| 1 | //  Classes to compute 3D power spectrum | 
|---|
| 2 | // R. Ansari - Nov 2008, May 2010 | 
|---|
| 3 |  | 
|---|
| 4 | #include "specpk.h" | 
|---|
| 5 | #include "randr48.h" | 
|---|
| 6 |  | 
|---|
| 7 | //------------------------------------ | 
|---|
| 8 | // Class SpectralShape | 
|---|
| 9 | // ----------------------------------- | 
|---|
| 10 |  | 
|---|
| 11 | double Pnu1(double nu) | 
|---|
| 12 | { | 
|---|
| 13 | return ( sqrt(sqrt(nu)) / ((nu+1.0)/0.2) * | 
|---|
| 14 | (1+0.2*cos(2*M_PI*(nu-2.)*0.15)*exp(-nu/50.)) ); | 
|---|
| 15 | } | 
|---|
| 16 |  | 
|---|
| 17 | double Pnu2(double nu) | 
|---|
| 18 | { | 
|---|
| 19 | if (nu < 1.e-9) return 0.; | 
|---|
| 20 | return ((1.-exp(-nu/0.5))/nu*(1+0.25*cos(2*M_PI*nu*0.1)*exp(-nu/20.)) ); | 
|---|
| 21 | } | 
|---|
| 22 |  | 
|---|
| 23 |  | 
|---|
| 24 | double Pnu3(double nu) | 
|---|
| 25 | { | 
|---|
| 26 | return ( log(nu/100.+1)*(1+sin(2*M_PI*nu/300))*exp(-nu/4000) ); | 
|---|
| 27 | } | 
|---|
| 28 |  | 
|---|
| 29 |  | 
|---|
| 30 | double Pnu4(double nu) | 
|---|
| 31 | { | 
|---|
| 32 | double x = (nu-0.5)/0.05; | 
|---|
| 33 | double rc = 2*exp(-x*x); | 
|---|
| 34 | x = (nu-3.1)/0.27; | 
|---|
| 35 | rc += exp(-x*x); | 
|---|
| 36 | x = (nu-7.6)/1.4; | 
|---|
| 37 | rc += 0.5*exp(-x*x); | 
|---|
| 38 | return ( rc+2.*exp(-x*x) ); | 
|---|
| 39 | } | 
|---|
| 40 |  | 
|---|
| 41 | //-------------------------------------------------- | 
|---|
| 42 | // -- SpectralShape class : test P(k) class | 
|---|
| 43 | //-------------------------------------------------- | 
|---|
| 44 | // Constructor | 
|---|
| 45 | SpectralShape::SpectralShape(int typ) | 
|---|
| 46 | { | 
|---|
| 47 | typ_=typ; | 
|---|
| 48 | } | 
|---|
| 49 |  | 
|---|
| 50 | // Return the spectral power for a given wave number wk | 
|---|
| 51 | double SpectralShape::operator() (double wk) | 
|---|
| 52 | { | 
|---|
| 53 | wk/=DeuxPI; | 
|---|
| 54 | switch (typ_) | 
|---|
| 55 | { | 
|---|
| 56 | case 1: | 
|---|
| 57 | return Pnu1(wk); | 
|---|
| 58 | break; | 
|---|
| 59 | case 2: | 
|---|
| 60 | return Pnu2(wk); | 
|---|
| 61 | break; | 
|---|
| 62 | case 3: | 
|---|
| 63 | return Pnu3(wk); | 
|---|
| 64 | break; | 
|---|
| 65 | case 4: | 
|---|
| 66 | return Pnu4(wk); | 
|---|
| 67 | break; | 
|---|
| 68 | default : | 
|---|
| 69 | { | 
|---|
| 70 | // global shape | 
|---|
| 71 | double csp = pow( (2*sin(sqrt(sqrt(wk/7.)))),2.); | 
|---|
| 72 | if (csp < 0.) return 0.; | 
|---|
| 73 |  | 
|---|
| 74 | // Adding some pics | 
|---|
| 75 | double picpos[5] = {75.,150.,225.,300.,375.,}; | 
|---|
| 76 |  | 
|---|
| 77 | for(int k=0; k<5; k++) { | 
|---|
| 78 | double x0 = picpos[k]; | 
|---|
