.imag()); | 
|---|
| 577 | hp.Add(wk, amp); | 
|---|
| 578 | } | 
|---|
| 579 | } | 
|---|
| 580 | return hp; | 
|---|
| 581 | } | 
|---|
| 582 |  | 
|---|