| 79 | if ( (wk > x0-25.) && (wk < x0+25.) ) { | 
|---|
| 80 | double x = (wk-x0); | 
|---|
| 81 | csp *= (1.+0.5*exp(-(x*x)/(2.*5*5))); | 
|---|
| 82 | break; | 
|---|
| 83 | } | 
|---|
| 84 | } | 
|---|
| 85 | return csp; | 
|---|
| 86 | } | 
|---|
| 87 | break; | 
|---|
| 88 | } | 
|---|
| 89 | } | 
|---|
| 90 | // Return a vector representing the power spectrum (for checking) | 
|---|
| 91 | Histo SpectralShape::GetPk(int n) | 
|---|
| 92 | { | 
|---|
| 93 | if (n<16) n = 256; | 
|---|
| 94 | Histo h(0.,1024.*DeuxPI,n); | 
|---|
| 95 | for(int k=0; k<h.NBins(); k++)   h(k) = Value((k+0.5)*h.BinWidth()); | 
|---|
| 96 | return h; | 
|---|
| 97 | } | 
|---|
| 98 |  | 
|---|
| 99 | //-------------------------------------------------- | 
|---|
| 100 | // -- Four2DResponse class : test P(k) class | 
|---|
| 101 |  | 
|---|
| 102 | //--------------------------------------------------------------- | 
|---|
| 103 | // -- Four3DPk class :  3D fourier amplitudes and power spectrum | 
|---|
| 104 | //--------------------------------------------------------------- | 
|---|
| 105 | // Constructeur avec Tableau des coeff. de Fourier en argument | 
|---|
| 106 | Four3DPk::Four3DPk(TArray< complex<TF> > & fourcoedd, RandomGeneratorInterface& rg) | 
|---|
| 107 | : rg_(rg), fourAmp(fourcoedd) | 
|---|
| 108 | { | 
|---|
| 109 | SetPrtLevel(); | 
|---|
| 110 | SetCellSize(); | 
|---|
| 111 | } | 
|---|
| 112 | // Constructor | 
|---|
| 113 | Four3DPk::Four3DPk(RandomGeneratorInterface& rg, sa_size_t szx, sa_size_t szy, sa_size_t szz) | 
|---|
| 114 | : rg_(rg), fourAmp(szx, szy, szz) | 
|---|
| 115 | { | 
|---|
| 116 | SetPrtLevel(); | 
|---|
| 117 | SetCellSize(); | 
|---|
| 118 | } | 
|---|
| 119 |  | 
|---|
| 120 |  | 
|---|
| 121 | // Generate mass field Fourier Coefficient | 
|---|
| 122 | void Four3DPk::ComputeFourierAmp(SpectralShape& pk) | 
|---|
| 123 | { | 
|---|
| 124 | // We generate a random gaussian real field | 
|---|
| 125 | // fourAmp represent 3-D fourier transform of a real input array. | 
|---|
| 126 | // The second half of the array along Y and Z contain negative frequencies | 
|---|
| 127 | //  double fnorm = 1./sqrt(2.*fourAmp.Size()); | 
|---|
| 128 | double fnorm = 1.; | 
|---|
| 129 | double kxx, kyy, kzz; | 
|---|
| 130 | // sa_size_t is large integer type | 
|---|
| 131 | for(sa_size_t kz=0; kz<fourAmp.SizeZ(); kz++) { | 
|---|
| 132 | kzz =  (kz>fourAmp.SizeZ()/2) ? (double)(fourAmp.SizeZ()-kz)*dkz_ : (double)kz*dkz_; | 
|---|
| 133 | for(sa_size_t ky=0; ky<fourAmp.SizeY(); ky++) { | 
|---|
| 134 | kyy =  (ky>fourAmp.SizeY()/2) ? (double)(fourAmp.SizeY()-ky)*dky_ : (double)ky*dky_; | 
|---|
| 135 | for(sa_size_t kx=0; kx<fourAmp.SizeX(); kx++) { | 
|---|
| 136 | double kxx=(double)kx*dkx_; | 
|---|
| 137 | double wk = sqrt(kxx*kxx+kyy*kyy+kzz*kzz); | 
|---|
| 138 | double amp = sqrt(pk(wk)*fnorm/2.); | 
|---|
| 139 | fourAmp(kx, ky, kz) = complex<TF>(rg_.Gaussian(amp), rg_.Gaussian(amp));   // renormalize fourier coeff usin | 
|---|
| 140 | } | 
|---|
| 141 | } | 
|---|
| 142 | } | 
|---|
| 143 | if (prtlev_>0) | 
|---|
| 144 | cout << " Four3DPk::ComputeFourierAmp() done ..." << endl; | 
|---|
| 145 | } | 
|---|
| 146 |  | 
|---|
| 147 | // Generate mass field Fourier Coefficient | 
|---|
| 148 | void Four3DPk::ComputeNoiseFourierAmp(Four2DResponse& resp, bool crmask) | 
|---|
| 149 | { | 
|---|
| 150 | TMatrix<r_4> mask(fourAmp.SizeY(), fourAmp.SizeX()); | 
|---|
| 151 | // fourAmp represent 3-D fourier transform of a real input array. | 
|---|
| 152 | // The second half of the array along Y and Z contain negative frequencies | 
|---|
| 153 | double kxx, kyy, kzz; | 
|---|
| 154 | // sa_size_t is large integer type | 
|---|
| 155 | for(sa_size_t kz=0; kz<fourAmp.SizeZ(); kz++) { | 
|---|
| 156 | kzz =  (kz>fourAmp.SizeZ()/2) ? (double)(fourAmp.SizeZ()-kz)*dkz_ : (double)kz*dkz_; | 
|---|
| 157 | for(sa_size_t ky=0; ky<fourAmp.SizeY(); ky++) { | 
|---|
| 158 | kyy =  (ky>fourAmp.SizeY()/2) ? (double)(fourAmp.SizeY()-ky)*dky_ : (double)ky*dky_; | 
|---|
| 159 | for(sa_size_t kx=0; kx<fourAmp.SizeX(); kx++) { | 
|---|
| 160 | double kxx=(double)kx*dkx_; | 
|---|
| 161 | double rep = resp(kxx, kyy); | 
|---|
| 162 | if (crmask&&(kz==0))  mask(ky,kx)=((rep<1.e-8)?9.e9:(1./rep)); | 
|---|
| 163 | if (rep<1.e-8)  fourAmp(kx, ky, kz) = complex<TF>(9.e9,0.); | 
|---|
| 164 | else { | 
|---|
| 165 | double amp = 1./sqrt(rep)/sqrt(2.); | 
|---|
| 166 | fourAmp(kx, ky, kz) = complex<TF>(rg_.Gaussian(amp), rg_.Gaussian(amp)); | 
|---|
| 167 | } | 
|---|
| 168 | } | 
|---|
| 169 | } | 
|---|
| 170 | } | 
|---|
| 171 | if (prtlev_>1)  fourAmp.Show(); | 
|---|
| 172 | if (crmask) { | 
|---|
| 173 | POutPersist po("mask.ppf"); | 
|---|
| 174 | po << mask; | 
|---|
| 175 | } | 
|---|
| 176 | if (prtlev_>0) | 
|---|
| 177 | cout << " Four3DPk::ComputeNoiseFourierAmp() done ..." << endl; | 
|---|
| 178 | } | 
|---|
| 179 |  | 
|---|
| 180 | // Compute mass field from its Fourier Coefficient | 
|---|
| 181 | TArray<TF>  Four3DPk::ComputeMassDens() | 
|---|
| 182 | { | 
|---|
| 183 | TArray<TF> massdens; | 
|---|
| 184 | // Backward fourier transform of the fourierAmp array | 
|---|
| 185 | FFTWServer ffts(true); | 
|---|
| 186 | ffts.setNormalize(true); | 
|---|
| 187 | ffts.FFTBackward(fourAmp, massdens, true); | 
|---|
| 188 | //  cout << " Four3DPk::ComputeMassDens() done NbNeg=" << npbz << " / NPix=" <<  massDens.Size() << endl; | 
|---|
| 189 | cout << " Four3DPk::ComputeMassDens() done NPix=" <<  massdens.Size() << endl; | 
|---|
| 190 | return massdens; | 
|---|
| 191 | } | 
|---|
| 192 |  | 
|---|
| 193 | // Compute power spectrum as a function of wave number k | 
|---|
| 194 | // cells with amp^2=re^2+im^2>s2cut are ignored | 
|---|
| 195 | // Output : power spectrum (profile histogram) | 
|---|
| 196 | HProf Four3DPk::ComputePk(double s2cut, double kmin, double kmax, int nbin) | 
|---|
| 197 | { | 
|---|
| 198 | // The second half of the array along Y (matrix rows) contain | 
|---|
| 199 | // negative frequencies | 
|---|
| 200 | //  int nbh = sqrt(fourAmp.SizeX()*fourAmp.SizeX()+fourAmp.SizeY()*fourAmp.SizeY()/4.+fourAmp.SizeZ()*fourAmp.SizeY()/4.); | 
|---|
| 201 | // The profile histogram will contain the mean value of FFT amplitude | 
|---|
| 202 | // as a function of wave-number k = sqrt((double)(kx*kx+ky*ky)) | 
|---|
| 203 | //  if (nbin < 1) nbin = nbh/2; | 
|---|
| 204 | HProf hp(kmin, kmax, nbin); | 
|---|
| 205 | hp.SetErrOpt(false); | 
|---|
| 206 | ComputePkCumul(hp, s2cut); | 
|---|
| 207 | return hp; | 
|---|
| 208 | } | 
|---|
| 209 |  | 
|---|
| 210 | // Compute power spectrum as a function of wave number k | 
|---|
| 211 | // Cumul dans hp - cells with amp^2=re^2+im^2>s2cut are ignored | 
|---|
| 212 | void Four3DPk::ComputePkCumul(HProf& hp, double s2cut) | 
|---|
| 213 | { | 
|---|
| 214 |  | 
|---|
| 215 | // fourAmp represent 3-D fourier transform of a real input array. | 
|---|
| 216 | // The second half of the array along Y and Z contain negative frequencies | 
|---|
| 217 | double kxx, kyy, kzz; | 
|---|
| 218 | // sa_size_t is large integer type | 
|---|
| 219 | for(sa_size_t kz=0; kz<fourAmp.SizeZ(); kz++) { | 
|---|
| 220 | kzz =  (kz > fourAmp.SizeZ()/2) ? (double)(fourAmp.SizeZ()-kz)*dkz_ : (double)kz*dkz_; | 
|---|
| 221 | for(sa_size_t ky=0; ky<fourAmp.SizeY(); ky++) { | 
|---|
| 222 | kyy =  (ky > fourAmp.SizeY()/2) ? (double)(fourAmp.SizeY()-ky)*dky_ : (double)ky*dky_; | 
|---|
| 223 | for(sa_size_t kx=0; kx<fourAmp.SizeX(); kx++) { | 
|---|
| 224 | double kxx=(double)kx*dkx_; | 
|---|
| 225 | complex<TF> za = fourAmp(kx, ky, kz); | 
|---|
| 226 | if (za.real()>8.e9) continue; | 
|---|
| 227 | double wk = sqrt(kxx*kxx+kyy*kyy+kzz*kzz); | 
|---|
| 228 | double amp2 = za.real()*za.real()+za.imag()*za.imag(); | 
|---|
| 229 | if ((s2cut>1.e-9)&&(amp2>s2cut))  continue; | 
|---|
| 230 | hp.Add(wk, amp2); | 
|---|
| 231 | } | 
|---|
| 232 | } | 
|---|
| 233 | } | 
|---|
| 234 | return; | 
|---|
| 235 | } | 
|---|
| 236 |  | 
|---|
| 237 |  | 
|---|
| 238 |  | 
|---|
| 239 | //----------------------------------------------------- | 
|---|
| 240 | // -- MassDist2D class :  2D mass distribution | 
|---|
| 241 | //----------------------------------------------------- | 
|---|
| 242 | // Constructor | 
|---|
| 243 | MassDist2D::MassDist2D(GenericFunc& pk, int size, double meandens) | 
|---|
| 244 | : pkSpec(pk) , sizeA((size>16)?size:16) ,  massDens(sizeA, sizeA), | 
|---|
| 245 | meanRho(meandens) , fg_fourAmp(false) , fg_massDens(false) | 
|---|
| 246 | { | 
|---|
| 247 | } | 
|---|
| 248 |  | 
|---|
| 249 | // To the computation job | 
|---|
| 250 | void MassDist2D::Compute() | 
|---|
| 251 | { | 
|---|
| 252 | ComputeFourierAmp(); | 
|---|
| 253 | ComputeMassDens(); | 
|---|
| 254 | } | 
|---|
| 255 |  | 
|---|
| 256 | // Generate mass field Fourier Coefficient | 
|---|
| 257 | void MassDist2D::ComputeFourierAmp() | 
|---|
| 258 | { | 
|---|
| 259 | if (fg_fourAmp) return; // job already done | 
|---|
| 260 | // We generate a random gaussian real field | 
|---|
| 261 | double sigma = 1.; | 
|---|
| 262 | // The following line fills the array by gaussian random numbers | 
|---|
| 263 | //--Replaced--  massDens = RandomSequence(RandomSequence::Gaussian, 0., sigma); | 
|---|
| 264 | // Can be replaced by | 
|---|
| 265 | DR48RandGen rg; | 
|---|
| 266 | for(sa_size_t ir=0; ir<massDens.NRows(); ir++) { | 
|---|
| 267 | for(sa_size_t jc=0; jc<massDens.NCols(); jc++) { | 
|---|
| 268 | massDens(ir, jc) = rg.Gaussian(sigma); | 
|---|
| 269 | } | 
|---|
| 270 | } | 
|---|
| 271 | // --- End of random filling | 
|---|
| 272 |  | 
|---|
| 273 | // Compute fourier transform of the random gaussian field -> white noise | 
|---|
| 274 | FFTWServer ffts(true); | 
|---|
| 275 | ffts.setNormalize(true); | 
|---|
| 276 | ffts.FFTForward(massDens, fourAmp); | 
|---|
| 277 |  | 
|---|
| 278 | // fourAmp represent 2-D fourier transform of a real input array. | 
|---|
| 279 | // The second half of the array along Y (matrix rows) contain | 
|---|
| 280 | // negative frequencies | 
|---|
| 281 | //  double fnorm = 1./sqrt(2.*fourAmp.Size()); | 
|---|
| 282 | // PUT smaller value for fnorm and check number of zeros | 
|---|
| 283 | double fnorm = 1.; | 
|---|
| 284 | // sa_size_t is large integer type | 
|---|
| 285 | for(sa_size_t ky=0; ky<fourAmp.NRows(); ky++) { | 
|---|
| 286 | double kyy = ky; | 
|---|
| 287 | if (ky > fourAmp.NRows()/2) kyy = fourAmp.NRows()-ky;  // negative frequencies | 
|---|
| 288 | for(sa_size_t kx=0; kx<fourAmp.NCols(); kx++) { | 
|---|
| 289 | double wk = sqrt((double)(kx*kx+kyy*kyy)); | 
|---|
| 290 | double amp = pkSpec(wk)*fnorm; | 
|---|
| 291 | fourAmp(ky, kx) *= amp;   // renormalize fourier coeff using | 
|---|
| 292 | } | 
|---|
| 293 | } | 
|---|
| 294 | fg_fourAmp = true; | 
|---|
| 295 | cout << " MassDist2D::ComputeFourierAmp() done ..." << endl; | 
|---|
| 296 | } | 
|---|
| 297 |  | 
|---|
| 298 | // Compute mass field from its Fourier Coefficient | 
|---|
| 299 | void MassDist2D::ComputeMassDens() | 
|---|
| 300 | { | 
|---|
| 301 | if (fg_massDens) return; // job already done | 
|---|
| 302 | if (!fg_fourAmp) ComputeFourierAmp();   // Check fourier amp generation | 
|---|
| 303 |  | 
|---|
| 304 | // Backward fourier transform of the fourierAmp array | 
|---|
| 305 | FFTWServer ffts(true); | 
|---|
| 306 | ffts.setNormalize(true); | 
|---|
| 307 | ffts.FFTBackward(fourAmp, massDens, true); | 
|---|
| 308 | // We consider that massDens represents delta rho/rho | 
|---|
| 309 | // rho = (delta rho/rho + 1) * MeanDensity | 
|---|
| 310 | massDens += 1.; | 
|---|
| 311 | // We remove negative values | 
|---|
| 312 | sa_size_t npbz = 0; | 
|---|
| 313 | for (sa_size_t i=0; i<massDens.NRows(); i++) | 
|---|
| 314 | for (sa_size_t j=0; j<massDens.NCols(); j++) | 
|---|
| 315 | if (massDens(i,j) < 0.) { npbz++; massDens(i,j) = 0.; } | 
|---|
| 316 | massDens *= meanRho; | 
|---|
| 317 | cout << " MassDist2D::ComputeMassDens() done NbNeg=" << npbz << " / NPix=" <<  massDens.Size() << endl; | 
|---|
| 318 | } | 
|---|
| 319 |  | 
|---|
| 320 | // Compute power spectrum as a function of wave number k | 
|---|
| 321 | // Output : power spectrum (profile histogram) | 
|---|
| 322 | HProf MassDist2D::ReconstructPk(int nbin) | 
|---|
| 323 | { | 
|---|
| 324 | // The second half of the array along Y (matrix rows) contain | 
|---|
| 325 | // negative frequencies | 
|---|
| 326 | int nbh = sqrt(2.0)*fourAmp.NCols(); | 
|---|
| 327 | // The profile histogram will contain the mean value of FFT amplitude | 
|---|
| 328 | // as a function of wave-number k = sqrt((double)(kx*kx+ky*ky)) | 
|---|
| 329 | if (nbin < 1) nbin = nbh/2; | 
|---|
| 330 | HProf hp(-0.5, nbh-0.5, nbin); | 
|---|
| 331 | hp.SetErrOpt(false); | 
|---|
| 332 |  | 
|---|
| 333 | for(int ky=0; ky<fourAmp.NRows(); ky++) { | 
|---|
| 334 | double kyy = ky; | 
|---|
| 335 | if (ky > fourAmp.NRows()/2)  kyy = fourAmp.NRows()-ky;  // negative frequencies | 
|---|
| 336 | for(int kx=0; kx<fourAmp.NCols(); kx++) { | 
|---|
| 337 | double wk = sqrt((double)(kx*kx+kyy*kyy)); | 
|---|
| 338 | complex<r_8> za = fourAmp(ky, kx); | 
|---|
| 339 | double amp = sqrt(za.real()*za.real()+za.imag()*za.imag()); | 
|---|
| 340 | hp.Add(wk, amp); | 
|---|
| 341 | } | 
|---|
| 342 | } | 
|---|
| 343 | return hp; | 
|---|
| 344 | } | 
|---|
| 345 |  | 
|---|